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 We show how to measure the failure of the Whitney move in
 dimension 4 by constructing higher-order intersection invariants
 of Whitney towers built from iterated Whitney disks on immersed
 surfaces in 4-manifolds. For Whitney towers on immersed disks
 in the 4-ball, we identify some of these new invariants with
 previously known link invariants such as Milnor, Sato-Levine, and
 Arf invariants. We also define higher-order Sato-Levine and Arf
 invariants and show that these invariants detect the obstructions

 to framing a twisted Whitney tower. Together with Milnor invar
 iants, these higher-order invariants are shown to classify the exis
 tence of (twisted) Whitney towers of increasing order in the 4-ball.
 A conjecture regarding the nontriviality of the higher-order Arf
 invariants is formulated, and related implications for filtrations
 of string links and 3-dimensional homology cylinders are described.

 link concordance | trivalent tree | quasi-Lie algebra | k-slice |
 Jacobi identity

 Despite how it may appear in high school, mathematics is not all about manipulating numbers or functions in more and
 more complicated algebraic or analytic ways. In fact, one of the
 most interesting quests in mathematics is to find a good notion of
 space. It should be general enough to cover many real life situa
 tions and at the same time sufficiently specialized so that one can
 still prove interesting properties about it. A first candidate was

 Euclidean n-space Rn, consisting of rc-tuples of real numbers.
 This covers all dimensions n but is too special: The surface of the
 earth, mathematically modeled by the 2-sphere S2, is 2-dimen
 sional but compact, so it cannot be R2. However, S2 is locally

 Euclidean: Around every point one can find a neighborhood that
 can be completely described by two real coordinates (but global
 coordinates do not exist).

 This observation was made into the definition of an n-dimen

 sional manifold in 1926 by Kneser: It is a (second countable)
 Hausdorff space that looks locally like Rn. The development
 of this definition started at least with Riemann in 1854, and
 important contributions were made by Poincare and Hausdorff
 at the turn of the 19th century (1). It covers many important phy
 sical notions, such as the surface of the earth, the universe, and
 space-time (for n = 2,3, and 4, respectively) but is special enough
 to allow interesting structure theorems. One such statement is

 Whitney's (strong) embedding theorem: Any n-manifold Mn can be
 embedded into 1R271 (for all n > 1). The proof in small dimensions
 n = 1, 2 is fairly elementary and special, but in all dimensions
 n > 2, Whitney (2) found the following beautiful argument: By
 general position, one finds an immersion M R2" with at worst
 transverse double points. By adding local cusps, one can assume
 that all double points can be paired up by Whitney disks as in
 Fig. 1, using the fact that R2" is simply connected. Because 2 +
 2 < In and n + 2 < In, one can arrange that all Whitney disks
 are disjointly embedded, framed, and meet the image of M only
 on the boundary. Then a sequence of Whitney moves, as shown in
 Fig. 1, leads to the desired embedding of M.

 The Whitney move, sometimes also called the Whitney trick,
 remains a primary tool for turning algebraic information (count

 Fig. 1. (Left) A canceling pair of transverse intersections between two local
 sheets of surfaces in a 3-dimensional slice of 4-space. The horizontal sheet
 appears entirely in the "present," and the red sheet appears as an arc that
 is assumed to extend into the "past" and the "future." [Center) A Whitney

 disk W pairing the intersections. (Right) A Whitney move guided by W
 eliminates the intersections.

 ing double points) into geometric information (existence of
 embeddings). It was successfully used in the classification of

 manifolds of dimension >4, specifically in Smale's celebrated
 h-cobordism theorem (3) (implying the Poincare conjecture)
 and Wall's surgery theory (4). The failure of the Whitney move
 in dimension 4 is the main reason that, even today, there is
 no classification of 4-dimensional manifolds in sight. To be more
 precise, one needs to distinguish between topological and smooth
 4-manifolds to make correct statements. A topological n-mani
 fold is locally homeomorphic to Rn, whereas a smooth manifold
 is locally diffeomorphic to it (in the given smooth structure).

 Casson realized that in the setting of the 4-dimensional
 h-cobordism theorem, even though Whitney disks cannot always
 be embedded (because 2 + 2 = 4), they always fit into what is
 now called a Casson tower. This is an iterated construction that
 works in simply connected 4-manifolds, where one adds more and
 more layers of disks onto the singularities of a given (immersed)
 Whitney disk (5). In an amazing tour de force, Freedman (6, 7)

 showed that there is always a topologically embedded disk in a
 neighborhood of certain Casson towers (originally, one needed
 seven layers of disks, later this was reduced to three). This result
 implied the topological h-cobordism theorem (and hence the
 topological Poincare conjecture) in dimension 4. At the same
 time, Donaldson used gauge theory to show that the smooth
 4-dimensional h-cobordism theorem fails (8), and both results
 were awarded with a Fields medal in 1982. Surprisingly, the
 smooth Poincare conjecture is still open in dimension 4?the only
 remaining unresolved case.

 In the nonsimply connected case, even the topological classi
 fication of 4-manifolds is far from being understood because
 Casson towers cannot always be constructed. See refs. 9-11 for
 a precise formulation of the problem and a solution for funda

 mental groups of subexponential growth. However, there is a
 simpler construction, called a Whitney tower, which can be per
 formed in many more instances (Fig. 2). Here one again adds

 more and more layers of disks to a given (immersed) Whitney
 disk; however, one does not control all intersections as in a Cas
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 Fig. 2. Part of a Whitney tower in 4-space.

 son tower but only pairs of intersections that allow higher-order
 Whitney disks; see Fig. 3. Thus a Casson tower gives a Whitney
 tower but not vice versa.

