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Abstract

We calculate the time delay of light in the gravitationaldieff a slowly moving
body with arbitrary multipoles (mass and spin multipole nemts) by the Time-
Transfer-Function (TTF) formalism. The parameters we {iss,introduced by
Kopeikin for a gravitational source at rest, make the iraégn of the TTF very
elegant and simple. Results completely coincide with esgioms from the lit-
erature. The results for a moving body (with constant vé&9avith complete
multipole-structure are new, according to our knowledge.
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1. Introduction

Light propagation in gravitational fields is a very impottépic not only for
modern astrometry because of the high accuracies achieveddern observa-
tions, but also for other kinds of measurements such as radging to spacecrafts
or planets. Gravitational fields cause a propagation-tiel@ydand a deflection of
light-rays as well as a frequency shift of the involved pimsto The first effect,
called Shapiro delaﬂ[l], has to be considered in spaceiigebs such as Very-
Long-Baseline Interferometry (VLBI), Lunar Laser RandibgR), and etc. The
present VLBI model recommended by the IERS conventions ﬂﬂ}t@he con-
sensus mode|[|[3]) has an accuracy at thmcosecond level; it will be improved
to 0.1 picosecond accuracy in the near future; LLR is apgnogcnow the milli-
meter Ievel|ﬂ4]. The gravitational field of the Sun producesaximum of about
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100 nanoseconds for the Earth bounded VLBI observatBnar{B]SO nanosec-
onds (15 meters) in LLR experiments.

The light propagation delay in the gravitational field of at&tnary mass-
monopole is quite easy to derive. For a body with arbitrargsrnand spin mul-
tipole moments, moving with some velocity in the underlyaaprdinate system,
the treatment becomes non-trivial. People usually use uhegyaodesic equation
to get the light-propagation information between two esdfdr example, emis-
sion and reception). The solutions for a gravitating bodyarbitrary multipoles
obtained in this way was first derived i E 7]. Bertone et sthowed that the
so called time-transfer-function (TTF) formalism can atsoused efficiently to
get the gravitational time-delay, but they dealt with theecaf mass-monopoles
only E]. Recently, some authors discussed the light prapag in the field of a
moving axisymmetic bodﬂQ].

In this letter, we derive the TTF by means of special pararaeted techniques
that were first introduced by KopeikiE|[, 7]; using this apgeh simplifies the
calculations drastically. Results for the Shapiro-effiecta body with arbitrary
mass- and spin-mutipoles are obtained in a few lines. Owlteesompletely
coincide with the ones from the literature (e.@,ﬁb, 7]).isTbalculation is then
generalized in a very simple way to the case of a body movin slow and
constant velocity in the underlying coordinate system.

In the next section, the metric of a body with arbitrary npdte-moments is
recalled; in section 3 and 4, we introduce the TTF, and cateuthe light propa-
gation for the cases of arbitrary multiple moments and @onistelocity. The last
section contains conclusions and discussions.

2. TheTime Transfer Function

We will consider the propagation of light-signals in a firsder post-Newtonian
metric of form

2w
Goo = —1+ —,
c
B 4
goi = —gwi, (1)

2w
9ij = 0ij <1 + ?) ;

wherew andw® are the scalar- and the vector gravitational potentiajsaetsvely.
Our interest is in the gravitational time delay that can begoted from the null
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condition,ds® = 0, along the light-ray. Writingy,,, = 7,,, + h,, and defining the
coordinates a&ct, x,y, z), we get

1 2 dat 1 da'da?

dt* = —dx® + ( hoo + ~hoi— + —hij———— | dt*.

2% +< 00+c Ot +02 T dt dt)
Considering/h,,| < 1, to first order Taylor expansion, the above equation be-
comes de| ||

xr i v
dt ~ T —|— 2—C(h/wn”n ) s (2)

where we have insertedl’ /dt = cn’ from the unperturbed light-ray equation,
x(t) = g + nc(t — tp) andn* = (1,n). For our metric[(lL), the Time Transfer
Function (TTF), T (to, o; ) = t — to With ds = |dz| reads

T (to, xo; ) = § —l—% : (hnn”)ds = §+% (w - %'w . n) ds, (3)
whereR is the Euclid distance fromx, (where a light signal is send at tinig)

to an observer at (the reception time ig). The TTF allows the computation of
tif ty, xyg andax are given. In one word, TTF is just propagation time of light i
gravitational field. Becaugés coordinate time, the TTF as well as the time delay
should be a coordinate-dependent quantity.

