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High precision astrometry, space missions and certain tests of General Relativity,

require the knowledge of the metric tensor of the solar system, or more generally,

of a gravitational system of N extended bodies. Presently, the metric of arbitrarily

shaped, rotating, oscillating and arbitrarily moving N bodies of finite extension is

only known for the case of slowly moving bodies in the post-Newtonian approxima-

tion, while the post-Minkowskian metric for arbitrarily moving celestial objects is

known only for pointlike bodies with mass-monopoles and spin-dipoles.

As one more step towards the aim of a global metric for a system of N arbitrarily

shaped and arbitrarily moving massive bodies in post-Minkowskian approximation,

two central issues are on the scope of our investigation:

(i) We first consider one extended body with full multipole structure in uniform

motion in some suitably chosen global reference system. For this problem a co-

moving inertial system of coordinates can be introduced where the metric, outside

the body, admits an expansion in terms of Damour-Iyer moments. A Poincaré trans-

formation then yields the corresponding metric tensor in the global system in post-

Minkowskian approximation.

(ii) It will be argued why the global metric, exact to post-Minkowskian order, can

be obtained by means of an instantaneous Poincaré transformation for the case of

pointlike mass-monopoles and spin-dipoles in arbitrary motion.

http://arxiv.org/abs/1403.5438v2
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I. INTRODUCTION

Since exact solutions of Einstein’s field equations are available only for highly idealized
systems usually one is forced to resort to approximation schemes. One of the most powerful
and most important approximation schemes is linearized gravity, where the field equations
in harmonic coordinates are simplified to an inhomogeneous wave equation [1, 2]. As it
has been shown in [3–5] in the post-Newtonian approximation (weak-field slow-motion ap-
proximation) the metric outside the matter distribution can be expanded in terms of two
families of multipole moments: mass multipole moments ML and spin multipole moments
SL. Later, in post-Minkowskian approximation (weak-field approximation) such a set of
multipole moments has been introduced by Damour & Iyer [6].

For many purposes, for instance for high precision astrometry or fundamental tests of
relativity, the knowledge of the global metric of an N-body system in post-Minkowskian
approximation is of fundamental importance. Presently the post-Minkowskian metric for
arbitrarily moving celestial objects is known only for pointlike bodies with mass-monopoles
and spin-dipoles. The metric of arbitrarily shaped, rotating, oscillating and moving bodies
is a highly sophisticated and complex problem and is only known for the case of slowly
moving bodies in the post-Newtonian approximation [7]. One reason for this complexity is,
that one might want to define the multipole moments of a single body in its own rest-frame,
with origin close to the body’s center of mass; however, if the acceleration of such a ’local’
co-moving system is taken into account corresponding multipole moments have been defined
only to post-Newtonian order [7, 8].

Thus, in order to study the global metric field in terms of locally defined multipoles of a
realistic N-body system such as the solar system, one has to apply further approximations.
Accordingly, this will be the strategy of this paper: we will first consider an arbitrarily
shaped, rotating and oscillating body first in uniform motion, and then we treat the problem
of N arbitrarily moving pointlike bodies with mass-monopoles and spin-dipoles.

The article is organized as follows: the metric for an extended body with arbitrary
Damour-Iyer moments, defined in a co-moving system, in uniform motion is derived in sec-
tion II in post-Minkowskian approximation. In section III we consider the post-Minkowskian
metric for N arbitrarily moving pointlike bodies (mass-monopoles and spin-dipoles) and show
that our results agree with corresponding results from the literature. Throughout the article
we use fairly standard notation:

• G is the gravitational constant and c is the speed of light.

• Lower case Latin indices a, b, ... take values 1, 2, 3.

• Lower case Greek indices α, β, ... take values 0, 1, 2, 3.

• repeated Greek indices mean Einstein summation from 0 to 3.

• δab = δab = δba = diag (+1,+1,+1) is the three-dimensional Kronecker delta.

• δαβ = δαβ = δβα = diag (+1,+1,+1,+1) is the four-dimensional Kronecker delta.

