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RELATIVISTIC TIME SCALES IN THE SOLAR SYSTEM

V. A. BRUMBERG
Institute of Applied Astronomy, 197042 Leningrad, U.S.S.R.
and
S. M. KOPEJKIN
Sternberg State Astronomical Institute, 119899 Moscow, U.S.S.R.

(Received: 10 July 1989; accepted: 15 August 1989)

Abstract. This paper deals with a self-consistent relativistic theory of time scales in the Solar system based on
the construction of the hierarchy of dynamically non-rotating harmonic reference systems for a four-dimensional
space-time of general relativity. In our approach barycentric (TB) and terrestrial (TT) times are regarded as
the coordinate times of barycentric (BRS) and geocentric (GRS) reference systems, respectively, with an
appropriate choice of the units of measurement. This enables us to avoid some of the inconsistencies and
ambiguities of the definitions of these scales as these are currently applied. International atomic time (TAI)is
shown to be the physical realization of TT on the surface of the Earth. This realization is achieved by a specific
procedure to average the readings of atomic clocks distributed over the terrestrial surface, all of them
synchronized with respect to TT. Extending TAI beyond the Earth’s surface may be performed along
a three-dimensional hypersurface TT = const. The unit of measurement of TAI coincides with TB and TT
units and is equal to the SI second on the surface of the geoid in rotation. Due to the specific choice of the units
of measurement the TB scale differs from the TT (TAI) scale only by relativistic nonlinear and periodic terms
resulting from the planetary and lunar theories of motion. The proper time t, of any terrestrial
observer coincides with the coordinate time t of the corresponding topocentric reference system (TRS)
evaluated at its origin. 7, is reacted to TT (TAI) by the relativistic transformation involving the
GRS velocity of the observer, its height above the geoid and the quadrupole tidal gravitational
potential of the external masses. The impact of introducing TB and TT on the units of measurement
of length and the basic astronomical constants is discussed.

1. Introduction

Development of the astronomical time scales currently presents one of the most urgent
tasks of applied astronomy. The experimental precision of time measurements is
increasing steadily. This demands an improvement in the accuracy of the theoretical
models including physically meaningful and mathematically rigorous definitions of all
of the quantities involved in time measurements. In the last few years the problem of
time scales has often been discussed during the General Assemblies of the International
Astronomical Union and the International Association of Geodesy. But the resolutions
on this subject turn out to be of limited longevity. Subsequent increases in the precision
with which time can be measured eventually revealed their logical inconsistency.
Some insight into the historical development of basic ideas and concepts in this area
can be gained from Mulholland (1972), Wilkins (1974), Winkler and Van Flandern
(1977), and Murray (1983).

Nowadays one may note a new stage in the elaboration of the problem of time scales.
This stage is marked by publication of the paper by Guinot and Seidelmann (1988) in
which the authors outlined the actual status of the question and proposed their
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24 V. A. BRUMBERG AND S. M. KOPEJKIN

recommendations and declarations for wide discussion. Our paper aims to contribute
into this discussion. We do not think that the present situation as described by Guinot
and Seidelmann demands radical changes. The aim of our paper is to make their
statements concerning time scales more rigorous in the relativistic sense, regarding
them as the part of the general problem of four-dimensional reference systems for
astronomy and geodesy. This approach, relating in a quite definite way the time scales
TB and TT (TAI) with the coordinate times of the appropriate reference systems
enables, as we believe, the removal of some inconsistencies and ambiguities occuring
both in the IAU resolutions and some recent papers on time scales, for example those of
Murray (1983), Japanese Ephemeris (1985), Guinot (1986), Fukushima (1989), and
Huang et al. (1989).

The first of these ambiguities is related to the definition of TB. TB is often defined as
the coordinate time of the barycentric reference system (BRS) or as the independent
argument in the barycentric equations of motion of celestial bodies. But the notions of
BRS and BRS equations of motion have no single meaning within the framework of the
general relativity theory (GRT). To introduce a unique four-dimensional reference
system in GRT it is necessary to indicate explicitly the corresponding metric form or to
formulate the conditions to be used as the basis for constructing this form. These
conditions involve the following points:

(1) coordinate conditions employed in solving the GRT field equations;
(2) the type of the solutions of the GRT field equations;

(3) the choice of the world line of the origin of the reference system;

(4) the choice of the rotation of the spatial axes.

The uniqueness in formulating a reference system results in the unambiguous equations
of motion of celestial bodies. Without such uniqueness of BRS and BRS equations of
motion the time scale of TB actually remains undetermined.

Still further ambiguities occur in the current definitions of TT. First of all, TT is often
considered only as an argument in calculating the apparent geocentric positions of
celestial bodies. Such a treatment leads to the restriction of the TT functions because
this time scale serves as the most adequate independent argument in constructing
theories of motion of the Moon or artificial satellites of the Earth. TT is sometimes
defined as the proper time of the clock at rest at the geocentre, provided that the mass of
the Earth is negligible. This definition has its origin in the historical traditions when, in
investigating reference systems and time scales, the mass of the Earth and its
gravitational field may be ignored. These traditions involve more recent attempts to
consider the motion of the geocentre in a fictitious time-space due to the external
masses surrounding the Earth. This construction introduces new inconsistencies in the
definition of TT. At present, the geocentric reference system (GRS) should, like BRS, be
defined quite uniquely; only then does the definition of TT become quite rigorous.
Sometimes TT is defined as the time of clocks on the geoid. In doing so, the definition
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RELATIVISTIC TIME SCALES IN THE SOLAR SYSTEM 25

and the practical realization of the time scale are mixed together. Moreover, one
introduces the notion of the geoid, which itself needs to be correctly defined.

As far as TAl is concerned there are still controversies about whether TAl is a proper
or a coordinate time. This question is answered by the operational procedure of the
actual determination of TAIL

Finally, the problem of units of time and length is now also rather controversial. It is
evident that the elaboration of the whole system of astronomical constants within the
framework of GRT is the task for the future (the not too distant future, let us hope). But
more particular problem of units of time and length may be resolved satisfactorily, even
now. The consistent relativistic theory of four-dimensional reference systems is
adequate for such a solution.