3. A singlegravitating body at rest

We consider first a single body at rest at the origin of our doate system.
Space-time outside of the body is assumed to be station&ign The metric po-
tentials outside the body take the foﬂﬂ[lO]

—1) 1
w=c 5 (7). @
! r
(1) 1 (1)
w, = -G ——¢iikSkr—10;0-1 | = |, (5)
; TR it

where M; and S}, is the mass and spin multipole moment respectivélyis a
Cartesian multi-index. = 4, ...¢ and each individual Cartesian indéxruns
over 1,2 3 or z,y,z. Correspondingly, the multi-index — 1 indicates! — 1
different Cartesian indices. And= (22 + y* + 2%)!/? is the Euclid distance from
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the center of mass to the field point. We now use the Kopeikiampetrization of
the unperturbed light-ray (see Kopeiklﬂh [7])

Ts=d+mn-s (6)

withd-n = 0,i.e.d = n x (x x n) = n x (xy X n) is the vector that points
from the origin to the point of closest approach of the ungéed light-ray. We
then haves = n - ¢, andr, = |x,| = v d? + s%. Following [7] we can now split
the partial derivative with respect 16 in the form

0, =0 +9| (7)
with p p
L= [
82_8dZ’ 87,_”“087 (8)
Then, from Eq. (24) irﬂ?]:
l il
O = ———n" 0 pdl, 9)
I;O !l = p)!

wheren” = n® ... n» andd? = 97 /dsP. Inserting this into expressiohl(3) and
decomposing as7Ty + Ts we get

26 N L (—1)! ! Pal s+r
TMZ;ZZ 0 p!(l_p)!MLn aL_P{agln

P — S0 -+ To
—<a§1n ‘9”) } (10)
So + 1o 5=50
for the time delay induced by the mass multipole moma@itsand
00 l
4G (-t l ; Pl
Ts=ar ; ; T Pl = p)i [ 1k Ot it p
x {05111 T <8§1n il ) } (11)
So + 1o So + 1o/ ls=so
for the time delay induced by the spin multipole momefyssince
°d
L N Sl (12)
T So + 7o

S0

These results are in agreement with the ones found by Korpﬁ](i
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4. TheTTF for abody slowly moving with constant velocity

Let us now consider the situation where the gravitating Hediled A) moves
with a constant slow velocity; we will neglect terms of order? in the fol-
lowing. Let us denote a canonical coordinate system movitigbody A, X =
(cT, X) (see e.g. ﬂl]) and the corresponding metric potentialg/bgnd117*.
The metric tensor in the co-moving system is of the folth (1dhwgpotentials
W, W given by Eq. [#) and{5), but written in terms of co-moving ainates.
E.g., the quantity in (@) and [5) has to be replaced By= | X|, and the spatial
derivatives are now with respect #. Under our conditions the transformation
from co-moving coordinateX® to x* is a linear Lorentz-transformation of the
form (B, = va/0):

at = Z(T) + AL X (13)
with 2 = (0, 24 (7)) andA§ = 1, A% = 3%, A{ = B4, AL = &;,. Wherez, is the
global coordinate position vector of body A. A transformoatiof the co-moving
metric to the rest-system then yields (see alsb [11])

4
w, = Woy +W;. (14)

One can show (e.g, Zschocke & Soffel[12]) tHat= ra(t) + O(v3). Further-

more,

) )
0= 5z = Mg = 6udi + O(R). (15)

so that the metric potentidl’ expressed in terms @f, x) (to first order in the

velocity) takes the form
—1) 1
( l') M0y, (—) (16)
10 ! T’A(t)

where M 0;, = M;, ;,0;,.;, and every spatial derivative is with respectatt
Similarly, for the gravito-magnetic potenti#ll* one finds

1
—GZ ! l+1€zgk5kL 10511 (m), (17)

and the TTF is given by expressidn (3) with¥(14) -1(17).