• ǫabc is the Levi-Civita symbol.

• L is a Cartesian multi-index, that means L = a1 . . . al.
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• γ = (1− v2/c2)
−1/2

is the Lorentz factor.

• parentheses surrounding a group of Roman indices mean symmetrization with respect

to these indices: A(ab) =
1

2

(

Aab + Aba
)

.

• ηµν = ηµν = diag (−1,+1,+1,+1) is the metric tensor of Minkowski space.

II. A UNIFORMLY MOVING BODY: MULTIPOLE EXPANSION TO

POST-MINKOWSKIAN ORDER

A. Multipole expansion for a body at rest

Consider a single massive body in some inertial system of harmonic coordinates Xµ =
(cT , X). For weak gravitational fields the metric differs only slightly from flat space metric,
that means Gµν = ηµν +Hµν , where |Hµν | ≪ 1; the metric signature is (−,+,+,+). Weak
gravitational fields are governed by the equations of linearized gravity, in harmonic gauge
given by [1] (from now on all relations will be valid to first order in G, even if this is not
indicated explicitly):

�XH
µν

(T,X)=−16 πG

c4
T µν (T,X) , (1)

where �X = ηµν
∂2

∂Xµ ∂Xν
is the d’Alembert operator, the stress-energy tensor of matter is

T µν , and Hµν is the trace-reversed metric perturbation; definitions and relations are given
in Appendix A.

Damour & Iyer [6] succeeded to show that outside the body the metric in (skeletonized)
harmonic gauge admits an expansion in terms of two families of multipole moments: mass-
moments ML and spin-moments SL. Their canonical form of the metric perturbation in the
exterior region of the matter field can be written as follows:

Hµν
can (T,X)=+

2G

c2
δµν

∑

l≥0

(−1)l

l!
DL

[

ML (Tret)

R

]

− 8G

c3
δ0 (µ δν) i

∑

l≥1

(−1)l

l!
DL−1

[

Ṁi L−1 (Tret)

R

]

− 8G

c3
δ0 (µ δν) k

∑

l≥1

(−1)l l

(l + 1)!
ǫi j k Di L−1

[

Sj L−1 (Tret)

R

]

+
4G

c4
δµi δνj

∑

l≥2

(−1)l

l!
DL−2

[

M̈ij L−2 (Tret)

R

]

+
8G

c4
δµi δνj

∑

l≥2

(−1)l l

(l + 1)!
Dk L−2

[

ǫkm ( i Ṡj )mL−2 (Tret)

R

]

. (2)
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In Eq. (2), an overdot denotes the derivative with respect to Tret; e.g. Ḟ (Tret) =
dF (Tret)

dTret
for any function F , and all multipole moments are taken at the retarded instance of time,

Tret (T,X) =T − R

c
, (3)

with R = |X|. The multipole moments, ML and SL, are Cartesian symmetric and trace-
free (STF) tensors; DL = ∂l/(∂Xa1 ∂Xa2 ... ∂Xal). Explicit expressions for the multipole
moments, ML and SL, in post-Minkowskian approximation are given by Eqs. (5.33) - (5.35)
in [6].

B. Multipole expansion for a uniformly moving body

Considering a single body in uniform motion we will now attach our inertial coordinates
Xµ = (cT , X) to the body, by choosing its origin near the body’s center of mass. The
spatial coordinate XCoM = 0 of center of mass can be defined by the vanishing of the
corresponding Damour-Iyer mass-dipole moment Ma = 0, but we consider the more general
case with Ma 6= 0 and XCoM 6= 0. This coordinate system will be called co-moving in the
following (or ’local’ in case that the body’s velocity is time dependent).