The content of this paper is as follows. Section 2 is devoted to the basic principles
underlying our approach to the construction of GRT reference systems. The technique
itself is described in Section 3. The reference systems constructed in such a manner are
described in Section 4. In Section 5 the asymptotic matching technique is applied to
derive the coordinate transformations between the systems. Actual realization of the
time scales is developed in Section 6. The units of time and length are discussed in
Section 7. Section 8 contains some comments on the questions under discussion.
Finally, the recommendations resulting from our approach are given in Section 9.

2. Basic Principles

The space-time of GRT is the curved Riemannian manifold characterized by the metric
tensor g,4 (here and below the Greek subscripts run from 0 to 3; the Latin subscripts run
from 1 to 3; every pair of repeated subscripts implies summation over corresponding
values; the signature of the metric is equal to +2). The metric tensor is found by solving
the Einstein field equations with complementary boundary and (or) initial values.
Usually, to simplify calculations and to obtain specific results, one introduces into the
space-time some reference (co-ordinate) system x*. The coordinate x° refers to time and
three other coordinates x' relate to the spatial dimensions. It should be noted that the
reference system may be chosen quite arbitrarily. Therefore, one cannot assume in
general that the coordinate time x° corresponds to the readings of any actual clock. The
interval ds between any two infinitesimal events is expressed with the aid of the
coordinate increments dx* and the metric tensor as ds? = g,; dx* dxf. Hence, the GRT
metric tensor describes both the gravitational field and the specific features of the
reference system.

Most commonly, the whole of space-time cannot be covered with a single reference
system. In such cases one introduces a set of mutually superimposing reference systems
that altogether cover the whole space-time. In the domain common to both reference
systems x* and w” the coordinates of one system are functions of the coordinates of
another system, ie. x*=x*wf) and w*=w?xf). The tensor transformation law is
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26 V. A. BRUMBERG AND S. M. KOPEJKIN
therefore valid

. ox* 0x'
gaﬁ(wy) = g,uv(xy)%& 6w”

2.1)

where §,5(w?) represents the metric tensor in coordinates w* and g,5(x”) is the metric
tensor in coordinates x*. The choice of any specific coordinate system is not
fundamental since it is possible to use any coordinates. But the adequate choice of
a coordinate system may significantly facilitate the treatment of a problem to be
investigated and elucidate the meaning of the relevant physical events.

Any test body (an observer) in the space-time describes a time-like world line (an
isotropic line in case of a photon). The world line of a freely falling body is called its
geodesic. Under acceleration the body moves along the accelerated world line, which
differs from the geodesic. The deviation from the geodesic is characterized by the
curvature of the world line, which is proportional to the acceleration. The curvature of
the geodesic is zero. Similarly, one may consider the motion of extended self-gravitating
bodies. In this case one introduces the notion of the centre of mass of the body. Special
methods have been developed for deriving the corresponding equations of motion
(Brumberg, 1972; Misner et al., 1973; Will, 1981; Damour, 1983, 1987; Kopejkin, 1985,
1988; Schifer, 1986).

Along any time-like world line of the test body one may introduce a parameter called
a proper time. The interval of the proper time dz, is related to the interval ds by the
formula c¢?dt3 = —ds?, ¢ being the velocity of light. By definition the proper time is
a mathematical idealization. In practice the proper time is measured with some definite
error using atomic standards of frequency.

It is known that the rates of the proper time are different for different observers. Yet,
in astronomical practice it is necessary to have some universal time scale of high
accuracy enabling the production of observations of celestial bodies and monitoring of
the Earth’s rotation. Several time scales of this kind may exist. Each of them should be
established with reference to a specific periodic physical process.

At present, it is customary to consider as the most accurate physical processes three
types of universal time scales, each having its own specific purpose. These scales are the
Barycentric Time, TB, the Terrestrial Time, TT, and the International Atomic Time,
TAI (Guinot and Seidelmann, 1988). Among these three scales the practical realization
has been accomplished only for TAI, being based on the existence of high-stability
periodic processes occurring in atoms. The remaining two scales, TB and TT, are
developed on the basis of TAI by calculation with some definite mathematical formulae
and representing the coordinate times of BRS and GRS respectively (with appropriate
factors). TAI presents the physical realization of TT, achieved by a specific procedure
used to average readings of atomic clocks distributed over the Earth’s surface and
synchronized with respect to TT. It is of great importance that one deals in this process
with the coordinate synchronization, which has to be distinguished from the Einstein
synchronization. The Einstein synchronization may be performed by displacing the
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RELATIVISTIC TIME SCALES IN THE SOLAR SYSTEM 27

clocks with direct comparison of their readings or by the transmission of electromagnetic
signals between them (Landau and Lifshitz, 1975). It is well known that the Einstein
synchronization cannot be attained for the whole Earth due to the Sagnac effect caused
by the Earth’s rotation. The coordinate synchronization involves reducing the readings
of all clocks to the coordinate time. Such a synchronization is possible in various
physical situations including the case of the rotating Earth. Various versions of the
synchronization of clocks are discussed in Ashby and Allan (1979) and Allan and Ashby
(1986).

There are some theoretical approaches to the determination of the above mentioned
time scales, including Thomas (1975), Moyer (1981), Murray (1983), Fukushima et al.
(1986a), Ashby and Bertotti (1986), Fukushima (1989) and Soffel (1989). The approach
described here is based on the relativistic theory of astronomical reference systems
developed in Kopejkin (1988) and Brumberg and Kopejkin (1989a, b).

3. Method

The essence of the method is the construction of a set of reference systems by solving the
Einstein field equations. Subsequent matching of these systems enables one to find the
coordinate transformations between them. We use nonrotating harmonic coordinate
systems imposing the harmonic (De Donder) conditions on the metric tensor:
(\/——_ggaﬁ),ﬂ =0, g=det(g,5) where the comma denotes a partial derivative. Harmonic
coordinates have no physical advantages but they are very convenient mathematically,
enabling one to simplify the solution of many problems of relativistic celestial
mechanics.
For the sake of simplicity we confine ourselves to the Newtonian approximation of
GRT. This approximation is quite sufficient, within the limits of modern observational
precision, to discuss the problem of relativistic time scales in the Solar system. The
relativistic corrections of higher order have been discussed in Brumberg and Kopejkin
(1989a, b) and Kopejkin (1988, 1989a, b). In the Newtonian approximation the metric
is of the form
ds? = goo(dx°)? +2g¢; dx° dx* + g;;dx* dx/, -
goo=—14+c"22U+0(c™*), goi=0(c?), gij=0;+0(c™?)

where the potential U satisfies the Poisson equation
U= —4nGp, (3.2)

where G is the gravitational constant and p is the density of matter in the space-time
domain under consideration.