 The current authors have developed an obstruction theory for
 such Whitney towers in a sequence of papers (12-20). Even
 though the existence of a Whitney tower does not lead to an
 embedded (topological) disk, it is still a necessary condition.
 Hence our obstruction theory provides higher-order (intersection)
 invariants for the existence of embedded disks, spheres, or
 surfaces in 4-manifolds.

 The easiest example of our intersection invariant is Wall's self
 intersection number for disks in 4-manifolds. If A: (D2,dD2) ->
 (M4,dM) has a trivial self-intersection number (we say that
 the order zero invariant r0(A) vanishes), then all self-intersections
 can be paired up by Whitney disks Wt. However, the Wt will in
 general self-intersect and intersect each other and also the
 original disk A. Our (first-order) intersection invariant TX(A,Wi)
 counts the transverse intersections A (tl Wt and vanishes if they
 all can be paired up by (second-order) Whitney disks Wt j. This
 procedure continues with an invariant t2(A, Wh W^f) that mea
 sures both A (tl Wi j and Wt (tl Wk intersections, and the con
 struction of a higher-order Whitney tower W if the invariant
 vanishes. W is the union of A (at order 0) and all Whitney disks
 Wi (order 1), Wt j (order 2), and continuing with higher-order
 Whitney disks. If A is homotopic (rel. boundary) to an embed
 ding, then these constructions can be continued ad infinitum.

 The intersection invariants rn(A,WhWijy...)=rn(W) take
 values in a finitely generated abelian group which is generated
 by certain trivalent trees that describe the 1-skeleton of
 a Whitney tower (Fig. 3 and Definition 4). The relations in &n
 correspond to Whitney moves, and quite surprisingly most of
 these relations can be expressed in terms of the so-called IHX
 relation that is a geometric incarnation of the Jacobi identity
 for Lie algebras. All the relations can be realized by controlled
 manipulations of Whitney towers, and as a result we recover
 the following approximation of the "algebra implies geometry"
 principle that is available in high dimensions:

 Theorem 1. (Raising the order of a Whitney tower) If A supports an
 order n Whitney tower W with vanishing rn (W), then A is homo
 topic (rel. boundary) to A', which supports an order n + 1 Whitney
 tower. Compare Theorem 18.

 As usual in an obstruction theory, the dependence on the
 lower-order Whitney towers makes it hard to derive explicit
 invariants that prevent the original disk A from being homotopic
 to an embedding. In this paper we discuss how to solve this

 Fig. 3. An unpaired intersection-point p among local sheets in a Whitney
 tower (Left), and its associated tree (Right).

 problem in the easiest possible ambient manifold M = B4, the
 4-dimensional ball. We start with maps

 A^...,Am: (D2,Sl) (B4,S3),

 which exhibit a fixed link in the boundary 3-sphere S3. If this link
 was slice, then the At would be homotopic (rel. boundary) to
 disjoint embeddings; and our Whitney tower theory gives obstruc
 tions to this situation. In the simplest example discussed above
 we have m = 1, and the boundary of A is just a knot K in S3:

 Theorem 2. (The easiest case of knots) (14) The first-order intersection
 invariant TX(A,Wi) e &\ = Z2 can be identified with the Arf
 invariant of the knot K. It is thus a well-defined invariant that
 depends only on dA = K. Moreover, it is the complete obstruction to
 finding a Whitney tower of arbitrarily high order >2 with boundary K.

 There is a very interesting refinement of the theory for knots in
 the setting of the Cochran-Orr-Teichner n-solvable filtration:
 Certain special symmetric Whitney towers of orders that are
 powers of 2 have a refined measure of complexity called height
 and are obstructed by higher-order signatures of associated
 covering spaces (21). However, there are no known algebraic
 criteria for "raising the height" of a Whitney tower analogous to
 Theorem 1.

 If m > 1, then the order zero invariant r0(A \,.. .,Am) is given by
 the linking numbers of the components Lt := d4, of the link

 L = U-^jL/ c S3 that is the boundary of the given disks. Milnor
 (22, 23) showed in 1954 how to generalize linking numbers fi(i,j)
 inductively to higher order. Here we use the order n total Milnor
 invariants which correspond to all length (n + 2) Milnor num
 bers //(/,, ...,in+2).

 Theorem 3. (Milnor numbers as intersection invariants) If a link L
 bounds a Whitney tower W of order n, then the Milnor invariants
 lik of order k < n vanish. Moreover, the order n Milnor invariants
 ofL can be computed from the intersection invariant rn(W) G ZTn.
 Compare Theorem 20.

 In the remaining sections, we will make these statements
 precise and explain how to get complete obstructions for the
 existence of Whitney towers for links. Unlike the case of knots,
 these get more and more interesting for increasing order. In
 addition to the above Milnor invariants (higher-order linking
 numbers), we will need higher-order versions of Sato-Levine and
 Arf invariants. In a fixed order, these are finitely many Z2-valued
 invariants, so that, surprisingly, the Milnor invariants already
 detect the problem up to this 2-torsion information.

 Theorem 4. (Classification of Whitney tower concordance) A link L
 bounds a Whitney tower W of order n if and only if its Milnor
 invariants, Sato-Levine invariants, and Arf invariants vanish up to
 order n Compare Corollary 10.

 To prove this classification, we use Theorem 1 to show that the
 intersection invariant rn (W) leads to a surjective realization map

 Rn : ZTn -? Ww, where Ww consist of links bounding Whitney
 towers of order n, up to order n + 1 Whitney tower concordance
 (see the next section). The Milnor invariant can be translated into
 a homomorphism fin: \Nn -? Dn, where the latter is a group de
 fined from a free Lie algebra (which can be expressed via rooted
 trivalent trees modulo the Jacobi identity). The composition

 rjn: STn -> W? ^ D?

 is hence a map between purely combinatorial objects both given
 in terms of trivalent trees. Using a geometric argument (grope
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 duality), we show that it is simply given by summing over all
 choices of a root in a given tree (which is a more precise state
 ment of Theorem 3). This map was previously studied by Levine
 in his work on 3-dimensional homology cylinders (24, 25), where
 he made a precise conjecture about the kernel and cokernel of rjn.
 He verified the conjecture for the cokernel in ref. 26, using a
 generalized Hall algorithm.