We now consider another inertial (global) system of coordinates xµ = (ct , x) in which
our body moves with constant velocity v. The transformation from local coordinates Xµ =
(cT,X) to global coordinates xµ = (ct,x) for a massive body in uniform motion is given by
a Poincaré transformation,

xµ (Xα)= bµ + Λµ
αX

α , (4)

with Λ0
0 = γ, Λi

0 = Λ0
i = γ vi

c , Λj
i = δij + (γ − 1)

vi vj
v2

, and bµ = (b0, b) is a constant

four-vector, where b points from the origin O of global frame to the origin of the co-moving
frame at time T = 0. Transforming the events (T, 0) into the global reference system (t,x)
yields

xA (t) =xA (t0) + v (t− t0) , xi
A (t0) = bi , c t0 = b0 , (5)

where xA (t) points from the origin of the global system to the origin at the co-moving frame
at any time t, and the initial is t0. The distance R which appears in the co-moving metric
(2), can be written in Lorentz invariant form ρ as (cf. Eq. (4.42) in [7], Eq. (10) in [9],
Eq. (B.4) in [10])

ρ=
|ηµν uµ (xν − xν

A (tret))|
c

, (6)

where uµ = γ (c, v) are the contravariant components of four-velocity of O, and the retarded
time is defined by Eq. (8) below. The Lorentz invariant distance (6) can also be written as:

ρ= γ

(

r (tret)−
v · r (tret)

c

)

=

√

r2 (t) + γ2
(v · r (t))2

c2
, (7)

where r (tret) = x− xA (tret), r (t) = x− xA (t) and xA (t) is given by Eq. (5); the absolute
values are r (tret) = |r (tret)| and r (t) = |r (t)|.
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The latter form in (7) is sometimes preferable and can be obtained by means of the
relation X i = Λi

a r
a (t); for a very similar consideration see [10]. The retarded time in global

coordinates reads for arbitrary wordlines

tret (t,x)= t− |x− xA (tret)|
c

. (8)

Let us consider a series expansion of (8), which yields: tret = t− r (t)

c
− v (t) · r (t)

c2
+O

(

c−3
)

,

where r (t) = x − xA (t), and xA (t) is arbitrarily, hence v (t) = ẋA (t) is time-dependent.
In general, Eq. (8) is an implicit relation which cannot be resolved analytically for arbitrary
worldlines xA (t) of a massive body. However, for the case of a body in uniform motion one
can obtain an exact analytical solution:

tret (t,x)= t− γ2
r (t) · v +

√

c2 r2 (t)− (r (t)× v)2

c2
. (9)

Here, r (t) = x− xA (t), and xA (t) is given by Eq. (5). Let us compare (9) with the post-
Newtonian approximation. A series expansion of (9) yields the following expression for the

retarded time: tret = t − r (t)

c
− v · r (t)

c2
+ O

(

c−3
)

. This expression agrees with the series

expansion given above (for v = const) which has been obtained directly from the definition
(8).

Now we consider a relation among the retarded time Tret in the co-moving system of the
body and the retarded time tret in the global system. The retarded time in the co-moving and
global system are defined by Eqs. (3) and (8), respectively. In order to find a relation between
Tret and tret, we note that the global coordinates of event (tret,xA (tret)) correspond to the
coordinates (Tret, 0) of the same event in the co-moving frame. The Poincaré transformation
of the coordinates of this event yields

Tret= γ−1 (tret − t0) . (10)

Relation (10) can also be obtained directly from the definitions of Tret and tret.
To get the metric in the global system we will transform the spatial derivatives with

respect to the co-moving coordinates to derivatives with respect to global coordinates. One
obtains

DL

[

F (Tret)

R

]

=Λµ1

a1
...Λµl

al
∂µ1 ... µl

[

F (γ−1 (tret − t0))

ρ (tret)

]

, (11)

where F stands for any of the mass or spin multipoles in co-moving coordinates, and ∂µ =
∂/∂xµ. By means of the invariant form of the distance (6) and with the aid of the derivative
operation (11), we are in the position to obtain the global metric in terms of local multipoles
for a massive body in uniform motion. Using gµν = ηµν −hµν +O (G2), Gαβ = ηαβ −Hαβ +
O (G2) and relation Λµ