Our harmonic reference system is dynamically nonrotating (Kovalevsky and
Mueller, 1981). This means that the equations of motion of a test body resulting from
(3.1) contain neither Coriolis nor centrifugal terms. Such terms may occur only if
components go; include terms like ¢~ '¢;; Q' x* where ¢;;, is the fully antisymmetric
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28 V. A. BRUMBERG AND S. M. KOPEJKIN

Levi-Civita symbol and €’ is the (time-dependent or constant) angular rotational
velocity of the spatial axes. Besides this we shall deal further with dynamically rotating
reference systems which are not harmonic. These systems results from the appropriate
nonrotating systems, using the spatial rotation matrix dependent on time only. The
time coordinate is not thereby transformed. Hence, the time scales of the corresponding
non-rotating and rotating systems coincide.

Solution of Equation (3.2) may be presented in different forms characteristic of the
type of reference system chosen. The specific type of the solution depends on the
physical conditions in the domain of validity of the reference system. These physical
conditions in turn may be described with the aid of boundary conditions for potential
U. To simplify the boundary conditions and the solutions of Equation (3.2) we shall
ignore the gravitational field of the Galaxy, regarding the Solar system as an isolated
one. In BRS coordinates x* = (ct, x*) = (ct, x) the potential U(t, x) at the boundary of the
Solar system has the asymptotic form

U(t,x) = GM/R + O(R™3) (3.3)

with M being the total mass of the all Solar system gravitating bodies and R = |x|. The
right-hand side of (3.2) thus incorporates the density of all bodies.

For the nonrotating geocentric reference system (GRS) with coordinates w* = (cu,
w') = (cu, w) the boundary conditions are different. The Earth is almost freely falling in
the gravitational field of the external masses. Small deviations from the geodesic
motion arising as a result of the interaction of the Earth’s multipole moments with the
tidal gravitational field of the external masses (Kopejkin, 1988; Brumberg and
Kopejkin, 1989a) may here be neglected. For this reason the external gravitational field
manifests itself in the vicinity of the Earth only in the form of tidal terms. Hence,
potential U(u, w) may be presented in GRS as the sum Ug(u, w) + V(u, w) of the Earth’s
potential U and the tidal external mass potential V, respectively. Potential Ug is to be
found by solving (3.2) taking into account only the Earth’s mass density and imposing
the asymptotic form far from the Earth

Ug(u,w) = GMg/r + O(r~3) (3.4)

with M being the Earth’s mass and r = |w|. Potential Vis found by solving the Laplace
equation with the boundary condition

V(u,w=10)=0. (3.5)

To relate BRS and GRS coordinate times to the proper time of an observer we have
to introduce a reference system the origin of which coincides with the observer. If the
observer is situated on the ground the corresponding system is called a topocentric
reference system (TRS). For the observer on an Earth satellite the corresponding
system is called a satellite reference system (SRS). In both cases we shall use the same
designations for the coordinates &* = (ct, £') = (ct, £) since we are not interested in the
relationship between TRS and SRS. Both systems may be constructed in a quite similar
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RELATIVISTIC TIME SCALES IN THE SOLAR SYSTEM 29

manner. The observer is regarded as a massless (test) body and in his vicinity the
gravitational field of all bodies (including the Earth) is of a tidal nature. Therefore, the
gravitational potential U(z, &) = U(t, §) in the vicinity of the observer satisfies the
Laplace equation with the boundary condition

Urlz, & =0)=0. (3.6)

By virtue of (3.6) the coordinate time 7 at the TRS (SRS) origin coincides with the
proper time 1, of the observer.

Each reference system described above is restricted by some space domain the size of
which will be indicated below. Transformation laws between reference systems
generalize the Poincaré transformation of the special theory of relativity (we use here
the terminology introduced by Misner et al. (1973); Poincaré transformation includes
Lorentz transformation, translation of the origin and spatial rotation). Specific
transformations and expressions for the potentials V(u, w) and U(z, §) are found by
matching the corresponding metric tensors with (2.1). In the next section we describe
the reference systems and their relationships in detail.

4. Reference Systems

4.1. BRS (BARYCENTRIC REFERENCE SYSTEM)

Coordinates: x* = (ct, x*) = (ct, X).

Metric:ds* = (— 1+ ¢~ 22U(t, x))c? dt? + dx? + O(c " 2). 4.1)
Potential: U(t,x) = ' G}i" 4 L OR;?). 4.2)
1 Ra

Capital letter A enumerates here the gravitating bodies (Sun, Earth, Moon and
planets); R , = (R} RY)*/?; R}, = x' — x\(); x!,(¢) are the spatial coordinates of the centre
of mass of body 4; M , is the constant mass of body A. The BRS origin coincides with
the Solar system barycentre, i.e. £, M x%(t) =0+ O(c~?). By its construction BRS
covers the finite spatial domain inside the near zone of the Solar system. The near zone
boundary is determined by the length of gravitational waves radiated from the Solar
system (Fock, 1959; Damour, 1987).

4.2. GRS (GEOCENTRIC REFERENCE SYSTEM)

Coordinates: w* = (cu, w') = (cu, w).

