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 Proc. Roy. Soc. Lond. A. 314, 417-428 (1970)

 Printed in Great Britain

 On the global isometric embedding of

 pseudo-Riemannian manifolds

 BY C. J. S. CLARKE

 Department of Applied Mathematics and Theoretical Physics,

 University of Cambridge, Silver Street, Cambridge

 (Communicated by A. G. Walker, F.R.S.-Received 6 May 1969)

 It is shown that any pseudo-Riemannian manifold has (in Nash's sense) a proper isometric
 embedding into a pseudo-Euclidean space, which can be made to be of arbitrarily high
 differentiability. The application of this to the positive definite case treated by Nash gives
 a new proof using a Euclidean space of substantially lower dimension. The general result is
 applied to the space-time of relativity, and the dimensions and signatures of the spaces
 needed to embed various cases are evaluated.

 1. DEFINITIONS AND CLASSICAL RESULTS

 Positive definite Riemannian manifolds have historically been approached from

 two viewpoints: either their properties were defined intrinsically, or they were

 regarded as subsets of a Euclidean space of higher dimension. Thanks to the work

 of Nash (I954, I956) and Whitney (I936), it has been known for some time that
 these approaches were equivalent, in the sense that any intrinsically defined

 Riemannian manifold can be embedded, with appropriate differentiability, in a

 Euclidean space. The aim of this paper is to show that the same situation holds in

 the case of pseudo-Riemannian spaces, with metrics of indefinite signature.

 We shall deal entirely with a pseudo-Riemannian, m-dimensional, C??, Hausdorff,

 separable manifold (without boundary), M. A general pseudo-Euclidean space will

 be denoted by EPvr, defined as RI with a covariant metric y whose components in
 the natural coordinates are

 6,xfA (p + q ),
 aMA-t _aMA (1 a K, P)-

 Throughout Greek indices between cc and e will run from 1 to q. In addition we

 write Eq for E?' q.

 A mapf: iM - EPq will be termed a Ck embedding if
 (i) f is of differentiability class Ck (k > 1) and df has rank m at all points in M;
 (ii) f is one-one;

 (iii) the limit set of f has a null intersection with fM. Conditions (ii) and (iii)

 ensure that the embedding is topological, (iii) defining what Nash termed a proper
 embedding. 'Metric' will mean '(pseudo)-Riemannian metric' throughout. Other
 notation is standard, and may be found in, for example, Kobayashi & Nomizu

 (I963).

 [ 417 ]
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 418 C. J. S. Clarke

 Such an f will induce a metric g(f ) on 1M given by

 g(f ) (X, 1) = q(f* X,f* ). (1)
 We shall need to consider sums and direct products of embeddings defined by

 (fl +f2) (x) = fl(X) +f2(X) (2 a)

 (flx f3) (x) = (f1(X),f3(X)), (2 b)

 where fl,]f2: MEP,
 f3: ]MJErs,

 and the sum in (2 a) is taken by regarding EP9 as a vector space. From (1) we have

 g(f1 xf2) - g(fl) + =(h) (3)
 Metrics on M will be partially ordered by setting

 a1 < 92 for g1(X, X) < 92(X, X), VX E T(M).

 On occasion 0 will be used to denote the zero metric.

 We first turn to the problem of inducing by an embedding a given positive
 definite metric, which can be approached as follows.

 LEMMA 1. 1M can be embedded in R2m+l by a map f whose limit set is the origin.

 Proof. A method can be found in Milnor (I958). There, M is mapped differentiably
 into R, which we may do so as to yield the origin as limit set, and R is then regarded

 as a subset of R2m+1, when the map can be modified to an embedding. Our require-
 ment for the limit set is easily accommodated.

 LEMMA 2. 1 can be embedded in R2m.

 Proof. See Whitney (I944). The proof cannot usefully be abbreviated here.

 LEMMA 3. If g is a positive definite metric on 1 then there is an embedding f ' of
 M into E2m for A compact, or into E2m+1 for A non-compact, such that

 g(f ') < g.

 Proof. (i) M compact. Construct f as in the previous lemma, then put f' = of,
 where a is a sufficiently small positive constant. (ii) ill non-compact. Construct an
 embedding f as in lemma 1. Then the function

 p(r) = inff (x, 3x, X E T(M) IIf(x)ll > r (4) p\rJ jg(f ) (X, X) c

 is defined, since {xI IIf(x)II > r} is compact. If now we map E2m+l into itself by
 transforming the radial coordinate according to

 r H?j p(r') dr'

 we obtain a so-called 'short embedding' satisfying the lemma.