α Λ
ν
β η

αβ = ηµν , we obtain from (4) the transformation law of metric
perturbation:

hµν
can (t,x) =Λµ

α Λ
ν
β H

αβ
can (T,X) . (12)
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Applying the general transformation law (12) to the local metric (2), using the invariant
form of the distance (6), the derivative operation (11), we obtain for the metric in global
coordinates (t,x) the following expression:

hµν
can (t,x) =

2G

c2
Λµ

α Λ
ν
β δαβ

∑

l≥0

(−1)l

l!
Λµ1

a1
...Λµl

al
∂µ1 ... µl

[

Ma1 ... al (Tret)

ρ

]

− 8G

c3
Λ

(µ
0 Λ

ν)
i

∑

l≥1

(−1)l

l!
Λµ1

a1 ...Λ
µl−1

al−1
∂µ1 ... µl−1

[

Ṁia1 ... al−1
(Tret)

ρ

]

− 8G

c3
Λ

(µ
0 Λ

ν)
k

∑

l≥1

(−1)l l

(l + 1)!
ǫi j k Λ

λ
i Λ

µ1

a1 ...Λ
µl−1

al−1
∂λµ1 ... µl−1

[

Sja1 ... al−1
(Tret)

ρ

]

+
4G

c4
Λµ

i Λ
ν
j

∑

l≥2

(−1)l

l!
Λµ1

a1
...Λµl−2

al−2
∂µ1 ... µl−2

[

M̈ija1 ... al−2
(Tret)

ρ

]

+
8G

c4
Λµ

i Λ
ν
j

∑

l≥2

(−1)l l

(l + 1)!
Λλ

k Λ
µ1

a1 ...Λ
µl−2

al−2
∂λµ1 ... µl−2

[

ǫkm ( i Ṡj )ma1 ... al−2
(Tret)

ρ

]

,

(13)

where Tret can be expressed in terms of global coordinates by means of (10), and an overdot
denotes the derivative with respect to Tret. The multipoles in (13) are the local multipoles
defined in the co-moving frame of the body under consideration, and they are functions of
the retarded time Tret. Expression (13) describes the metric of an arbitrarily shaped and
arbitrarily oscillating and rotating single massive body in uniform motion.

C. Monopole in uniform motion

Let us consider the simplest case of an extended body with monopole structure. Accord-
ing to Eq. (13), the metric perturbation of a uniformely moving mass-monopole in global
coordinates xµ = (ct,x) is given by (l = 0 in Eq. (13)):

hµν
(M) (t,x) =

2GM

c2
Λµ

α Λν
β δαβ

ρ
, (14)

where M is the invariant rest mass of the body. For the invariant distance ρ we insert
expression (7), then we use the relation c2 Λµ

α Λν
β δαβ = 2 uµ uν + c2 ηµν , and obtain

hµν
(M) (t,x)=

4GM

c2
1

γ

(

r (tret)− v · r (tret)
c

)

(

uµ

c

uν

c
+

1

2
ηµν
)

. (15)

This expression coincides with the metric of a pointlike body of mass M , cf. Eq. (15) with
Eq. (11) in [11] for the case of uniform motion, i.e. v = const.
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D. Spin-dipole in uniform motion

Next we consider an extended massive body with mass monopole M and spin dipole Si.
According to Eq. (13), the metric perturbation of a uniformely moving mass-monopole in
global coordinates xµ = (ct,x) consists of two contributions (l = 1 in Eq. (13)):

hµν (t,x)= hµν
(M) (t,x) + hµν

(S) (t,x) , (16)

where for simplicity we assume in this section that the co-moving system is located at the
center of mass of this body, so that Ma = 0. The monopole part hµν

(M) is given by Eq. (15),

and the spin part hµν
(S), according to (13), is given by

hµν
(S) (t,x)=

4G

c3
Λ

(µ
0 Λ

ν)
k ǫi j k Λλ

i ∂λ
Sj

ρ
, (17)

where Sj is the spin in the local frame (cT,X) of the body.
The massive bodies of an N-body system exert a torque on each other leading to a time

dependent spin of a body A in the local A-system. Here, we follow the arguments of [12, 13]
and will assume that such a local time-dependence is only caused by gravitational inter-
actions and, therefore, are proportional to O (G). Accordingly, the spin of each individual
body in its own co-moving system is here assumed to be time independent. The metric of
an arbitrarily moving pointlike body with monopole structure and a time-independent spin
has been given by Eq. (16) in [11]. Here, we will compare our result with the results in [11]
in case of a body in uniform motion.