Metric: ds? =(—1+ ¢~ 22U(u, w))c? du® + dw? + 0(c ™ 2). (4.3)
Potential: U(u, w) = Ug(u, w) + V(u, w),
GM 1 . 3 ..
Ug(u, w) = E+FG1E<—5U+T—2W‘WJ>+ 0@=3), (4.4)
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30 V. A. BRUMBERG AND S. M. KOPEJKIN
Vi, w)= 0w + 30 w'w/ + SQRWwW* + 0(r*). (4.5)

Capital letter E here denotes the Earth; r = (w'w')}/2; M is the mass of the Earth;
I are quadrupole moments of the Earth. Functions 0, Q{%, . .. characterize the tidal
gravitational field of the external messes and are found by matching BRS and GRS in

the vicinity of the Earth as will be developed in the following section:

Qﬁf) =3 Uaij(xE) + O(c™ 2 ) ngEk) =1s U:ijk(xE) +O0(c™ 2 ) (4.6)

_ GM

Ox)= Y 4+ O(R33), @.7)
A+*E A

the comma denoting differentiation with respect to BRS spatial coordinates. The
quantity Q% (of the order 3 x 10~ °cm/s? for the Earth) characterizes the deviation of
the world line of the Earth’s centre of mass from the geodesic and is found from the
condition of coincidence of the GRS origin and the centre of mass of the Earth for any
moment of time (Kopejkin, 1988; Brumberg and Kopejkin, 1989a)

0F = —IMp U, 3 (xg) + ... (4.8)

with dots denoting Newtonian and relativistic terms of the higher order of smallness.
The main contribution to Q¥ is given by interaction of the Earth’s quadrupole
moments and the tidal gravitational field of the Moon. Under condition (4.8) the dipole
moment of the Earth and its time derivatives vanish in expansion (4.4) of the potential
Ug(u, w).

By its construction GRS is valid in the space domain bounded by the orbit of the
Moon. Extension of GRS beyond the lunar orbit may be performed using the
coordinate transformation between BRS and GRS given in the next section.

4.3. TRS (TOPOCENTRIC REFERENCE SYSTEM)

Coordinates: £* = (ct, &) = (ct, €)

Metric: ds®> = (—1+ ¢~ 22U (1, E))c* d1? + d&2 + O(c ™ ?) (4.9)
Potential: U(z, &) = Ei& + E,,88 + 3E, S E 8 + 0(E*). (4.10)

Here the quantity E; characterizes the curvature of the world line of a terrestrial
observer and is equal numerically to the force of gravity which may be measured by the
gravimeter. The expression for E; is found by matching metrices (4.3) and (4.9) as
revealed in the next section:

E;=Ug(wr) —ar + QP + 30{Pwh + F QR wiwh + O(wi) + 0(c™?), (4.11)
ar = (g X Wr) + (@ X v7)' + (@0F X Vr7) + dpp (4.12)
v = (0 x Wr) + virr. (4.13)

A dot denotes differentiation with respect to time u. A comma denotes differentiation
with respect to GRS coordinates w'.wh, v = Wi, and a% = v are GRS coordinates,
velocity and acceleration of the observer. oy is the GRS instant angular rotation
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RELATIVISTIC TIME SCALES IN THE SOLAR SYSTEM 31

velocity of the Earth. vy and abr = 6%y are the velocity and acceleration of the
observer with respect to the reference system GRS™ having its origin at the geocentre
and rigidly rotating with angular velocity o with respect to GRS. The coordinates of
GRS ™ are not harmonic. The quantities E;;, E;j, . . . characterize the tidal gravitational
field of the Earth and the external masses and are found by matching metrices (4.3) and
(4.9)

E;;=3Ug,;j(wr) + Q8 + SQRWY + 0(wt) + 0(c™2), (4.14)
Ej = _llgUE,ijk(wT) + Qﬁfk) + O(wr) + O(C_Z)- (4.15)

By its construction TRS covers only rather a small space domain in the vicinity of the
observer’s world line, where expansion (4.10) is valid. But this system may be prolonged
over greater distances using the transformation laws between GRS and TRS given in
the next section.

4.4. SRS (SATELLITE REFERENCE SYSTEM)

Coordinates: & = (ct, &) = (ct, &)

Metric: ds?=(—14c¢ 22U(1, &))c2dr? + d&% + O(c ™ 2) (4.16)
Potential: Uy(t, &) =3 E; & + 3E;; £ E E + O(E*). (4.17)

SRS differs from TRS in the absence of the acceleration E; in the potential (4.17). This is
a consequence of our assumption that the satellite is in free fall and moves along the
geodesic. The quantities E;;, E;j, . . . are expressed by (4.14), (4.15) where w'now denote
the GRS coordinates of the satellite.

5. Coordinate Transformations

5.1. TRANSFORMATION BETWEEN BRS AND GRS

This transformation is found in the form
u=t—c 2(A@t) + viRE) + O(c™*), (5.1)
w' =R+ 0(c™?) (5.2)

where RL=x'— x4(t), with xk(t), vi(t) = dx%/dt being BRS coordinates and the
velocity of the centre of mass of the Earth, respectively. Substituting (5.1) and (5.2) with
metric tensors (4.1) and (4.3) into (2.1) and expanding the external potential in the
vicinity of xk yields

dA _

FTin 30z + U(xg), (5.3)
Codoh - £) —

ag = a = U,i(xg) — Q¥ + O(c™?). (5.4)

Besides, one obtains relations (4.6) for Q{, 02, . . .. Equation (5.3) gives the differential
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relationship between the BRS and GRS coordinate times. BRS equations of the centre
of mass of the Earth result from (5.4). Therefore, the matching technique enables us to
derive both the coordinate transformations and the equations of motion of celestial
bodies. In more detail these questions are considered in Kopejkin (1988) and Brumberg
and Kopejkin (1989a, b).

5.2. TRANSFORMATION BETWEEN GRS AND TRS (SRS)

This transformation is found in a form similar to (5.1), (5.2)

t=u—c *(Su) + %) + 0(c™*), (5.5)
E=rh+0(c™?) (5.6)

with i = w* — w.. Substituting (5.5) and (5.6) with metric tensors (4.3) and (4.9) into
(2.1) and expanding the potential of (4.3) in the vicinity of w’ yields

ds . o o

3, = 30t + Us(wr) + 0w + 30 wiwh + 30Rwrwhwh + 0w, (57)
. dif . .

ar =3 = Upi(wr) — E:+ QP + 30w} + £ 0w wh +

du
+ O(w3) + O(c™2). (5.8)

Besides, one obtains expressions (4.14), (4.15) for E;j, E;, . . .. Equation (5.7) gives the
differential relationship between the GRS and TRS (SRS) coordinate times. On the
basis of (5.8) one obtains either relation (4.11) for the force gravity acceleration E; of the
ground observer (TRS) or the GRS equations of satellite motion (E; =0, SRS).
Matching of GRS and TRS (SRS) taking account of post-Newtonian corrections is
presented in Kopejkin (1989a, b). Relativistic corrections for the GRS equations of
satellite motion have been derived in Brumberg and Kopejkin (1989b, c).