 This result is also a consequence of a theorem of Kuiper (I 955) that any embedding
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 Isometric embedding of manifolds 419

 can be transformed into an embedding into a space of one higher dimension which

 satisfies lemma 3.

 We now define a second fundamental form for an embedding f: 1MJ>EPz as
 follows. Let X be a normal basis of local cross sections of the normal bundle over

 0*

 f(1M), v (a basis which exists if g(f ) is non-degenerate). Define Q: T(M) -> v by

 Q(A) X VX(X, X)y (X, V ft A), (5)

 where V denotes covariant differentiation in EPq. If Q is everywhere two-one we

 call f perturbable; in coordinate form, taking coordinates za in EPq and local
 coordinates xx in an open set U in M, a perturbable embedding is one such that the

 map w from v to the space of symmetric covariant tensors on 1M given by

 ): 1 F> -a2z1,, a2a(f(x))(dXadXb w: ~- 2YcaXaaXb fddb
 is onto.

 We now define a Ck-neighbourhood of g to mean an open collection of metrics
 whose derivatives of orders from zero to k are close to those of g. If S denotes the
 bundle of symmetric covariant second-rank tensors over M, we recall that a metric

 may be regarded as a cross-section of (i.e. a map from 1 into) S. There is a natural
 map 0 from the vector space of Ck cross-sections of S into the space of Ck cross-

 sections of the k-jet bundle over S. Then the Ck-topology on the space of metrics
 can be defined formally by requiring a neighbourhood of g to be a set of metrics

 whose image under 0 forms an open neighbourhood of Og.

 In the appendix we prove the following lemmat due, in a weaker form applying

 only to compact manifolds, to Nash (I956):

 LEMMA 4. If h: M - EPS is perturbable and is Ck+2, then there is a Ck-neighbour-

 hood A of g(h) (providing k > 3) such that for any g in A there is a perturbable

 embedding h': M- EPs with g(h') =g.

 LEMMA 5. If g is a positive definite metric on M, then there exists an embedding
 h: M-Eq, where q = -2m(n+S), such that h is perturbable and g(h) < g.

 Proof. For 1 compact see Nash (I956). The outline of the argument as applied
 to the general case can be given. From the methods of lemmas 1 and 3 there is an

 immersion f of M in E2m such that g(f) < g. Let vi (i = 1, 2, ..., 2m) denote
 coordinates in E2m and put

 (00' =Dq'.vivi (o = 1, 2, . )

 where the Do' are constant symmetric 2m x 2m matrices. We choose them so that
 they span a p-dimensional subspace J of the set N of all such matrices. For coordi-

 nates Xa about a fixed point x of M there is a linear map bx: D*j F-+ a2&/aXa 9xb from
 N into the space of symmetric tensors of rank two at x. Then bxJ will be the whole
 of this space if the dimension of the intersection of J with the kernel of b, is not
 greater than p - Im(m + 1), a condition which fails only on a set of J's of dimension

This content downloaded from 
������������70.187.211.104 on Wed, 20 Jul 2022 04:14:27 UTC������������� 

All use subject to https://about.jstor.org/terms



 420 0. J. S. Clarke

 u = p(2M2 + M-p-1) + lm(m + 1)-. If now we let the point x range over all of M,
 so that each point of 1 determines such a set, then the set of J's for which there is

 a bx such that bx J is not onto is of dimension not greater than m + u; we use the
 fact thatf is an immersion and 1M is separable. If p > Im(m + 3), this set will be of

 smaller dimension than the set of all J, and so we can choose a J on which bx is onto
 for all x in M. We see that there is sufficient freedom in our choice of J for us to be

 able to choose lm(m + 5) independent D's such that any 2qm(m + 3) of them define

 a J of this sort. It can now be verified that this means that any immersion of the form

 ZS = a* wi + D*jwiwi (o- = 1, 2, ..., I4m (m + 5))

 (where the D's are as discussed above, and the C's are arbitrary) will be perturbable.
 It wiLl also be seen that this result is valid for any 02 manifold, whether compact or

 not, since the argument does not actually depend on any algebraic assumptions.