 In ref. 15 we prove Levine's full conjecture via an application
 of combinatorial Morse theory to tree homology. In particular,
 we show that the kernel of rjn consists only of 2-torsion. This
 2-torsion corresponds to our higher-order Sato-Levine and
 Arf invariants and is characterized geometrically in terms of a
 framing obstruction for twisted Whitney towers (in which certain

 Whitney disks are not required to be framed).
 In the above classification of Whitney tower concordance there

 remains one key geometric question: Although our higher-order
 Arf invariants are well-defined, it is not currently known if they
 are in fact nontrivial. All potential values are realized by simple
 links, so the question here is whether or not there are any further
 geometric relations; see Definition 2. We conjecture that indeed
 all the higher-order Arf invariants are nontrivial, or equivalently,
 that our realization maps Rn: ZTn W? are isomorphisms for all
 n. Here &n is a certain quotient of &n by what we call framing
 relations that come from IHX-relations on twisted Whitney
 towers. For n = 0, 2, 3 mod 4, we do show that Rn is an isomorph
 ism, implying that in this further quotient the intersection invar
 iant Tn (W) depends only on the link dW, and not on the choice of

 Whitney tower W. The higher-order Arf invariants appear when
 n = 4k - 3, and our conjecture says that the same conclusion
 holds in these orders.

 This conjecture is in turn equivalent to the vanishing of the
 intersection invariants on all immersed 2-spheres in S4. Of course
 all such maps are null-homotopic, and a general goal of the

 Whitney tower theory is to extract higher-order invariants of
 representatives of classes in the second homotopy group n2M.
 This obstruction theory is still being developed, but certain
 aspects of it appeared in refs. 12,19, 20, and 27. The fundamental
 group it\M leads to more interesting obstruction groups &n {nxM)
 and a nontrivial n2M leads to more relations to make the inter
 section invariants dependent only on the order zero surfaces.

 In this paper, we give a survey of the material needed to under
 stand the above results for Whitney towers in the 4-ball. More
 details and proofs can be found in our recent series of five papers
 (13-17) from which we also survey here the following aspects of
 the theory:

 Twisted Whitney towers and their framing obstructions
 Geometrically A>slice links and vanishing Milnor invariants
 String links and the Artin representation
 Filtrations of 3-dimensional homology cylinders

 Whitney Towers
 We work in the smooth oriented category (with discussions of
 orientations mostly suppressed), even though all results hold
 in the locally flat topological category by the basic results on
 topological immersions in Freedman-Quinn (9). In particular, as
 remarked in ref. 13, our techniques do not distinguish smooth
 from locally flat surfaces.

 Order n Whitney towers are defined recursively as follows.

 Definition 1:A surface of order 0 in an oriented 4-manifold M is a

 connected oriented surface in M with boundary embedded in the
 boundary and interior immersed in the interior of M. A Whitney
 tower of order 0 is a collection of order 0 surfaces. The order of

 a (transverse) intersection point between a surface of order n
 and a surface of order m is n +m. The order of a Whitney disk
 is (n + 1) if it pairs intersection points of order n. For n > 1, a

 Whitney tower of order n is a Whitney tower W of order

 (n - 1) together with (immersed) Whitney disks pairing all order
 (n - 1) intersection points of W.

 The Whitney disks in a Whitney tower may self-intersect
 and intersect each other as well as lower-order surfaces, but
 the boundaries of all Whitney disks are required to be disjointly
 embedded. In addition, all Whitney disks are required to be
 framed, as is discussed below.

 Whitney Tower Concordance. We now specialize to the case M ? B4
 and also assume that a Whitney tower W has disks for its order 0
 surfaces that have an ra-component link in S3 = dB4 as their
 boundary, denoted dW. Let Wn be the set of all framed links
 dW, where W is an order n Whitney tower, and the link framing
 is induced by the order 0 disks in W. This defines a filtration

 CW3CW2CW, C W0 C L of the set of framed m-compo
 nent links L = L(m). Note that W0 consists of links that are evenly
 framed because a component has even framing if and only if it
 bounds a framed immersed disk in B4.

 In order to detect what stage of the filtration a particular
 link lies in, it would be convenient to define a set measuring
 the difference between Wn and Wn+1. Because these are sets
 and not groups, the quotient is not defined. However, we can still
 define an associated graded set in the following way:

 Suppose W is an order n 4- 1 Whitney tower in M = S3 x [0,1],
 where each of the order 0 surf aces ^j,...,^ is an annulus with
 one boundary component in S3 x {0} and one in S3 x {1}. Then
 we say that the link d0W is order n + 1 Whitney tower concordant
 to d{W. This allows us to define the associated graded set W?
 as W? modulo order n + 1 Whitney tower concordance. Knots
 have a well-defined connected sum operation, but the analogous
 band-sum operation for links is not well-defined, even up to
 concordance. This makes the following proposition somewhat
 surprising; it follows from Theorem 1:

 Proposition 5. (13) Band sum of links induces a well-defined opera
 tion that makes each \Nn into a finitely generated abelian group.

 Our goal is to determine these groups vV?.