6. Realization of Time Scales

The scales of TB and TT are related with the corresponding BRS and GRS coordinate
times by formulae

TB = kBt, TT = kEu, (61)

kg and kg are constant factors to be chosen so as to minimize the differences between
TB, TT and TAI

For the geocentre where R = 0 the rate of the time u is determined only by Equation
(5.3). This equation has been investigated by many authors. The first detailed solution
was given by Moyer (1981). This solution was based on the substitution of the
Keplerian motion for the Solar system bodies into (5.3) and provided an accuracy of
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about 20 us. At present, the most accurate analytical theories of motion of the major
planets and the Moon are the VSOP82/ELP2000 theories. Substituting these theories
into (5.3) with subsequent integration was performed independently in Fairhead et al.
(1987) and Hirayma et al. (1988). It should be noted that the BRS velocity of the
Earth v% corresponding to these theories may now be found in Soma et al. (1987).
Therefore there is no longer any necessity to perform transformations of the
barycentric motion of the Earth to the heliocentric motion of the Earth, the geocentric
motion of the Moon and the heliocentric motion of the Earth — Moon centre of mass
as was used by Moyer. In the VSOP82 theory the rectangular coordinates and the
velocity components of the planets are represented by trigonometric series in the
mean longitudes of the planets, the coefficients of the series being slowly changing
polynomial functions of time. Hence, the solution of (5.3) is represented in the same
form, as follows

A= Ao +Bot+ Cot>*+Dot>+ -+ + > (A4;+ Bt + C;t> + D;t> + ---) x

sin(w;t + @;). (6.2)

Numerical values of the coefficients obtained by the authors cited above confer an
accuracy of several nanoseconds. Coefficients Cy, Dy, ..., B;, C;, D;, ... are caused by
the secular terms of the planetary theories and vanish for pure Keplerian motion. These
coefficients would also vanish when using a purely trigonometric planetary theory. But
such a theory leads to a drastic extension of the number of periodic terms with almost
equal periods so that its actual use may result in a loss of accuracy. For astronomical
purposes it is convenient to have the time scales differing from one another only by
periodic terms. The linear function Ay + Byt in (6.2) does not interfere with this since
the constant 4, may be removed due to the choice of initial moment (which will be
assumed further) and the constant B, is removed by adopting different units of
measurement of different time scales. This is allowed for by the IAU resolution of 1976
adopted in Grenoble (IAU, 1977).

Equation (5.3) may also be integrated numerically by using the numerical theories
DE 200/LE 200 in the right-hand side. Such integration is described in Hellings (1986)
and Backer and Hellings (1986). When numerically integrating (5.3) the analytical
structure of (6.2) is latent but the numerically determined secular trend of function A(t)
depends on the interval of integration.

In any case the function A is represented in the form

A() = A*t + A,(1) (6.3)

where A* is constant and A,(t) includes both the periodic terms and the non-periodic
terms caused by the secular evolution of the planetary orbits. Substitution of (6.3) into
(5.1) results in

u=(1—c"24%t—c 2(4,(t) + vERE) + O(c™#). (6.4)
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Using (6.1) one finds
kp 'TT =kg'(1 —c 2A*)TB — ¢~ 2(4,(t) + vk R}) + O(c™*). (6.5)
The choice of constants kg and kg is at our disposal. Setting their ratio to
kp/kg=1—c"2A4* (6.6)
and considering that both kg and kg differ from 1 by the terms O(c™?) one gets
TB =TT + ¢ 2(4,(t) + vERE) + O(c™*). (6.7)

The constant A* is not necessarily equal to the coefficient B, in (6.2). Representation
(6.2) itself is rather conventional. In using (6.2) over the restricted interval of time the
terms of very long period actually manifest themselves as secular terms and in
numerical averaging are included in the secular part. Therefore, the choice of 4* should
be the subject of agreement, intending to provide a minimal influence of 4,(t) on the
secular rate of the difference TB —TT over some definite time interval. After
completing this interval the value of A* may be changed so as to compensate the
accumulated secular rate in TB — TT. The order of magnitudeis ¢ 2 4* = 1.48 x 1078,

Consider now the relationship (5.5) between the GRS and TRS coordinate times. Let
y'r be the GRS™ spatial coordinates of the observer related to his GRS coordinates
wh by formulae

yiT(u) = Py(u) WkT(u), dP/du = siij{EP mk (6.8)

with P; being an orthogonal rotation matrix resulting from multiplication of the
matrices of precession, nutation and diurnal rotation of the Earth. Qf are GRS™
components of the instant angular rotational velocity of the Earth. It is important that
our GRS is dynamically non-rotating whereas most authors use a kinematically
non-rotating geocentric reference system. The angular rotational velocities of the Earth
referred to these systems differ from one another by the magnitude of geodesic
precession. Therefore, in our approach, matrix P; does not include the geodesic
precession which occurs explicitly in the transformation between BRS and GRS
(Brumberg and Kopejkin, 1989a, b; Kopejkin, 1989a, b). Taking this fact into account
one may find the expression for matrix P;(u), for example, in Moritz and Mueller
(1987). Using (4.13) one may transform (5.7) in coordinates y’ as follows:

ds S o

an 8iijiykTle + 395 V% + Welyr) + Va(u, y7) + O(y3) (6.9)
where

We(yr) =3(Qs % yr)* + Ug(yr) (6.10)

represents the potential of the force of gravity due to the Earth at the point y(u) on the
surface of the Earth. The last term in (6.9) describes the tidal quadrupole external
disturbing potential

Vao(u,yr)= ‘%U,km(xE)PikijyiTYiT- (6.11)
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This tidal perturbation from the Sun and the Moon gives contribution into (dt/du)
of the order of 10717, The terms with the acceleration Q) and the higher multipoles
occuring in (5.7) have been ignored in (6.9). Our aim is to reveal in the right-hand side of
(6.9) the constant part independent of time and coordinates y; of a ground station.
Introducing the geocentric spherical coordinates such as radius vector r, longitude |/,
latitude ¥ and choosing the direction of y* along the instant axis of rotation of the
Earth one has Qi = Q% =0,Q3 =Q and

We(r, L) =3Q%r*cos’y + Ug(yr). (6.12)

The tidal quadrupole external potential may be easily expanded in spherical
harmonics (Moritz and Mueller, 1987). The zonal part of this expansion will contain
the time independent terms

— GM
Vaolr, W)= —4r*@sin®y —1) Y — 4 (6.13)

A+E Rg4

with R, denoting the mean constant distance between the Earth and disturbing body
A (the Sun or the Moon). It is suitable to add the value (6.13) to the potential of the
terrestrial force of gravity and to consider the potential

W(r, L y) = Wg(r, L) + Vao(r, ¥) (6.14)

although the term V,, is usually treated as perturbation (Moritz, 1980) and is not
included in the potential of the force of gravity.