 Our lemma follows on taking f to satisfy the intersection conditions for a 'regular '

 immersion (no triple or higher intersections, and the two tangent spaces inter-

 secting in {0} at double intersections) as well as g(f) .< g. Our new immersion will
 also satisfy the condition on the induced metric if ie take 0 and D small enough,
 and we may then alter it by an arbitrarily small amount to make it an embedding

 while retaining perturbability.

 Now Kuiper (I 955) gives a construction whereby a C0 isometric embedding can be
 derived from the f' of lemma 3. Such an embedding is 'pathological' in that in

 general its second derivative exists nowhere; this is because the embedding is
 defined as the limit of a sequence of alterations off ', changed in one coordinate patch

 at a time, which converges only, in its first derivative. However, by terminating
 the process so that at any point of M an embedding f" is obtained fromf' by a finite
 number of alterations, we obtain a map that is still smooth. Thus we have

 LEMMA 6. If g is a positive definite metric on M and if G is a CO-neighbourhood
 of g, then there is a map f ": M e E2m (M compact) or M H E2m+l (M non-compact)

 such that g(f ") E G.

 THEOREM 1. Any Gc manifold M with positive definite Ck-metric g can be
 Ck-isometrically embedded in El provided k >, 3 and q > Wqm(2M2 + 37) + km2 + 1.

 Proof. We start with the embedding h of lemma 5. If k is any other differentiable
 map MH->Er, and if we put I = h x k, then I will also be perturbable and so, by

 lemma 4, there will be a Ck-neighbourhood of g(l), for any 7c > 3, which can be
 reached by isometric embeddings. If g itself lies in this neighbourhood, we shall
 call I nearly isoMetric. We proceed to construct k as a product of mappings by tri-
 angulating M and using induction to make our embeddings isometric on simplexes
 of successively higher dimension.

 PROPOSITION. Let s be an (open) r-simplex of the triangulation and let

 Ir = hr x kr where kr: M -> Elr is a Ck immersion and hr (which will be derived from h
 by a succession of applications of lemma 4) is a Ck perturbable embedding. Suppose

 that g = g(lr) on a neighbourhood B of As and that g(lr) < g elsewhere on s. Let A be
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 Isometric embedding of manifolds 421

 any closed set disjoint from 8. Then there exists a GC map kr: ]JJ> El>r+r2+2m-r such
 that:

 (i) kr x 0 = 1r4 on an open neighbourhood K of aD U A (where kr x 0 is simply kr
 regarded as an embedding into the first qr coordinates of E"2+r2+2m-r);

 (ii) r _ hr x kr, for some perturbation hr of hr, is nearly isometric on an open
 neighbourhood of s.

 (iii) g(r) < g outside A and this neighbourhood.
 Proof of propo8ition. Choose Euclidean coordinates in an openl set U of 11f con-

 taining s such that on 8 x =0,

 and (g-g(Qr))ap = 6_ap for r < p m
 and 1 a,bs<rn.

 The -r(r + 1) functions

 {vao a= 1, 2, . , lr(r + 1)} = 1-1(xi +xi) I1< j < r}
 are such that the tensors over 8

 aXt aX) Ka dx~ dxj

 form a basis for all symmetric tensors over 8.

 For small enough a(x) > 0 we will have

 g - a(x) E Ka g g(1r).

 So, by lemma 6, we can alter kr to 1cr so that

 g - g(h) - g( = r a,(x) Ka

 for some non-negative Gk functions a,(x). No alteration of kr is necessary on B,
 where we shall have a. = 0. We extend the a. to the whole of U by applying the
 same procedure to each surface Xr = const. as we have applied to 8.

 Now put p(x y)2 = (Xr+l-yr+l)2 + ... + (Xm _ ym)2,

 and let L(t) be the set {xJp(8, x) < t}. Choose t2 and a neighbourhood K of A U a8 so
 that K n L(t2) c B, and then construct a GC function 6(x) so that

 6(x) = 1 x e L(tl)\B,

 6(x) = 0 x"e K\L V2),
 for some t1, t2 > t > 0. We can now make our embeddings nearly isometric on s by

 defining a map f: M}-- Er2+2m-r which makes up the deficit g - g(h) -g(kr) on .
 f takes {xa} into a point with coordinates

