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Abstract. By use of the mass-point model, the equations of the equipotential surfaces are reviewed. A 
difference between the time-dependent potential function and zero relative velocity surfaces is put in 
evidence. A drawback in the time-dependent transformation between (~, t/, ~) and (x, y, z) coordinate 
systems is underlined. 

1. Introduction 

It is a well-known fact that the equilibrium forms of the component stars of close binary 
systems are defined as the surfaces over which the effective potential of all forces acting 
within the system remain constant. Such surfaces are named as equipotential surfaces, 
among them the surfaces of zero relative velocity being of great importance for the study 

of double star evolution. 
Much has been written about the problem of equipotential surfaces in close binary 

systems. But, to my regret, I have no possibility to mention here the great number of 
papers written about such an interesting subject. Nevertheless, I have to mention some 
of the most important conditions in which such a question is approachable. If " . . .  the 
density concentration of the stars constituting our binary is allowed to approach infinity, 
their shape can be described in a closed algebraic form, which is exact for any such 
configuration irrespective of the proximity of its components or their mass ratio. Such a 
model is generally known in the literature, under the name of its originator, as Roche 
Model" (see Kopal, 1989). 

In the last time, the problem of the synchronization between orbital motion and axial 
rotation of the component stars, in a binary system, becomes more and more important. 
That is why, I have to mention here that, among others, Kruszewski (1966) has 
established an equation of equipotential surfaces for the case of the nonsynchronism. 
The aim of the present paper is to demonstrate that Kruszewski's equation does not 
represent zero relative velocity surfaces from the restricted problem of the three bodies. 

2. Equations of the Problem in a First Rotating Frame 

Let us consider a close binary system whose components $1 and S 2 are mass-points 
and revolve about their common centre of mass along circular orbits with the constant 
angular velocity ok. In addition, we shall consider a rectangular coordinate system 
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(X, Y, Z)  and its origin taken as the common centre of mass M, but its X-axis will be 

directed towards the secondary component S=. Therefore, this coordinate system is 
considered in rotation with the binary star, XY-plane coincides with orbital plane, while 
the Z-axis is perpendicular to it (see Figure 1). 

"ll 

Fig. 1. 

In such conditions the differential equations of the motion for the infinitesimal body 

P(X, I1, Z )  are (e.g., Tsesevich, 1971) 

dSX 2co~ dY cozx G rnl (X+  R1) - G m2 0U 
d t  - 7  - = ( x -  - a x  ' 

dSY dX m I m 2 63U 
- -  + 2co k cos Y -  - -  Y -  G - Y =  - -  , (1) 
at = d t =  r~ r23 c3Y 

d 2 Z  - G m-A Z -  G m2 Z - 8U , 

dt = r 3 r 3 8Z 

where m 1 and m 2 are the masses of the two component stars SI (RI ,  0, O) and 

S2(R=, 0, 0) and G = constant of gravitation. Here rl and r= denote the distances of the 
infinitesimal body P(X, Y, Z )  from the mass centres of S x and S= ; they are defined by 

r 2 = ( X + R , )  =+ Y = + Z  =, r ~ = ( X - R 2 )  2 +  y z + z  2; (2) 

where R = R 1 + R 2 = constant stands for the distance between the centres of the two 

stars. 
In Equations (1) the corresponding potential function U is 

U = G  ml m 2 1 - -  + a - -  + - ~ o ~ ( x  ~ + r = ) ,  ( 3 )  
r 1 r 2 2 
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where the first right-hand side term is the gravitational potential of $1, the second that 

of S 2. The third term accounts for the centrifugal force due to rotation of the frame of 
reference (X, Y, Z). 

Now, if we multiply Equations (1) by dX/dt, dY/dt, and dZ/dt, respectively, and 
adding the resulting equations together, we have 

d 2 X  dX daY dY d 2 Z  d Z  c?U dX ~?U dY ~?U dZ  
+ + - + _ _ _ _ + _ _ - -  

dt 2 dt dt 2 dt dt 2 dt OX dt c~Y dt r dt 

and, after integration with respect to time, 

v t  
- U - C 1 ;  

2 

or, for V 1 =0 ,  

U -  C~ = O, (4) 

which represents the surfaces of zero relative velocity expressed in the (X, Y, Z)  frame. 

Therefore, it is evident that the equipotentials defined by Equation (3) are identical 

with the surfaces of relative velocity from the restricted problem of three bodies. 