The surface r=r(l, ), closely approximating the mean sea level and providing
a constant value for the force gravity potential

W(r, 1, ) = Wy = const, (6.15)

1s called the geoid. Nowadays, there are attempts to define the geoid within the
framework of GRT (Soffel et al., 1987) but for our purposes the Newtonian definition
(6.15) 1s quite satisfactory. Solution of (6.15) for r = r(l, ) with the left-hand side (6.14)
may be performed using the technique given by Zhongolovich (1957). It is not difficult
to replace for astronomical applications the geocentric spherical coordinates by the
astromical longitude 4, the astronomical latitude ¢ and the height h of the observer
above the geoid. There results

W(h, A, @) = Wy — g(@, H)h + O(h?). (6.16)

The value of the force of gravity g(¢, 1) on the geoid may be found by the known
formulae (Zhongolovich, 1957).
Hence, the right-hand side of (6.9) is transformed to the form

dS : o . o i/
a;=8iijiJ’kTyT + 30505+ Wo + Va(u, yr) — Vao — gle, b+

+ O(y3) + O(h?) (6.17)

h, 4, @ as well as yr being the coordinates of the ground station. The solution of this
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equation is found in the form
Sw)=S*u+S,(u) (6.18)

where S* takes the same constant value for all possible TRS. Being independent of the
position of a ground station this constant should be

S* = W, (6.19)

The function S,(#) contains all the remaining terms resulting from integrating (6.17).
The term — g(¢, A)h leads to the linear function of u dependent on the ground station
coordinates. The contribution from V, — ¥V, contains the periodic tidal terms caused
by the Moon and the Sun. Finally, the terms with y7 = P 0% give the contribution due
to the geophysical factors. As a result, Equation (5.5) leads to the following relationship
between t and u

1=(1—c728*%)u—c (S, () + vhrk) + O(c™*). (6.20)
Putting

kp=1—c 28%=1-07 x10~° 6.21)
one obtains

™ =TT — ¢ (S, () + vr%), + O(c™*) (6.22)

where subscript n means that the corresponding quantity refers to the observer n. As
mentioned earlier the TRS coordinate time t™ coincides under r = 0 with the proper
time t" of the observer n. This proper time may be measured with the atomic standard
of frequency located at the TRS (SRS) origin. Actual reading T, of the standard is
related to the proper time t$ by equation

A () = — T, (6.23)

A,(z®) is the clock correction for the given standard n. To determine correction A, (t§")
one applies the TAI time scale.

TAl s formed (Guinot, 1986, 1988) by a specific procedure of averaging of readings of
all available standards which are supposed to be subjected to coordinate synchron-
ization. Readings of each standard are reduced to coordinate time TT by taking
account of the terms depending on geophysical velocity of a frequency standard, its
height above the geoid and tidal perturbations

TAI = mean(T, + ¢~ (S, (w),)- (6.24)
Readings of the atomic standard n are related to TAI by correction
E,(TAI)=TAI — T, — ¢~ *(S,(TAD),. (6.25)

In principle, corrections A,(t¥’) and E, are of different physical origin. But within the
best presently attainable relative accuracy of 10~ '* these corrections are coincident
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(Guinot, 1986; Guinot and Seidelmann, 1988). Then from (6.23) and (6.25) it follows

78 = TAI — ¢~ %(S,(TAJ)),. (6.26)
Substitution of (6.26) into (6.22) yields the relationship between TAI and TT
TT =TAI + 32.184 s + O(c™*). (6.27)

The constant shift 32.184s is due to the historical reasons to prevent the
discontinuity between atomic and ephemeris time scales.

Discussion of the procedure for obtaining TAI makes it evident that TAI presents the
physical realization of coordinate time scale TT resulting from the application of the
rigorous mathematical theory to actual measurements. Therefore, from the theoretical
point of view it is reasonable to define TAI as coordinate time TT kept by ideal clocks
situated at the points of observation on the physical surface of the Earth and
synchronized with respect to TT.

The relationship between TAI and TT in the form of (6.27) was obtained first only for
the points of the actual Earth’s surface. But it may be extended beyond this surface
along a three-dimensional hypersurface of TT = const. This may be performed due to
the fact that the visualized ideal clocks lying on the Earth’s surface and keeping TAI
belong to this hypersurface being synchronized with respect to TT. Hence, TAI is
defined in the same region of space as TT but its practical realization is performed only
at the points of distribution of the actual atomic standards on the Earth’s surface. It
may be possible in future to include clocks on Earth satellites within the procedure of
forming TAI. The domain of practical realization of TAI will then be significantly
extended.

Thus, the final relations for the relativistic time scales have the form (6.7), (6.27) and

7=TAI — ¢ 2(S,(TAD) + t§r%) + O(c™*)
=TT —32.184s — ¢ 2(S,TT) + vhr%) + O(c™*)
=TB —32.184 s — ¢ " 2(A,(TB) + v&RE) — ¢~ 2(S,(TT) +
+ 5 + 0(c™). (6.28)

In using (6.7), (6.27) and (6.28) it should be remembered that the actual clock is located
at the point with GRS coordinates w.

From the procedure for constructing reference systems one has as a result that TB is
determined in the near zone of the Solar system. TT (TAI) and t are valid in the space

domains determined by the vanishing of the determinants of coordinate transform-
ations (5.1), (5.2) and (5.5), (5.6), respectively.

7. Astronomical Units of Measurement of Time and Length

So far we have discussed the time scales mainly from the theoretical point of view and
we have not gone into the practical aspects. We now turn briefly to one of the most
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important practical questions related to the astronomical units of measurement of time
and length.