With 25 (t) = 24 + va(t — ta) we get along the unperturbed light-ray with
x(t) = xo + nc(t —to)
ra(t) = 2o — za(to) + (n — By)c(t — to) (18)

i.e., due to first order aberration, the unit vector alonguhperturbed light-ray,
as seen from the moving body A, is given by

9p

ng ==Lt 19
5= 0 (19)
with

gs=n—0B,. (20)

We can then write the TTF in the form

2
T (to, zo; _—+—/ [ (1-28,- n)——( —208,) - W} ds
:_+2gﬁ/ W(s')ds' ——nﬁ / W(s
+ gﬁA . /, W (s')ds', (22)
S0

wheres’ = ggs.
We now parametrize the unperturbed light-ray in the form

T, =2z +dg+ngo, (22)
whereds = mg x (ra x np) is perpendicular tavs so thatra(t) = /d3 + o?

ando = 7, -ng. Similar to the case of a body at rest we split the spatial/dévie
into to two partsg; = 9 + 82”, with

0 0
1 Il
8i_adg’ 0—%80 (23)
The TTF therefore takes the form
2gBG ! Pal rAa+o
A+ O
_ 1171
(8" " R+ 0—0) g:oo} (24)




for the gravitational time-delay due to the mass-multipotanents of the moving
body and

!
4G (-t I . .
7§ - Z Z EZ]k(nZB - BA)SICL—IngaJ'_L_P_l

ct e I pll—pli+1 j

x [agln ESA (agln TA*“)

) + o0 rd + o0

L e

for the gravitational time-delay due to the moving spin npales, Whermg =
ng o -n’; and all the terms proportional 18, should be dropped. In this work the
moving multipoles are time-independent. For the case afrarl time-dependent
(but non-moving) multipoles, see [13].
Let

®(o,d) =In(oc + Vd? + 0?), (26)
then the first derivatives appearing [in{24) aind (25) (witandd being replaced
by nz andd;) read:

0, = - (27)
T
Po = —= (28)
T
dz’
0rd = (29)
r(r+s)
1 dZ
000 = —— (30)
T
+2r) . . nin’
0L, @ = _ 2 g 31
<w> (r + s)2r3 r(r+s)’ (31)
where the last term results from the fact that [7]:
Ord =iy —n'n . (32)
Considering e.g., the mass-monopole term we have
GMy TA+ O
0=2 In —
w0 = 2= 50510 S
and sincer = ng -y = g5 - ra/gs, We obtain
2G My g Ta+gsra
0= 1 33
Tt i=0 3 gp i <95 ) 'P% —l—gg?“% (33)
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in accordance with the results from the literature (e@[@ )-

For the mass-quadrupole in uniform motion we get

G
Tai=2 = ggﬁMij]ij (34)
with
Ly = (niynbd? +2n%0,0F + 05)0[;

ini (74 1 2n'd’  d'd?(o + 2r)
= —nhnt | = - — .
FB\r3 " r(r+o) r3 (r+o0)2r3

Taking the integral expression f@g,;—» one gets the same form as in{34) but
with 7;; being replaced by

(35)

/!
I,

/0 (diy + o) (d% + nlo)

" (d3 + 02)>/2

g3 n’ﬁnjﬁ 2n%d% SUd% + 20 diﬁd%
= d% s + r3 d‘é

0

(e

(36)

g0

With some re-writing, usinglz = > — ¢*, one finds thatl; = I;; + const..
Expression(34) agrees with the one given by Klioner [5] whes 0.

The contribution from the spin-dipole can be written in then
2G

Tsi=1 = _Fez’jk(niﬁ — B ISk (37)
with do » A+ o
I, =0; / - (05 + n%0,) In o0 (38)
or
Iz%(n —%)—%<n5—df€°>. (39)

A result for the gravitational time delay caused by a movipm<lipole has al-
ready been published by Kopeikin & Mashhoon! [14]. They hasteialy used
the same expressionl (3) for the gravitational time delayihds been shown in
[lﬁ] that their metric is in agreement with the one used ia f@per, so the results
must agree, though Kopeikin & Mashhoon used retarded diesithroughout.
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5. Conclusions

In this letter, the Time-Transfer-Function as derived fritv@ null condition of
light in vacuum, is used to derive the gravitational timeagel

The use of the Kopeikin-decomposition of spatial derivegimnakes this method
especially elegant for gravitational bodies with arbigréiime independent) mul-
tipole moments. By introducing the first order aberratioa,extend our results to
a moving body with constant velocity and also arbitrary mpolie moments.

This work was done in the frame of our efforts to formulate ahagistive
documentation of a relativistic VLBI model that could be pthal by international
panels.
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