Because the spin is time-independent in the local frame, the derivative ∂λ in (17) does
not act on the spin vector, and we obtain

Λα
i ∂α

Sj

ρ
=−Sj

ri (t) + (γ − 1) vi

v2
(v · r (t))

ρ3
. (18)

In order to obtain (18), we have used the second expression in (7), the explicit form for the

Lorentz matrices, and ∂
∂t

r (t) = −v. By inserting (18) into (17) we obtain

hµν
(S) (t,x) =−4G

c3
Λ

(µ
0 Λ

ν)
k ǫi j k Sj

ri (t) + (γ − 1) vi

v2
(v · r (t))

ρ3
. (19)

Furthermore, we note the relation

ri (t)= ri (tret)− r (tret)
vi

c
, (20)

which follows from ri (t) = xi − xi
A (t), ri (tret) = xi − xi

A (tret), that means ri (t) = ri (tret) +
vi (tret − t), and then using relation (8). Thus, by means of (20), we can rewrite (19) as
follows:

hµν
(S) (t,x) =−4G

c3
Λ

(µ
0 Λ

ν)
k ǫi j k Sj

ri (tret) + (γ − 1) vi

v2
(v · r (tret))− γ r (tret)

vi
c

ρ3
. (21)
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Let us briefly note, that from (21) one easily finds that h00
(S) = O (c−4), hij

(S) = O (c−4), while

h0i
(S) (t,x)=

2G

c3
ǫijk Sj

rk (t)

r3 (t)
+O

(

c−5
)

(22)

gives rise to the famous Lense-Thirring effect. Now we will show an agreement of (21) with

Eq. (16) in [11], where some anti-symmetric spin tensor in global coordinates Sαβ
global has been

employed. To this end we consider each component of the metric tensor (21) separately.
Accordingly, the strategy for the comparison is, first to perform a Lorentz transformation

of the spin-part of the metric from co-moving to global frame and second to rewrite the
results in terms of the global spin tensor Sµν

global, Eqs. (B4) and (B5).

1. Calculation of h00(S)

For the components µ = ν = 0 we obtain from (21) the following expression:

h00
(S) (t,x)=

4G

c3
γ2
(v

c
× S

)i ri (tret)

ρ3
. (23)

Now we use the following relation between the spin vector S in the co-moving system and
the anti-symmetric spin tensor Sαβ

global in the global system, which is shown in Appendix B:

γ
(v

c
× S

)i

=Si0
global . (24)

Inserting (24) into (23) yields

h00
(S) (t,x)=

4G

c3
rα (tret) Sα0

global u
0

ρ3
, (25)

where the four-vector rα = (r, r) has been introduced. In (25) we have formally extended
the summation ri S

i0
global = rα S

α0
global, because S00

global = 0 due to the anti-symmetry of the

spin tensor; note also γ = u0/c and Sα0
global u

0 = S
α(0
global u

0).