At present, it is acknowledged that the standard unit of time is the SI second
determined in the TAI scale on the surface of the geoid in rotation. The theory
developed here is consistent with this definition. The units of time for the scales TB, TT
and 7 are assumed to be equal to the TAI second.

The problem of definition of the BRS and GRS units of length is much more
complicated. Indeed, in contrast to time intervals, angular distances and frequency
rations, linear distances in BRS and GRS are not directly measurable quantities in
astronomical observations. Therefore, the definition of the units of length is dictated
mainly by considerations of conveniences in reducing calculational effort. From this
point of view it seems to be reasonable to seek the fulfilment of two conditions
commonly used (generally, in implicit form) in astronomical practice:

(1) the fundamental astronomical constants such as the velocity of light and the
universal gravitational constant should have the same numerical values in any
reference systems;

(2) the basic dynamical equations of motion described in BRS and GRS and referred to
t or u as an independent argument should, where possible, retain an invariant form
in exchanging t and u for TB and TT respectively.

Both these conditions may be satisfied with great accuracy provided that changing
from ¢ to TB in the BRS equations is accompanied by the transformation

X*i = kai, (GMA)* = kBGMA. (71)

Similarly, changing from ¢t to TT in the GRS equations should be accompanied by
the transformation

Wli = kEWi, (GMA)’ = kEGMA. (72)

From (6.1), (7.1) and (7.2) it follows that the units of length in BRS and GRS are equal.
As the standard unit of length one may adopt the SI metre, defined as the product of the
velocity of light and the SI second.

This approach to the astronomical units of time and length is based on Fukushima et
al. (1986b) and Hellings (1986). It should be noted that the first of these papers also
suggests an alternative approach without transforming the spatial BRS and GRS
coordinates. This latter approach actually leads to the same results but, for
astronomical problems in which units of length play a purely auxiliary role, it seems to
be logically more complicated, implying different values of the fundamental constants
(velocity of light, gravitational constant) in various reference systems.

In any case relations (7.1),(7.2) involve definite inconveniences. For instance, the
BRS planetary equations involve the mass of the Moon and its coordinates. These
quantities should be expressed in BRS units and will differ from the GRS quantities that
are natural for the Moon. Quite similarly the GRS equations of motion of the Moon or
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an Earth satellite involve the mass and the coordinates of the Sun (with masses and
coordinates of the planets for the lunar equations). These quantities should be
expressed in GRS units and will differ from the BRS quantities that are adequate for the
Sun and planets. These considerations are confirmed to some extent in Ries et al.
(1988).

From the theoretical point of view the most reasonable solution of the problems
under discussion might be the direct use as time scales and spatial coordinates of ¢, u
and x,w', respectively. The units of time and length as well as the astronomical
constants are thereby independent of the reference system employed. But in doing so
the secular trend between all time scales will remain. For a long time it seemed ‘natural’
to remove the secular trend. But within the limits of modern accuracy it is impossible to
satisfy this condition rigorously due to the presence of nonlinear and mixed terms in
(6.2). Besides, as stated above, this involves inconveniences related to the necessity to
redetermine the length-dependent quantities (7.1) and (7.2). It may be possible that
nowadays a more reasonable solution is to retain the secular trend between the time
scales, putting kg = kg = 1.

8. Comments

8.1 TB is not the proper time of the clock at rest in the Solar system’s barycentre.
Actually, according to (4.1) the interval dt,, of the proper time of the clock at rest in the
barycentre is related to the TB interval by means of

dto = k5 1(1 — c~2U(t, x = 0)) d(TB) # k5  d(TB), 8.1)

U(t,x =0) being the time-dependent value of the gravitational potential of all
gravitating masses evaluated in the solar system barycentre. This value cannot be
ignored. It might be more correct to consider TB as coinciding with the proper time of
an infinitely distant observer at rest in BRS since in virtue of (3.3) such as observer has
dto = kz ' d(TB). But this definition is not quite adequate since BRS is mathematically
determined not for the entire infinite space but only within the boundary of the near
zone of the Solar system (Damour, 1987). The most consistent and mathematically
rigorous definition of TB is its interpretation as the coordinate time of BRS
characterized by metric (4.1). Such interpretation is free of any inconsistencies or
ambiguities.

8.2 TT is not the proper time of the clock at rest in the geocentre. In fact, according
to (4.3)—(4.5) the interval dz, of such a clock will be related to the TT interval by means
of

dre = kg (1 — ¢~ 2Ug(u, w = 0) d(TT) # kz  d(TT), (8.2)

Ug(u, w =0) being the value of the Earth’s gravitational potential at the geocentre.
This quantity depends on time due to the distortion of the shape of the Earth’s surface
caused by the solar and lunar tidal gravitational field. It should be noted also that the
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value of Uy at the geocentre is not a directly measurable quantity, being strongly
dependent on the choice of model of the Earth’s internal structure. For these reasons it
is not suitable to attempt to satisfy the relation dz,= d(TT) by choosing a time-
dependent factor kg =1 — ¢~ 2Ug(u, w=0). Thus the value of the Earth potential in
(8.2) cannot be ignored. The most consistent and mathematically rigorous definition of
TT is its interpretation as the coordinate time of GRS with metric (4.3).

8.3 TAI cannot be regarded as the proper time of any clocks. Such treatment of TAI
would be in flat contradiction to the specific procedure for constructing this time scale.
The main reason behind this conclusion is due to the consideration of the tidal
potential V,. Disregarding this potential one might treat TAI as the proper time of
a fixed clock on the surface of the geoid as seen from (6.17) and (6.26). Such a treatment
is admissible within the limits of present accuracy. But our aim is to develop
a self-consistent theory of time scales independent of the accuracy achieved at any given
time. Therefore, in accordance with the procedure of forming TAI, the most consistent
and mathematically rigorous procedure is to define TAI as a time scale that is the
physical realization of TT. This definition turns out to be in agreement with the
definition given by CCIR (1982).

8.4 It may be suitable to introduce in the vicinity of each gravitating body P of the
Solar system (the Sun, the Moon, any planet, etc.) its own time scale Hp similar to TT.
For this purpose a reference system of the type (4.3) is constructed for the body P and its
coordinate time Hp is related to the BRS coordinate time ¢ by means of

Hp=t—c—2(Cp(t)+UII‘aR’}‘a)+0(0_4), (83)

dC ~ - GM

o =i+ Uexe), Up(®)= ¥ -+ ORZY). (8:4)
t A+#P A

x%(t) and v} (t) = dx%/dt are the BRS coordinates and velocity of the centre of mass of
body P, R% = x* — x%(t). The time scales 7, TAI and TT may be related to Hp by means
of BRS coordinate time ¢ using (6.7), (6.27), (6.28) and (8.3).