 Free Lie and Quasi-Lie Algebras. Let L = L(m) denote the free Lie
 algebra (over the ground ring Z) on generators {Xx,X2,...,Xm}.
 It is N-graded, L =0? L?, where the degree n part L? is the
 additive abelian group of length n brackets, modulo Jacobi iden
 tities, and the self-annihilation relations [X.X] = 0. The free
 quasi-Lie algebra L' is gotten from L by replacing the self-annihi
 lation relations with the weaker antisymmetry relations [X, Y] =
 -[Y,X].

 The bracketing map l_j <g> Lw+1 Ln+2 has a nontrivial kernel,
 denoted Dn. The analogous bracketing map on the free quasi-Lie
 algebra is denoted D^. For later purposes, we now define a homo
 morphism sf^: ?in -+ Z2 ? Lw+1. Given an element X in D2n,
 its image under the bracketing map is zero in L2/J+2. However,
 regarding the bracket as being in L2/7+2, we get an element of
 the kernel of the projection L/2ai+2 -> L2n+2.

 This kernel is isomorphic to Z2 0 Ln+l by ref. 26, and so we get
 an element s?2n(X) of Z2 <g) L?+1 as desired.

 The Total Milnor Invariant. Let L be a link where all the longitudes
 lie in rw+1, the (n + l)th term of the lower central series of the
 link group r := nx (S3 \ L). As a consequence of Stallings's theo

 rem (32), it follows that^s^Js^,, whereF = F{m) is the
 free group on meridians. Let /4ln(L) G Ln+1 denote the image of
 the /th longitude. The total Milnor invariant iin(L) of order n is
 defined by

 i

 <
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 It turns out that, in fact, pn(L) G Dn [by "cyclic symmetry" (28)].
 The invariant pn{L) is a convenient way of packaging all Milnor
 invariants of length n + 2 in one piece.

 Theorem 6. (16) For all n GM, the total Milnor invariant is a well
 defined homorphism pn: -? Dn such that

 i. For even n, pn is a monomorphism with image D'n < Dn.
 ii. For odd n, pn is an epimorphism; denote its kernel by K?.

 So pn is an algebraic obstruction for L bounding a Whitney
 tower of order n + 1, which is a complete invariant in half
 the cases. In the other half, we need the following additional
 invariants:

 Higher-Order Sato-Levine Invariants. Suppose L G W2n_i represents
 an element of K^.j. Because p2n-i(L) = 0, the longitudes lie in
 T^, so p2n(L) G Djn is defined. Define the order In - 1 Sato
 Levine invariant by SL^_i(L) = s 2n ? p2n(L), where sf^ is
 defined above.

 Theorem 7.(16) For all n, the Sato-Levine invariant gives a well-de
 fined epimorphism SL2/t_i: r\2in_l-?Z2 <8> L?+1. Moreover, it is an
 isomorphism for even n.

 The case SI^ is the original Sato-Levine (29) invariant of a 2
 component classical link, and we describe in ref. 16 (and below)
 how the SL2?_i are obstructions to "untwisting" an order 2n
 twisted Whitney tower.

 Higher-Order Arf Invariants. We saw above that the structure of
 the groups Wn is completely determined for n = 0, 2, 3 mod 4
 by Milnor and higher-order Sato-Levine invariants.

 Theorem 8. (16) Let K^_3 be the kernel ofSh4k_3. Then there is an
 epimorphism ak\ J.2? L^-?K^_3.

 Conjecture 9. ak is an isomorphism.

 This conjecture is true when k = 1, and indeed the inverse map
 a\x: Wj Z2 ? Lj is given by the classical Arf invariant of each
 component of the link.

 Regardless of whether or not Conjecture 9 is true, ak induces
 an isomorphism ak on (Z2 (8) \-k)/KQrak.

 Definition 2: The higher-order Arf invariants are defined by

 Arf, := (a*)"1: K^_3 - (Z2 0 L*)/Kera*.

 Any of the Arf, that are nontrivial would be the only possible
 remaining obstructions to a link bounding a Whitney tower of
 order Ak - 2, following the Milnor and Sato-Levine invariants:

 Corollary 10. (16) The associated graded groups W? are classified by
 pn, SL? if n is odd, and, for n = 4k ? 3, Arf,.

 The first unknown Arf invariant is Arf2: W5 Z2 <g) L2, which
 in the case of 2-component links would be a Z2-valued invariant,
 evaluating nontrivially on the Bing double of any knot with non
 trivial classical Arf invariant. Evidence supporting the existence
 of nontrivial Arf, is provided by the fact that such links are known
 to not be slice (30). All cases for k > 1 are currently unknown,
 but if Arf2 is trivial, then all higher-order Arf, would also be
 trivial (14).

 Twisted Whitney Towers
 The order n Sato-Levine invariants are defined as a certain
 projection of order n 4- 1 Milnor invariants, suggesting that a

 slightly modified version of the Whitney tower filtration would
 put the Milnor invariants all in the right order, with no more need
 for the Sato-Levine invariants. In this section we discuss how this

 corresponds to the geometric notion of twisted Whitney towers.

 Twisted Whitney Disks. The normal disk-bundle of a Whitney disk
 W<?>M is isomorphic to D2 x D2 and comes equipped with a
 canonical nowhere-vanishing Whitney section over the boundary
 given by pushing dW tangentially along one sheet and normally
 along the other.

 The Whitney section determines the relative Euler number
 co(W) gZ, which represents the obstruction to extending the

 Whitney section across W. It depends only on a choice of orienta
 tion of the tangent bundle of the ambient 4-manifold restricted to
 the Whitney disk, i.e., a local orientation. Following traditional
 terminology, when oo{W) vanishes W is said to be framed. (Be
 cause D2 x D2 has a unique trivialization up to homotopy, this
 terminology is only mildly abusive.) If oo(W) = k, we say that

 W is k-twisted, or just twisted if the value of w(W) is not specified
 (Fig. 4).