 C(aaa)-A4 sin Ava (1 < a < n 1r(r+ 1)),

 ya-= (gaa) 2 A cos Ava-n (n + 1 < a < 2n),
 Y- (A sinAxa2n+r (2n +1 < a < 2n + m -r),

 C(6) A-' cos AXa-r2-m+r (r2 + rn < a < r2 + 2m - r).
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 422 C. J. S. Clarke

 Then h x f x k,r induces the metric g' + g/A2, where g is independent of A and g' = g
 on s, with gj = g> (i,j = 1, 2, ..., r) on L(t1). We shall be able to make g/A2 and any
 finite number of its derivatives arbitrarily small be taking large enough A, and so

 obtain a nearly isometric embedding, eventually. We can be more specific about

 the perturbation of h referred to above, on recalling that the Ck-topology for scalar

 or tensor functions on a compact domain is metric. Denote such a metric by d(, ).
 Then an embedding I will be nearly isometric if

 d(g(l),g) <e,

 It is now possible to choose G so that g - g' is positive definite in a neighbourhood

 of 8, say in L(t3), with d(g', g) = 63 < 6-

 Let g* denote the value of g' with this C and with t1 = oo (i.e. with the factor T

 omitted from the definition of f).

 To make the embedding nearly isometric on L(t1) we now alter h so as to change g
 on a neighbourhood containing L(tj), using the methods of Janet (I 926), Leichtweiss
 (I956), and Friedman (I96I). We merely indicate the necessary modifications to
 these methods.

 Let S. = {x, = Olp > u}. We proceed by induction defining a new embedding

 za =hr', + ,~

 where hr is an analytic approximation to hr with d(hr, hr) < 62 in a Gk+l topological
 metric. The inductive step is to extend C from a submanifold S' of Su to a sub-

 manifold of S+1, with S' = s. We try to achieve by the embedding zx a metric gt
 which can be chosen analytic, positive definite, and with

 d (g'5 g + g(hr) - g) < 61.

 If we define Eab b -Zc,a

 then the equations to be satisfied, namely

 Ei> = E(u+.)i = E(u+l) (u+1) = 0 (i,j - 1, 2, ..., u)

 can be written in the form of Janet's equations (2) to (7), where they are separated

 into a set of initial conditions and a set of differential equations for (in our case) the

 unknowns ~. Since ht is perturbable (for small enough 62) these can be solved by
 the methods of Leichtweiss, keeping the embedding zx perturbable throughout each
 stage of the induction, including the last (u = m).

 We now have a map hr = hr+C

 defined in a neighbourhood Z of s, which, provided we take C, and 62 small enough,

 can be made to satisfy d(g* - g(hr) + g(hr), g) < 63

 for any 63. If now we restrict the domain of C to L(a), then for small enough a there

This content downloaded from 
������������70.187.211.104 on Wed, 20 Jul 2022 04:14:27 UTC������������� 

All use subject to https://about.jstor.org/terms



 Isometric embedding of manifolds 423

 will be an y for which we can extend C over M in a Cco manner in such a way that

 hr + C is still perturbable and that, for small enough 63,

 g* - g(hr) J g(hr)-g(f ) < g

 in L(g). Further, we can arrange for < t3.

 Now if we choose t2 < 8 and t1 < t2, so that the part g(f) of our metric goes to

 zero while C is still giving the metric gt, we see that all the conditions of the proposi-

 tion are satisfied by hr as defined above and by kr = 1r xf, with A taken sufficiently
 large.

 Theorem 1 now follows by induction over r. We start with 10 as the product of

 the perturbable embedding h of lemma 5 and any immersion into E2m+l (for 1M

 non-compact; see lemma 3) such that

 g(10) < g

 everywhere. After r steps of application of the proposition, we can make the embed-

 ding isometric in a neighbourhood of all the (r - 1)-simplexes. The proposition can

 now be applied to each r-simplex in turn to get a nearly isometric embedding in a

 neighbourhood of r-simplexes: we then perturb h by lemma 4 to get an isometric

 embedding in a neighbourhood of r-simplexes.

 2. RELATIVITY AND OTHER INDEFINITE CASES

 Consider now the case of interest in general relativity, where the metric on a

 4-manifold M (space-time) has one negative and three positive eigenvalues, and
 may not unreasonably be taken as of differentiability class Gk with k = 3. It has

 become clear from the work of Hawking (I967), Geroch (I967) and others that

 physically vital questions about the nature and existence of singularities in the

 universe cannot be separated from considerations of the global properties of such

 a manifold; the'most important of these are causal properties, that is, those derived

 from the relation between points of 'connectability by a smooth timelike curve'.