2. Calculation of h0 a(S)

Now let us consider the component µ = a and ν = 0 in (21), which we separate into two
terms as follows,

ha0
(S) (t,x) =ha0

1 (t,x) + ha0
2 (t,x) , (26)

ha0
1 (t,x) =−2G

c3
Λa

0 Λ
0
k ǫi j k Sj

ri (tret) + (γ − 1) vi

v2
(v · r (tret))− γ r (tret)

vi
c

ρ3
, (27)

ha0
2 (t,x) =−2G

c3
Λ0

0 Λ
a
k ǫi j k Sj

ri (tret) + (γ − 1) vi

v2
(v · r (tret))− γ r (tret)

vi
c

ρ3
. (28)
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For the expression (27) we obtain

ha0
1 (t,x)=

2G

c4
rα (tret) S

α0
global u

a

ρ3
, (29)

where we used (24) and again extended the summation ri S
i0
global = rα S

α0
global; note also

ua = γ va. For the term (28) we obtain

ha0
2 (t,x)=

2G

c4
rα (tret) S

αa
global u

0

ρ3
. (30)

The proof of relation (30) is a bit involved; it can be found in Appendix C. According to
(26) we add both terms (29) and (30) together, and obtain by means of symmetrization
notation:

ha0
(S) (t,x) =

4G

c4
rα (tret) S

α(a
global u

0)

ρ3
. (31)

We remark that ha0
(S) = h0a

(S) as it follows from (21).

3. Calculation of hab(S)

According to (21), we obtain the following components for the spin part of metric tensor,

hab
(S) (t,x) =−4G

c3
Λ

(a
0 Λ

b)
k ǫi j k Sj

ri (tret) + (γ − 1) vi

v2
(v · r (tret))− γ r (tret)

vi
c

ρ3
. (32)

If we compare expression (32) with expression (28), we recognize that:

hab
(S) (t,x) =ha0

2 (t,x)
vb

c
+ hb0

2 (t,x)
va

c
. (33)

In view of relation (33) and by means of (30), we immediately conclude

hab
(S) (t,x) =

4G

c4
rα (tret) S

α(a
global u

b)

ρ3
. (34)

4. Collection of terms

Now we collect the results (25), (31) and (34) together and obtain finally

hµν
(S) (t,x)=

4G

c4
rα (tret) S

α(µ
global u

ν)

γ3

(

r (tret)− v · r (tret)
c

)3 , (35)

where we have used for the distance ρ the form given by relation (7). The metric (35) for
the spin part coincides with the metric given by Eq. (16) in [11] for the case of uniform
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motion, besides an additional factor γ−1 which is missing in Eq. (16) of [11], as it has been
noted already in [14]. We note, that the use of a spin tensor or spin vector is more or less a
matter of taste and allows for a more compact notation, but from the physical point of view
it is not important at all. However, it is important that the metric (35) is given in terms
of global spin parameters, while our metric (17) for the spin is given in terms of local spin
parameters. Here, we have shown that both expressions are equivalent.

III. ARBITRARILY MOVING POINTLIKE BODIES TO

POST-MINKOWSKIAN ORDER

A. Instantaneous Poincaré transformation and classical electrodynamics

Let us consider the equations of classical electrodynamics in the Lorentz-gauge [19],

�xA
µ (t,x)=−µ0 j

µ (t,x) , (36)

where �x = ηµν
∂2

∂xµ ∂xν
is the d’Alembert operator, Aµ = (ϕ/c,A) is the four-potential

with scalar-potential ϕ and vector-potential A, and jµ = (c ρ , j) is the four-current with
electric charge density ρ and electric current density j; the vacuum permeability µ0 and
vacuum permittivity ǫ0 are related via c−2 = ǫ0 µ0.

The equations of linearized gravity (1) and the equations of classical electrodynamics
(36) have the same mathematical structure. Thus we can use some arguments of classical
electrodynamics for our purposes. Especially, we will show that the problem of an arbitrarily
moving pointlike body in linearized gravity is similar to the problem of an arbitrarily moving
pointlike charge Q in electromagnetism.