 In the definition of an order n Whitney tower given above, all
 Whitney disks are required to be framed (0-twisted). It turns out
 that the natural generalization to twisted Whitney towers involves
 allowing nontrivially twisted Whitney disks only in at least "half
 the order" as follows:

 Definition 3: A twisted Whitney tower of order {In - 1) is just
 a (framed) Whitney tower of order (2n - \ ) as in Defini
 tion 1 above.

 A twisted Whitney tower of order In is a Whitney tower having
 all intersections of order less than In paired by Whitney disks,
 with all Whitney disks of order less than n required to be framed,
 but Whitney disks of order at least n allowed to be /c-twisted for
 any k.

 Note that, for any n, an order n (framed) Whitney tower is
 also an order n twisted Whitney tower. We may sometimes refer
 to a Whitney tower as a framed Whitney tower to emphasize the
 distinction, and we will always use the adjective "twisted" in the
 setting of Definition 3.

 Twisted Whitney Tower Concordance. Let W~ be the set of framed
 links in S3, which are boundaries of order n twisted Whitney
 towers in B4, with no requirement that the link framing is induced
 by the order 0 disks. Notice that W^_, = W2n_i- Although not
 immediately obvious, it is true that this defines a filtration

 C w3 C W2 Q W~ C Wq = L. As in the framed setting
 above, letting W~ be the set W? modulo order (n + 1) twisted

 Whitney tower concordance yields a finitely generated abelian
 group.

 Theorem 11. (14, 16) The total Milnor invariants give epimorphisms
 \in\ W~-?D?, which are isomorphisms for n = 0,1, 3 mod 4. More

 Fig. 4. Pushing into the 4-ball from left to right: An /'- and /-labeled twisted
 Bing double of the unknot bounds disks D, and Djt which support a 2-twisted

 Whitney disk W{ijy The Whitney section is indicated by the dotted red
 loop (Bottom Center), and the intersections between its extension and the

 Whitney disk (Bottom Right).
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 over, the kernel K4k_2 of p4k_2 is isomorphic to the kernel K^_3 of the
 Sato-Levine map from the previous section.

 Conjecture 9 hence says that K?,_2 = Z2 <8) L, and our Arf
 invariants Arf, represent the only remaining obstruction to a link
 bounding an order 4k - 1 twisted Whitney tower:

 Corollary 12. The groups W~ are classified by pn and, for
 n = 4k - 2, Arf,.

 Gropes and /c-Slice Links. Roughly speaking, a link is said to be
 "/c-slice" if it is the boundary of a surface that "looks like a collec
 tion of slice disks modulo A>fold commutators in the fundamental

 group of the complement of the surface." Precisely, L c S3 is
 k-slice if L bounds an embedded orientable surface ScB4 such
 that tfn(L) n0(L) is a bijection and there is a push-off homo

 morphism nx (?) ^ (B4 \ I) whose image lies in the /cth term of
 the lower central series (nx(B4 \ I)),. Igusa and Orr proved the
 following "?>slice conjecture" in ref. 31:

 Theorem 13. (31) A link L is k-slice if and only if Pi(L) = 0 for
 all i<2k- 2.

 A A>fold commutator in nxX has a nice topological model in
 terms of a continuous map G X, where G is a grope of class k.
 Such 2-complexes G (with specified "boundary" circle) are recur
 sively defined as follows. A grope of class 1 is a circle. A grope of
 class 2 is an orientable surface with one boundary component. A
 grope of class k is formed by attaching to every dual pair of basis
 curves on a class 2 grope a pair of gropes whose classes add to k. A
 curve y: Sl -> X in a topological spaced is a A>fold commutator if
 and only if it extends to a continuous map of a grope of class k.
 Thus one can ask whether being /c-slice implies there is a basis of
 curves on E that bound disjointly embedded gropes of class k in
 B4 \ I. Call such a link geometrically k-slice.

 Proposition 14. (14) A link L is geometrically k-slice if and only
 ifLeW^_v

 This is proven using a construction from ref. 18 that allows one
 to freely pass between class n gropes and order n - 1 Whitney
 towers. So the higher-order Arf-invariants Arf, detect the differ
 ence between A;-sliceness and geometric /c-sliceness. It turns out
 that every Arf, value can be realized by (internal) band summing
 iterated Bing doubles of the figure-eight knot. Every Bing double
 is a boundary link, and one can choose the bands so that the sum
 remains a boundary link. This implies the following:

 Theorem 15. (14) A link L has vanishing Milnor invariants of all
 orders <2k-2 if and only if it is geometrically k-slice after con
 nected sums with internal band sums of iterated Bing doubles of
 the figure-eight knot.

 Here (and in Theorem 17 below), the figure-eight knot can be
 replaced by any knot with nontrivial (classical) Arf invariant.

 The added boundary links in the above theorem bound disjoint
 surfaces in S3 that clearly allow immersed disks in B4 bounded by
 curves representing a basis of first homology. In ref. 14 we will
 show that this implies:

 Theorem 16. (14) A link has vanishing Milnor invariants of all orders
 <2k-2 if and only if its components bound disjointly embedded
 surfaces Z7 C B4, with each surface a connected sum of two surfaces
 I- and HI such that

 /. a basis of curves on L- bound disjointly embedded framed gropes
 Gij of class k in the complement of ?:=u,I;,

 ii. a basis of curves on U[ bound immersed disks in the complement
 of ZuG, where G is the union of the gropes G,y.
 This is an enormous geometric strengthening of Igusa and

 Orr's result, which under the same assumption on the vanishing
 of Milnor invariants, shows the existence of a surface I with a
 basis of curves bounding maps of class k gropes, with no control
 on their intersections and self-intersections. Our proof uses the
 full power of the obstruction theory for twisted Whitney towers,
 whereas they do a sophisticated computation of the third homol
 ogy of the groups F/F^k