8.5 In solving some astronomical problems it may be necessary to use time scales
associated with the gravitating systems of a higher level such as the Galaxy, systems of
galaxies, etc. It is possible, for example, to introduce galactic time scale T related to the
BRS time ¢ by formula

t=T—c 2(D(T)+ V4BY) + 0(c™*), 8.5)
dD
ar 3VE+ Ug(Xp) (3.6)

where R = X* — X%(T), X* are spatial coordinates of the galactic reference system,
X%(T) and V%(T)= dX%/dT are coordinates and velocity components of the Solar
system’s barycentre with respect to the centre of the Galaxy, U;(Xp)is the gravitational
potential of the Galaxy (excluding the Solar system’s potential) evaluated in the Solar
system’s barycentre. The term with D(T) remains practically constant over a long
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interval of time. For the Earth the term with R% results in an annual sinusoidal curve
with an amplitude of 0.22 s. Currently, galactic time Tis not actually used. But for some
problems as, for instance, pulsar timing, this time scale may be preferred over the BRS
time.

8.6 Relationships between the time scales obtained here are universal and do not
depend on a specific gravitational theory (Will, 1981) nor on the choice of coordinate
conditions. This is explained by our use of the Newtonian approximation of GRT,
which is valid for all kinds of gravitational theories. But the contributions to relations
between TB, TT and t resulting from different gravitational theories or different
coordinate conditions are inevitable in relativistic corrections of higher order.
Therefore, in constructing time scales it is necessary to indicate the type of coordinate
conditions and the form of metric tensor. For example, in the post-Newtonian
approximation of GRT the transformation law between BRS and GRS coordinate
times has the form (Kopejkin, 1988; 1989a)

u=t—c 2(A(t) + vERE) + c*(B(t) + O(Rg)) + O(c?), (8.7)
dB _ _ _ _
5 = — $ok - 300(xe) + 405 U¥(xe) + 307 (xe) — Wix) 88)
with
_. GM, . N
Ux)= ¥ R 4 v+ O(R72), (8.9)
A+E A
_ GM G*M M
P0=1% R L L Rk
A#E A A+#E C#A4 AINAC
62
+325 Y GM,R,+O(R:?), (8.10)
ot A#E
Ryc= (RIQCRIEC)I/Z, R’fw = x’fa - x’é-

The term B(t) yields corrections comparable in order of magnitude with the magnitude
of the tidal terms in the transformation law between 7 and TT.

8.7 Equations of motion of celestial bodies are always described in some specific
reference system. The coordinate time employed in these equations as an independent
argument is also called the dynamical time. Thus, from the theoretical point of view, the
notions of coordinate and dynamical times are equivalent. But the practical realization
of these time scales may be different. At present, BRS and GRS coordinate times are
derived from the atomic time scale TAI with the aid of functional relations (6.7), (6.27)
and (6.28). Therefore, TB and TT are actually reduced to atomic time. Its scale, given by
the physical processes in the atoms of chemical elements, is proportional to the atomic
constants (Planck constant, electron charge). Dynamical time may be obtained directly
from observations of the Solar system bodies (ephemeris time) without having recourse
to atomic clocks. In this case the dynamical time determined by the gravitation laws is
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proportional to the universal gravitational constant. Such dynamical time might be
called gravitational time. So far we have tacitly assumed that atomic and gravitational
times are equivalent. But this assumption is valid only if the fundamental constants of
our world do not change over time. In a world with changing physical constants the
equivalence of two time scales may be disturbed. In principle, this may be tested by
permanently supporting and comparing both scales (Canuto and Goldman, 1982;
Canuto et al., 1984). For these reasons we have dropped the adjective ‘dynamical’ in the
definitions of TB and TT as suggested by Guinot and Seidelmann (1988).

It is of interest that the pulsar time scale produced by the angular rotational velocity
of pulsars is determined neither by the gravitation laws nor by the atomic processes.
This scale depends essentially on the equation of state of matter in neutron stars. Hence,
in a world with changing constants the pulsar time will not be equivalent to
gravitational or atomic time scales. This may also be tested by astronomical
observations of pulsars referred, for instance, to the atomic time scale (Counselman and
Shapiro, 1968; Mansfield, 1976).

9. Recommendations

Based on the results and considerations presented above we should like to formulate
our recommendations as follows:

(1) the relativistic time scales are referred to the specific four-dimensional reference
systems: BRS, GRS, TRS and SRS;

(2) the reference systems indicated above are constructed by solving the Finstein
field equations of GRT using harmonic coordinate conditions;

(3) the metric tensors of the appropriate reference systems present the solutions of
the Finstein equations with physically adequate boundary conditions;

(4) all reference systems indicated above are dynamically non-rotating;

(5) the transformation to the rotating reference system is performed by introducing
kinematically rigid rotation of the spatial axes of the corresponding dynamically
non-rotating reference system without changing the time scale;

(6) the BRS origin is the Solar system’s barycentre; the GRS origin is the geocentre;
the TRS origin is a terrestrial observatory; the SRS origin is the centre of mass of
an Earth satellite;

(7)  the time scales are designated by TB, TT, TAI and t; TB is the BRS coordinate
time (up to constant factor kg); TT is the GRS coordinate time (up to constant
factor kg); 7 is the TRS (SRS) coordinate time coinciding with the proper time
7o of an observer at the TRS (SRS) origin; TAI is the idealization of the atomic
time and presents the physical realization of the coordinate time TT; the
functional relations between the time scales are given by Equations (6.7), (6.27)
and (6.28); constant factors kg and kg should be adopted by the IAU;

(8)  the unit of measurement of TB, TT, TAI and 7 is the SI second on the surface of
the geoid in rotation;
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(9) the velocity of light and the gravitational constant are fundamental quantities
which do not depend on the reference system employed;
(10)  the unit of measurement of length in BRS and GRS is the SI metre on the surface
of the geoid in rotation, determined as the product of the velocity of light and the
SI second.
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