3. Hypothesis  o f  the Second Rotating Frame with Keplerian Angular Velocity ta k 

Let us introduce a new rotating frame (x, y, z) such that its origin is now the mass centre 
of the star S~, the x-axis points always towards the component $2, and xy-plane 

coincides with orbital plane (see Figure 1). 
The transformation equations between the system (X, Y, Z)  and (x, y, z) are 

X = x - R 1 ,  Y = y ,  Z = z ,  x l = 0  , y l = 0 ,  

z~ = 0 , X 2 = R 1 + R 2 ,  y 2  = 0 ,  z 2 = 0 ,  

while for the distances between P(x, y, z) and the two stars S~ and S 2 we have 

(5) 

r 2 = X 2 + y2 + Z 2 ' r2 2 = (x - R) 2 + y2 + z 2 ' 

In such conditions the differential equations (1) become 

(6) 

d 2 x  
_ _  _ 2(o k 
dt a 

dy co2(x-  R ) G mx m2 Q~ = - - - x - G - - ( x - R ) -  , 
l 4 ax 

d2y + 2co~ dx cozy - G rn~ ma c~RJ (7) 
d 7  = y - o  r 7  y - ey ' 

d2z = - -  G ml m 2 0 ~  
- -  - - z - G - - z = - - ;  
dt z r~ r~ Oz 
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where the new potential function is defined by 

W = G m l  m 2  1 .2[. 2 - -  + G - -  - (o2R1 x + ~ W k l ,  a, + y2) .  (8) 
r 1 r2 

From Equations (7), after habitual transformations, we have 

1 2 ~V~ = ~ - C 2 ,  

which, for V 2 = 0, leads to 

v - c ~  = 0 .  (9 )  

Therefore, Equation (8) defines the equipotential surfaces of  zero relative velocity, 

4. Hypothesis of the Rotating Frame with an Arbitrary Angular Velocity 

Lastly, let us choose a new frame (4, r/, ~) with the origin in the same mass centre of 
the star S1, but assumed as being in rotation around {-axis with an arbitrary angular 
velocity co 1 with respect to the (x, y, z) frame (see Figure 1). Therefore, this new system 
will rotate with an angular velocity a~ = co 1 + o~ k with respect to a rest frame of  reference. 
In particular a h may be taken to be equal to the angular velocity of  the axial rotation 
of  $1 or $2, but such a case is not  important  here. 

Now, the corresponding transformation equations between (x, y, z) and (4, q, {) are 
given by 

x = 4 cos coat - r/sin o~1 t ,  

y = 4 sincolt + ~ coso~at, (10) 

z = ~ . ;  

and from (6) and (10) it follows that 

rl 2 = 42 + r/2 + ~2 (11) 

r22 = R 2 + ~2 + t,/2 + ~2 _ 2R~coscol t  + 2Rr/sinco~t.  

In such conditions the differential equations of the motion are 

d2~ 2co dr/ 2 ml m2 = _  
. . . . .  60/~R1 COS(D1/ + 0924 - G - -  ( -  G - -  ( 4 -  R cosoglt) c~  
d t  2 d t  r~ r32 g~ ' 

d2r /+  2co d{ 2 dt 2 dt c~ s i n~ l t  + c~ G ml m2 r~ ~/ G r2 3 (r /+ R sinmlt  ) ~&/ 

d 2 ~ -  G m~ ~ _  G m2 ~ _  O ~ .  
dt 2 rl 3 r 3 - O~ 

(12) 
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where co = co 1 + co k (see Figure 1) and 

f)(~,r / ,~, t )= G ml +G m2 ..,-02 _ g'~ 
_ _  _ _ _  t ~ k , , l X  + + ~ ~t121 

1" 1 1" 2 

or  
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(13a) 

f)(~, r/, ~, t )=  G ml+G __m2_cO2Rl(~COSe)lt_r/sinmlt)+ ~1 c02r + r/2), 
r l  / '2 

(13b) 

where Equation (13) represents Kruszewski's formula for 'equipotential surfaces' ex- 
pressed in a rotating frame (see Kruszewski, 1966, p. 240, Equation (20)). This is a 
time-dependent potential function. 