 String Links and the Artin Representation. Let L be a string link with
 m strands embedded in D2 x [0,1]. By Stallings's theorem (32),
 the inclusions (D2 \ {m points}) x {i}^(D2 x [0,1]) \ L for i = 0,
 1 induce isomorphisms on all lower central quotients of the fun
 damental groups. In fact, the induced automorphism of the lower
 central quotients F/Fn of the free group F = nx (D2 \ {m points})
 is explicitly characterized by conjugating the meridional genera
 tors of F by longitudes. Let Aut0(F/Fn) consist of those auto

 morphisms of F/Fn, which are defined by conjugating each
 generator and which fix the product of generators. This leads
 to the Artin representation ?L -? Aut0(F/Fn+2), where ?L is the
 set of concordance classes of pure framed string links.

 The set of string links has an advantage over links in that it
 has a well-defined monoid structure given by stacking. Indeed,
 modulo concordance, it becomes a (noncommutative) group.
 Whitney tower filtrations can also be defined in this context,
 giving rise to filtrations SWn and ?W~ of this group ?L.

 Theorem 17. (17) The sets SWn and ?W~ are normal subgroups of
 SL, which are central modulo the next order. We obtain nilpotent
 groups ?L/SW? and ?L/SW~, and the associated graded groups
 are isomorphic to our previously defined groups:

 ?W?/SW?+1 s W? and ?W~/SW~+1 s W~.

 Finally, the Artin representation induces a well-defined epimorphism
 Artin?: ?L/SW^^Aut0(/7//rn+2) whose kernel is generated by
 internal band sums of iterated Bing doubles of the figure-eight knot.

 The Artin representation is thus an invariant on the whole
 group ?L/SW~, not just on the associated graded groups as in
 the case of links. It packages the total Milnor invariants /dk,
 k = 0,...,n on string links together into a group homomorphism.
 (See ref. 17 for Bing-doubling string links.)

 Higher-Order Intersection Invariants
 Proofs of the above results depend on two essential ideas: The
 higher-order intersection theory of Whitney towers comes with
 an obstruction theory whose associated invariants take values
 in abelian groups of (unrooted) trivalent trees. And by mapping
 to rooted trees, which correspond to iterated commutators, the
 obstruction theory for Whitney towers in BA can be identified with
 algebraic invariants of the bounding link in S3. A critical connec
 tion between these ideas is provided by the resolution of the
 Levine conjecture (see below), which says that this map is an
 isomorphism.

 In fact, it can be arranged that all singularities in a Whitney
 tower are contained in 4-ball neighborhoods of the associated
 trivalent trees, which sit as embedded "spines," and all relations
 among trees in the target group are realized by controlled manip
 ulations of the Whitney disks. Mapping to rooted trees corre
 sponds geometrically to surgering Whitney towers to gropes,
 and these determine iterated commutators of meridians of the

 Whitney tower boundaries as in Fig. 5.
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 Fig. 5. (Leftto Right) An unpaired intersection in a Whitney tower, (part of)
 its associated tree, and the result of surgering to a grope.

 Trees and Intersections. All trees are unitrivalent, with cyclic order
 ings of the edges at all trivalent vertices, and univalent vertices
 labeled from an index set {l,2,3,...,m}. A rooted tree has one
 unlabeled univalent vertex designated as the root. Such rooted
 trees correspond to formal nonassociative bracketings of ele

 ments from the index set. The rooted product (/,/) of rooted trees
 / and / is the rooted tree gotten by identifying the root vertices of
 / and / to a single vertex v and sprouting a new rooted edge at v.
 This operation corresponds to the formal bracket, and we identify
 rooted trees with formal brackets. The inner product (I, J) of
 rooted trees / and / is the unrooted tree gotten by identifying
 the roots of / and / to a single nonvertex point. Note that all
 the univalent vertices of (/, /) are labeled.

 The order of a tree, rooted or unrooted, is defined to be the
 number of trivalent vertices, and the following associations of
 trees to Whitney disks and intersection points respects the notion
 of order given in Definition 1.

 To each order zero surface At is associated the order zero
 rooted tree consisting of an edge with one vertex labeled by /,
 and to each transverse intersection p GAt n A} is associated
 the order zero tree tp (/, j) consisting of an edge with vertices
 labeled by i and j. The order 1 rooted Y-tree (/, j), with a single
 trivalent vertex and two univalent labels / and y, is associated to

 any Whitney disk W(/,y) pairing intersections between^, and^4y.
 This rooted tree can be thought of as an embedded subset of Af,
 with its trivalent vertex and rooted edge sitting in W^^, and its
 two other edges descending into At and Aj as sheet-changing
 paths.

 Recursively, the rooted tree (/,/) is associated to any Whitney
 disk Wyj) pairing intersections between Wj and Wj (see the left
 hand side of Fig. 6); with the understanding that if, say, / is just a
 singleton /, then WI denotes the order zero surface At. To any
 transverse intersection p e Wyj) n WK between W^ j) and
 any WK is associated the unrooted tree tp := ((/,/), K) (see
 the right-hand side of Fig. 6).

 Intersection Trees for Whitney Towers. The group &n (for each
 ai = 0,1,2,...) is the free abelian group on (unitrivalent labeled
 vertex-oriented) order n trees, modulo the usual AS (antisymme
 try) and IHX (Jacobi) relations:

 In even orders we define STjn ' = &2n> and in odd orders ST^-x
 is defined to be the quotient of ^2n-\ by the framing relations.
 These framing relations are defined as the image of homomorph
 isms A2/J_i: Z2 (8) ZTn-\ ~* ^in-u which are defined for genera

 = 0 =

 p

 Fig. 6. Local pictures of the trees associated to a Whitney disk W(K J)t and an
 intersection point p e W{I J) n WK.

 tors by A(r) := Ive,(^),(rv(0Tv(0)>, where Tv(t)
 denotes the rooted tree gotten by replacing v with a root, and
 the sum is over all univalent vertices of t, with i(v) the original
 label of the univalent vertex v.