 Now causal properties are related to the possibility of certain types of embedding:
 if an M is smoothly embedded in a normally hyperbolic pseudo-Euclidean space E,

 then since E can contain no closed time-like curves, neither can M. Further, it can

 easily be shown by the methods given below that such an M is stably causal (defined

 later) and that, conversely, any stably causal space-time is conformally related to

 a space-time which 'can be so embedded. Thus it is likely that the investigation of
 embedding might shed some light on these 'global' features.

 Our method will be to write

 where g1 is a positive definite and 92 a negative semi-definite metric. Each gi will be
 induced by a'separate map fi, f1 being given by theorem 1 of the previous section.
 g is then induced by the embedding f1 x f2, as explained in the proof of equation (3)

 above. We now proceed to determine the map f2.
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 424 C. J. S. Clarke

 LEMMA 7. Let M be a Ck pseudo-Riemannian manifold whose metric g has rank m

 and signature s. Then there exists a map f: M-?EPP, where p = (mn- s) + 1, such
 that g(f) < g.

 Proof. Consider first the case of general relativity, where s = m -2. Take an

 arbitrary mapf: P. -- Ell of rank one. In a sufficiently small neighbourhood of any
 point x of Ill we can choose coordinates (xl, x2, ..., Xm) with a/lxm time-like and
 f* (al/xm) + 0. We now use Kuiper's (I955) method to modify this map to induce
 a metric less than g. Let SA be the curve {(x, y)I y sin Ax} c R2, and let x: R11->SA

 be the Coo map for which (ni, 0),

 lldXll = constant.

 Cover M by neighbourhoods {U*} of the above form and let {6*} be a Cc, partition of
 unity subordinate to this covering. Write f(x) = f(Xa. Xm) (a = 1, 2, ..., rn-1) and
 consider the map

 kx = If(x) xEAU1
 (x) Sf(Xa, Xm(1-61) + 6,Xl(xm)) + (O, 1) X2(xm)61 otherwise.

 where we have regarded El' as the 1-axis of E22 and denoted components of X by
 superscripts. We can verify that for large enough A this map induces a metric less

 than g on M. Further, we can repeat the process on each domain U*, using the

 altered normal vector to 1* (a/lxm) in place of (0, 1). The argument can easily be
 repeated in the general case. Take an arbitrary map f of maximal rank from M to
 Edd where d = '(in - s) is the number of negative eigenvalues of the metric of M.

 The kernel of d!x for any point x of M has dimension n - d and so we can choose a
 d-dimensional purely time-like plane in TX(M), that is, one with negative definite
 metric, which is mapped topologically by dfx. Thus, as before, we can choose coordi-

 nates- about x, (xl, x2, ..., xm) with a/lx' (I 1, 2, ..., d) timelike and 1* (a/ax') + 0
 Kuiper's process may now be applied to e'ach timelike coordinate in the same way

 as for the case d = 1.

 We can now give the main theorem of this paper.

 THEOREM 2. Any rn-manifold M with Ck pseudo-Riemannian metric (k >, 3) of

 rank r and signature s can be embedded in EP P+" provided that

 p~>mn-l2(r+s)+1 and q m lm(3m +11)
 for compact 11M or q > -1m(2M2 + 37) + _km2 + 1 for non-compact M.

 Proof. We can write g = go + g' where go is of rank mn and signature r + s-rn, while
 g' is of rank a > m - r and signature a. Let f1 be the map given by lemma 7 such
 that g(f1) < go. Then let f2 be the embedding given by theorem 1 such that
 (f) = 0- g(f) + g', or by Nash (I956) for M compact.

 Thenf, xf2 is the required embedding.
 Corollary. The space-time of general relativity can be embedded isometrically in
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 Isometric embedding of manifolds 425

 E2,q+2 (pseudo-Euclidean space of signature q -2) where q = 46 or q = 87 for com-
 pact or non-compact space-time, respectively.

 REMARK. For the case of general relativity the number of negative eigenvalues in

 the embedding metric is the best possible, since we know that there are space-times

 that cannot be embedded in an El q+1, as described earlier.