4.1. T H E  FIRST REMARK 

If we multiply Equations (12) by d~/dt, dr//dt, and d~/dt, respectively, and adding the 
resulting equations together, we have 

d2~ d~ d2r/ dr/ d2~. d~ 
_ _  __+-- --+ 

dt 2 dt dt 2 dt dt 2 dt 

[On de 0n dr/ Of) d~ an'~ On 

= ~ - ~  - - + - -  - - + - -  - - +  ~ - t )  dt at/ dt a~ dt at 
(14) 

where - af)/at may be estimated from Equation (13b) and Equations (11). In doing so, 
we find that 

a f2 - (G m~2R+co2Rl) COl(~sincolt+r/coso)lt), (15a) 
at r~ 

or  

a n - ( G m ~ R + c o 2 R 1 )  coly. (15b) 
at r~ 

Now, after integration with respect to time, for V = 0, from (14) we obtain the 
equation of the surfaces of zero relative velocity which are given by 

G ml m2 1 .2z~2 - - +  G c~176176 t -  qsincolt) + ~t~ t~ + t/e)+ 
r I r2 

+ - ~ dt = C,  (16a) 

to 
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o r  

- -  - -  - 6 o s  + ~ + tl 2) + - dt = C .  

r~ r 2 
to 

(16b) 

If  we compare Equation (16b) with the time-dependent potential function (see 
Equation (13a)) it is easy to see that the corresponding difference is determined by the 

additional term 

OO~ dt 

to 

which was introduced with the purpose that the first term on the right-hand side of 

Equation (14) be a total differential. 
Therefore, the tirne-dependent potential function given by Equation (13) does not represent 

zero relative velocity surfaces. 
Of course, for co 1 -- 0, we have O~)/Ot = 0 and Equation (16) reduces to the con- 

ventional potential function (see Equation (8)). 

4.2. T H E  S E C O N D  R E M A R K  

In practice, the potential function is usually expressed in terms of appropriately chosen 

units. For this purpose, it is convenient to choose the following units: the distance 

R = R 1 + R2 between the mass centres of the two stellar components as unit of length, 
the sum of the masses (rn~ + m2) of both components as unit of mass and the reciprocal 
co k- 1 of the Keplerian angular velocity as the unit of time. Therefore, we have P = 2re 

for the orbital period and G = 1. 
In such conditions it follows that 

m I m 2 
1 - # -  - R 2 ,  # -  - R 1 ,  cok + co~ = l + f ;  (17) 

m I + r n  2 m 1 + m 2 

and Equation (13a)becomes 

1 - / *  /~ 
f~ = + --  - / ~ x  + �89 + f ) 2  (42 + r/:). (18) 

r 1 r 2  

(see Kruszewski, 1966, p. 241, Equation (23)). 
Now, in Kruszewski's mentioned paper (see p. 252, Equation (71)), for z = ~ = 0, 

the potential function f~ is expressed as a function of x and y as 

1 - #  # f~= _ _ +  - # x  + �89 + f ) z  (x 2 + y 2 ) .  (19) 



EQUIPOTENTIAL SURFACES IN CLOSE BINARY SYSTEMS 125 

As it is easy to see, tacitly, Equations (10) have been used in the form 

~2 q_ 172 = X 2 - r -y2  (20) 

in order to perform the transition between the systems ({, q, ~) and (x, y, z). 
Of  course, it is easy to understand that Equation (20) cannot  be used for a transfor- 

mation between (~, ~/, ~_) and (x, y, z) because the corresponding angular velocity has 
vanished. In addition we must remember that for the transformation from (x, y, z) to 
({, r/, ~) we did not use Equation (20), but we have introduced Equations (10) into 
Equations (7). Therefore, if we have to perform a transformation from (~, r/, ~) to 
(x, y, z), we must have in view the following equations 

= x cos colt + y sin colt,  

r /= - x sin col t + y cos col t ,  (21) 

~_=z 

and to insert them into Equations (12). Obviously, after we perform all algebraic 
computations, we come back to Equations (7) with the potential function given by 
Equation (8). 

Therefore, in the rotating system (~, r/, ~) the potential function is given by 

~({,  t/, ~, t) = 1 - #_ + # _ #x  + �89 + f ) 2  (~2 + ?]2) (18) 
rI r2 

with 

r (  = #2 + ~/2 + ~ 2 ,  

r 2 = R 2 + ~2 q_ ~12 -I- ~ 2  __ 2R ~ cos co I l + 2R ~/sin col t, 

l + f = col + co k ,  

while in (x, y, z) system the potential function is defined by 

~t J (X, y ,  Z) 1 -- ~ # 1 2 = - - + - - # x + ~ ( x  +y2)) 
rl r2 

with 

(8a) 

r l  2 = x 2 + y 2  + z 2 ' r 2 + ( x  - R )  2 + y 2  + z 2 ' co,, = 1 .  (6 )  

Finally, we have considered necessary to underline the above-mentioned mistake in 
order to prevent a wrong use of the potential function. 
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