 The obstruction theory works as follows:

 Definition 4: The order n intersection tree rn (W) of an order n
 Whitney tower W is defined to be

 where the sum is over all order n intersections/?, with ep = ? 1 the
 usual sign of a transverse intersection point (via certain orienta
 tion conventions; see, e.g., ref. 13).
 All relations in ^n can be realized by controlled manipulations

 of Whitney towers, and further maneuvers allow algebraically
 canceling pairs of tree generators to be converted into intersec
 tion-point pairs admitting Whitney disks. As a result, we get the
 following partial recovery of the "algebraic cancelation implies
 geometric cancellation" principle available in higher dimensions:

 Theorem 18. (13) If a collection A of properly immersed surfaces in a
 simply connected 4-manifold supports an order n Whitney tower W
 with tn(W) = 0 G 3~n, then A is homotopic (rel. d) to A', which
 supports an order n + 1 Whitney tower.

 Intersection Trees for Twisted Whitney Towers. For any rooted tree /
 we define the corresponding -tree ("twisted-tree"), denoted by

 by labeling the root univalent vertex with the symbol "c\>"
 (which will represent a "twist" in a Whitney disk normal bundle):

 r = oo?/.

 Definition 5: The group *s tne quotient of 3~2n-\ by trie
 boundary-twist relations:

 {(U).J)=i-<JJ = 0.
 Here / ranges over all order n - 1 rooted trees (and the first
 equality is just a reminder of notation).

 The group 5^ is gotten from Zrln = ^in by including order
 n c^-trees as new generators and introducing the following new
 relations (in addition to the IHX and antisymmetry relations
 on non-co trees):

 r = r = H~ +x~ _ ^ x^ 2-r = (I, J).

 The left-hand symmetry relation corresponds to the fact that the
 framing obstruction on a Whitney disk is independent of its
 orientation; the middle twisted IHX relations can be realized by
 a Whitney move near a twisted Whitney disk, and the right-hand
 interior twist relations can be realized by cusp-homotopies in

 Whitney disk interiors. As described in ref. 16, the twisted groups
 can naturally be identified with a universal quadratic refine

 ment of the ?^2? -valued intersection pairing ( , ) on framed
 Whitney disks.

 Recalling from Definition 3 that twisted Whitney disks occur
 only in even order twisted Whitney towers, intersection trees for
 twisted Whitney towers are defined as follows:

 Definition 6: The order n intersection tree t?(W) of an order n
 twisted Whitney tower W is defined to be
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 where the first sum is over all order n intersections p and the
 second sum is over all order n/2 Whitney disks Wj with twisting
 oj{Wj) G Z (computed from a consistent choice of local orien
 tations).

 By "splitting" the twisted Whitney disks (13), it can be ar
 ranged that |<w(W/)| < 1, leading to signs like ep (or zero coeffi
 cients). The obstruction theory also holds for twisted Whitney
 towers:

 Theorem 19. (13) If a collection A of properly immersed surfaces in a
 simply connected 4-manifold supports an order n twisted Whitney
 tower W with t?(W) = 0 G then A is homotopic (rel. d) to

 A', which supports an order n + 1 twisted Whitney tower.

 Remark on the Framing Relations. The framing relations in the
 groups S'm-x correspond to the twisted IHX relations among
 co-trees in 5T^ via a geometric boundary-twist operation that con
 verts an order n oo-tree (/, /)~ to an order In - 1 (non-co)
 tree ((/,/),/).

 Realization Maps. In ref. 13 we describe how to construct surjective
 realization maps Rn: !yn-?V\ln and R : ^-?W~ by applying
 the operation of iterated Bing doubling. This construction is
 essentially the same as Cochran's realization method for Milnor
 invariants (33, 34) and Habiro's clasper-surgery (35), extended to
 twisted Bing doubling (Figs. 4 and 7). To prove the realization

 maps are well-defined, we need to use Theorems 18 and 19,
 respectively.

 The above Conjecture 9 on the nontriviality of the higher
 order Arf invariants can be succinctly rephrased as the assertion
 that the realization maps Rn and R? are isomorphisms for all n.
 Progress toward confirming this assertion?namely complete
 answers in 3/4 of the cases and partial answers in the remaining
 cases, as described by the above-stated results?has been accom
 plished by identifying intersection trees with Milnor invariants, as
 we describe next.

 Intersection Trees and Milnor's Link Invariants. The connection

 between intersection trees and Milnor invariants is via a surjec
 tive map r\n\ S'n -> Dn, which converts trees to rooted trees
 (interpreted as Lie brackets) by summing over all ways of choos
 ing a root:

 For v a univalent vertex of an order n (un-rooted non-co) tree,
 denote by Bv(t) G Ln+l the Lie bracket of generators

 X],X2,...,Xm determined by the formal bracketing of indices
 which is gotten by considering v to be a root of t.

 Denoting the label of a univalent vertex v by
 f(y) G {l,2,...,m}, the map rjn: ZF -> L, ? Ln+l is defined on
 generators by

 Fig. 7. Realizing an order 2 tree in a Whitney tower by Bing-doubling.

 r,n(t):=%Xm?Bv(t) and rjn(r) = l-n?((/,/?, vet

 where the first sum is over all univalent vertices v of t, and the
 second expression lies in Lj (g) L?+1 because the coefficient of
 rjn({J,J}) is even.