 To achieve p = 1, an embedding into 'Minkowski space', we need to restrict 1

 further. A space-time is said to be globally hyperbolic if it is time-orientable and

 if, for all x, z E Al, J+(x) n J-(z) is compact, where J+(x) (resp. J-(x)) is the set

 comprising x together with all points accessible from x by a positively (resp. nega-

 tively) oriented non-space-like curve (that is, one whose tangent vector has non-

 positive length-squared). Such a space-time is stably causal: its metric has a CO-

 neighbourhood in which all metrics are causal. Hence it has a global time function r

 which increases on any timelike or null curve (Hawking I969); this function has,

 for a globally hyperbolic space-time, the property that the sets T-l(t) n Ji (x) and

 Jo(T-1(t)) n J-(x) are compact (Geroch I969).

 LEMMA 8. If M is a globally hyperbolic space-time, then there exists a map

 f: M ->Ell such that g(f ) < g.

 Proof. Scale T so that C= T-1(0) exists. Put on C a C? function o- onto the positive

 reals so that the sets T-1([O, s]) are compact, and extend a- to M by dragging along
 the trajectories of the vector field normal to the surfaces T-l(t). At any point with

 a- * 0, we may choose m -2 other coordinates with respect to which the metric may

 be written = -v2 dT2 + gAB dxA dxB, (6)

 A, B= 1,2, ...,m-1; xl=a-. If h is the map into E2defined by ,o- and 0 is any

 map from E2 to El', the map f = Oh will satisfy g - g(f ) > 0 if

 V2f()+M2 < a(7)

 where M-2 = -11 = C(do-, do-), a being the contravariant metric associated with g.

 Putting A = M(dT) ? VC(do-),

 (7) can be written (A+sO) (A-0) > M2V2. (8)

 Rescale T so that on or-1([O, 1]) =_ Y, say,

 NV < 1. (9)

 Put H?(s,t) = J?(T-1(0)) n JF(T-l(t) n o-l([0,s])),

 and define f'(x) = W for T(x) > 0,

 where w is some positive volume element on M. It is easily seen that

 A+ f' > A_ f' > 1 outside Y, (10)

 provided that we choose w big enough in Y. If now we also choose w large enough
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 426 0. J. S. Clarke

 on the rest of M we can make A_ f as large as we please and so satisfy (8) outside Y.

 In the same way we define f' from J-(C) to the negative reals by considering

 r OU)"rW (o. Thus we have satisfied (8) for the whole of M outside C U Y. Putting

 f = 0 on C \ Y makes f' continuous there, and then we may smooth out f 'to a CX
 functionf while still satisfying (7). By our choice in (9) and (10) we can also extendf

 in a &'? way over Y to give a function satisfying the lemma.

 COROLLARY. A globally hyperbolic space-time can be embedded isometrically

 in E1l q+1, provided q is as in theorem 2.

 Proof. As in theorem 2.

 Finally, certain unsatisfactory features of the embeddings need to be pointed out.

 First, the embedding given by theorem 1 is only Ck, for finite k: there is no guarantee

 that, if g is Co, there exists a C?? embedding. In a sense, we have only moved the

 'pathology' of Kuiper's (I955) construction to a higher order of differentiability.
 Secondly, it is tempting to identify the limit set of the embedding, if any, with the
 ' singularity' of a geodesically incomplete space-time; if this were possible it would
 provide a useful way of looking at such objects. It will be seen, however, that the

 construction we have given produces a limit set of one point (see lemmas 1 and 3).

 This can always be avoided by suitable modifications of the embedding, but the

 possibility of such degenerate limit sets serves to emphasize the danger of this
 identification.

 APPENDIX. PROOF OF LEMMA 4

 (a) Smoothing. Place on M an arbitrary positive definite metric h (to be restricted
 later). Let p(z1, Z2) be the infimum of the lengths of curves from z1 to Z2 eM, measured

 with h, and let ac be a Cx function from and into the positive reals such that

 oc(x) = 0 for x > 1,

 1

 and Qm-Lrm-lac(r) dr= 1,

 where Qm is the area of the unit n-sphere. If f is a real function on M, define a

 smoothed f by ((S f ) (x) = ff(y) Om4c(O p(x, y)) h(Y),

 where (oh iS the volume element defined by h. The support of the integrand is the
 closure of

 N,,(x) = {ylp(x,y) < 1/oJ}.