 The proof of the following theorem (which implies Theorem 11
 above) shows that the map rj corresponds to a construction that
 converts Whitney towers into embedded gropes (18), via the
 grope duality of ref. 36:

 Theorem 20. (14) IfL bounds a twisted Whitney tower W of order n,
 then the total Milnor invariants ftk(L) vanish for k < n,
 and iin(L) = rjn <> t?(W) G D?.

 Thus one needs to understand the kernel of r\n before the ob
 struction theory can proceed. This is accomplished by resolving
 (15) a closely related conjecture of Levine (25), as discussed next.

 The Levine Conjecture and Its Implications. The bracket map kernel
 Dn turns out to be relevant to a variety of topological settings (see,
 e.g., the introduction to ref. 15) and was known to be isomorphic
 to &n after tensoring with Q, when Levine's study of the cobord
 ism groups of 3-dimensional homology cylinders (24, 25) led him
 to conjecture that ZFn is, in fact, isomorphic to the quasi-Lie
 bracket map kernel D^, via the analogous map rj'n, which sums
 over all choices of roots (as in the left formula for r\ above).

 Levine made progress in refs. 25 and 26, and in ref. 15 we
 affirm his conjecture:

 Theorem 21. (15) rj'n: ?T? D'n is an isomorphism for all n.

 The proof of Theorem 21 uses techniques from discrete Morse
 theory on chain complexes, including an extension of the theory
 to complexes containing torsion. A key idea involves defining
 combinatorial vector fields that are inspired by the Hall basis
 algorithm for free Lie algebras and its generalization by Levine
 to quasi-Lie algebras.
 As described in ref. 16, Theorem 21 has several direct applica

 tions to Whitney towers, including the completion of the calcula
 tion of W~ in three out of four cases:

 Theorem 22. (16) rjn: 5T? -? D? are isomorphisms for n = 0, 1, 3
 mod 4. As a consequence, both the total Milnor invariants
 \in\ W~ -? Dn and the realization maps R?: S'^ -? are iso

 morphisms for these orders.

 The consequences listed in the second statement follow from
 the fact that rjn is the composition

 Theorem 21 is also instrumental in determining the only
 possible remaining obstructions to computing W;^:

 Proposition 23. (16) The map sending a rooted tree J to
 (JJY e ^7k-2 induces an isomorphism

 Z2(8)L^Ker(^_2).

 These symmetric c^-trees (JJ) correspond to twisted Whitney
 disks and determine the higher-order Arf-invariants Arf^. All
 of our above conjectures are equivalent to the statement that
 V^4k_2 is isomorphic to D4k_2 0 (Z2 <g) L^) via these maps.

 A.

 LU
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 Theorem 22 and Proposition 23 imply Theorem 11 and
 Corollary 12 above, and ref. 16 describes analogous implications
 of the above-described results in the framed setting (Theorems 6,
 7, 8, and Corollary 10).

 Framed Versus Twisted Whitney Towers
 This section describes how the higher-order Sato-Levine and Arf
 invariants can be interpreted as obstructions to framing a twisted

 Whitney tower. The starting point is the following surprisingly
 simple relation between twisted and framed Whitney towers of
 various orders:

 Proposition 24. (13, 16) For any n EN, there is a commutative dia
 gram of exact sequences

 0-> W2n-> -> W2n-i-> W?n_!-> 0
 H2n-1|

 -+0

 Moreover, there are isomorphisms

 Cok(^2n - 3^) * z2 0 L;+1 s Ker(^_1 - S^).

 In the first row, all maps are induced by the identity on the
 set of links. To see the exactness, observe that there is a natural
 inclusion Wn C W?, and by definition = W^-i - One then
 needs to show that indeed C W^.j, which is accomplished
 in ref. 13, and then the exact sequence in Proposition 24 follows
 because Wn := W?/W?+1 and W~ := W~/W~+1.

 If our above conjectures hold, then for every n the various
 (vertical) realization maps in the above diagram are isomorph
 isms, which would lead to a computation of the cokernel and
 kernel of the map Wn W~. As a consequence, we would obtain
 new concordance invariants with values in z2 <8> L^+1 and defined
 oaW^, as the obstructions for a link to bound a framed Whitney

 tower of order In. In fact (16), the above-defined higher-order
 Sato-Levine invariants detect the quotient Z2 0 Ln+1 of Z2 0
 L'n+l. Levine (25) showed that the squaring map Ih> [AT, A']
 induces an isomorphism

 Z2 0 Lk s Ker(Z2 0 L^^Z2 0 L^),

 which leads to our proposed higher-order Arf invariants Art**.
 It is interesting to note that the case n = 0 leads to the predic

 tion Cok(W0 WJ) s Z2 (8) Lj s (Z2)m. This is indeed the
 group of framed m-component links modulo those with even
 framings! In fact, the consistency of this computation was the mo
 tivating factor to consider filtrations of the set of framed links L,
 rather than just oriented links.

 Filtrations of Homology Cylinders
 Garoufalidis and Levine (37) studied the group 7Cg of homology
 cylinders over the compact orientable surface of genus g with one
 boundary component, modulo homology cobordism. It carries the
 Johnson (relative weight) filtration Jn and the Goussarov-Habiro
 (clasper) filtration Yn. We improve results on the comparison of
 the associated graded groups Jn and Yn.

 Theorem 25. (17) For all k>\, there are exact sequences

 i. 0 -? -+ -+ Z2 <g> L*+1 -? 0,
 ii. 0 -> Z2 0 L^+1 -> Y/uc-i - J^-i -? 0,

 Hi. 0 K^_3 Y4fc_3 J^-3 0,
 /v. Z2 0 L^KY _3 ^ Z2 0 ^ 0.
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