 We choose h so that this is always compact (assuming that M is non-compact) by

 covering M with a sequence of compact sets M* such that Mi c int (M*14) and then
 scaling h so that

 N1(Mi)=_{yJ3xe-M* such that yeN1(x)} c M+1.
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 Isometric embedding of manifolds 427

 Now take o- to be a function of the integers increasing sufficiently rapidly to give

 00

 U NA(NA-W( . . (Nl(x))...))
 r=1

 compact closure (where now we put Nk for N,(k) and similarly for S). Define also

 (VJkf) (x) = sup max {KV'A f, v f>}in (11)
 yeNN,(x) I?k

 the pointed inner brackets denoting the usual contraction with metric tensors h,

 Vh being covariant differentiation with respect to h. We use V to give orders of
 magnitude, so its exact definition is immaterial. Finally, we shall write A(n) < B(n)

 in place of the usual 'O' notation.

 By analogy with the relation for the derivative of a convolution we obtain

 |a Snf-Sn |< Ba ( f Vplf + Cp(X) VrIpl-2f (12)

 for any multi-index p and for any coordinate system about x (the functions on the

 right depending on the coordinates). If j, 1, and n are such that Nj(Nn(x)) c N1(x)
 then it follows from the definitions that

 (VMsn f) (x) < Ak-h(X) [oC(n)]k-h (VJ7f) (X) (13)
 and, for the same j, 1, n,

 (Dk(X) (Vl+lf ) (x) + Ck(x) (Vl2f ) (x) (Ac > 2)
 (V,7(Snf- f)) (X) < o(n) (14)

 (D()( Vk+ 1f) (x) (Ac <2)
 o-(n) I

 from (12).

 (b) Now let H: M>EPq be a perturbable embedding inducing a non-degenerate

 metric, so that the normal space at x intersects the tangent space in{Ox}. Let za denote
 coordinates in EPA and Xa local coordinates in M. Then if we make the change

 zax - za + 8zx subject to ,az#
 VaZZ+8Zc+ s e= 0 (Va), (15)

 the metric is changed by an amount

 8 =ab- 2= a2Za 8Zfl (16)

 We shall now use iteration. At the nth stage, having reached an embedding Hn

 with coordinates zn we put gn for q(Hn) and set 8Jn = 9-gn- (17)
 This kg determines a 6z by equations (15) and (16); it will be fixed uniquely if we
 also require, as in Nash's method,

 JJ6ZnJJ is a minimum, (18)
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 428 C. J. S. Clarke

 where is any C?? norm in the normal bundle. The snag is that the change in the
 embedding that is required at any stage is determined through the second deriva-

 tives of the embedding. Thus changes will only converge if their second derivatives
 do. We circumvent this (still following Nash) by using relations (12) to (14) applied

 to a smoothed version of HnI. The actual change we make from H. to Hn,?l will be

 given by Zn+3 = Zn + Sn[19z% (19)

 Now equation (18) does not alter the linearity of the system: it merely restricts

 6zn to an orthogonal complement of the null-space of the linear operator

 Ln: X I-+ - 2y8ft(aZn/8Xa axb) Xfi dxa dxb.

 The condition of perturbability (that this operator is onto) implies that, after this

 restriction by (18), Ln has a well-defined inverse. Thus we can replace (15), (16) and

 (18) by 8Z = L;1 q9n (20)
 From (19) we compute the value of 8Jn+l1 in terms Of &zn; from this (20) gives us

 &zn+] in terms of &zn. If we take o(n) = n2 then Nn9%?(Nn+9?(x)) c Nn(x) so that we can
 apply (13), which, together with (14) gives expressions for the Vrn (zn) (r = 1, 2, . . ., k)

 in terms of the V1n-(8zn+l). We can show that these expressions give an appropri-
 ately convergent process by using (13) to show that if the following two relations

 n

 (1) z V'Q(8zi) < A,
 i=l

 (2) Vrn(8zn) < Hr/n2 for r < 7c
 hold for n > M, where M is a large enough integer, then they hold for n = M + 1.

 (The constants A, H and M depend only on the point in the manifold at which the
 relations are evaluated.) The lemma now follows on observing that we can always
 make these relations hold as required by taking initial values of 6z and its derivatives
 sufficiently small.
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