Let us consider a pointlike charge Q which in the global inertial system xµ = (ct,x)
is moving along an arbitrary timelike worldline parametrized by xµ

Q (T ). At each instant
of time we introduce an inertial system Xµ = (cT,X) along the worldline xµ

Q (T ) which
is comoving with the pointlike charge with the instantaneous velocity of the charge. The
transformation from the global inertial coordinate system xµ = (ct,x) to the inertial system
Xµ = (cT,X) which is comoving with the charge is then given by an instantaneous Poincaré
transformation, e.g. [18]:

xµ (Xα) = bµ + Λµ
α (t) X

α , (37)

with Λ0
0 (t) = γ (t), Λi

0 (t) = Λ0
i (t) = γ (t)

vi (t)
c , Λj

i (t) = δij + (γ (t)− 1)
vi (t) vj (t)

v (t)2
. Like

in (4) we take bµ = (b0, b), and b points from the origin of global frame to the origin of the
inertial frame at time T = 0.

We assume the point-charge Q to be located at the origin of the comoving inertial system
and then the four-potential in this coordinate system is given by

Aµ (T,X)=

(

1

4 π ǫ0

Q

R
, 0

)

, (38)

where R = |X|, and the four-velocity of the charge in the local system is uµ
Q = (c, 0).

Now we want to determine the four-potential in the global coordinate system. As is
well-known the Liénard-Wiechert potentials for a moving point-charge expressed in terms
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of retarded time are independent of acceleration. Accordingly, it has been argued in [2, 20]
that one might introduce an instantaneous local rest-system as described above and with the
point-charge at its origin at retarded time tret = t − |x− xQ (tret)| /c, and where the four-
potential is given by (38). Then, an instananeous Poincaré transformation (37) at t = tret
yields

Aµ (t,x) =
1

4 π ǫ0

Quµ
Q (t)

∣

∣

∣
uQ
µ (t)

(

xµ − xµ
Q (t)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

t=tret

, (39)

where uµ
Q (t) = γ (t) (c, vQ (t)) is the four-velocity of Q in the global system and all time-

dependent quantities on the right-hand side have to be taken at retarded time tret. Further-
more, in (39) the local coordinate distance R has been replaced by the Lorentz-invariant
distance, cf. Eq. (6):

ρ=

∣

∣uQ
µ (t)

(

xµ − xµ
Q (t)

)
∣

∣

c

∣

∣

∣

∣

∣

t=tret

= γ (t)

(

rQ (t)− vQ (t) · rQ (t)

c

)
∣

∣

∣

∣

t=tret

, (40)

where rQ (t) = x− xQ (t) and rQ (t) = |rQ (t)|. The solution (39) which has been obtained
by an instananeous Poincaré transformation is nothing else than the well-known Liénard-
Wiechert potentials in classical electrodynamics.

B. Arbitrarily moving mass-monopoles

Now we are going to determine the metric of a pointlike body A moving arbitrarily along
a time-like trajectory xµ

A (T ) in the global system with the aid of the same approach as
described in the previous section. According to (2), the metric of a pointlike body without
spin and in its local rest frame Xµ = (cT,X) is given by

Hαβ
(M) (T,X)=

2GM

c2R
δαβ , (41)

where M is the mass monopole ML defined by Eq. (5.33) in [6] for the special case l = 0.
For the case of an arbitrarily moving pointlike charge we perform an instantaneous Poincaré
transformation (37) of the metric field (41) at the retarded instant of time defined by Eq. (8),
and obtain the global metric

hµν
(M) (t,x) =

2GM

c2
Λµ

α (t) Λ
ν
β (t) δαβ

γ (t)

(

r (t)− v (t) · r (t)
c

)

∣

∣

∣

∣

∣

∣

∣

∣

t=tret

, (42)

where r (t) = x−xA (t) and r (t) = |r (t)| and for the distance R we have used the invariant
expression (40). Now we use the relation c2 Λµ

α Λν
β δαβ = 2 uµ uν + c2 ηµν , and obtain

hµν
(M) (t,x) =

4GM

c2
1

γ (t)

(

r (t)− v (t) · r (t)
c

)

(

uµ (t)

c

uν (t)

c
+

ηµν

2

)

∣

∣

∣

∣

∣

∣

∣

∣

t=tret

, (43)
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where uµ (t) = γ (t) (c, v (t)) is the four-velocity of the body and v (t) being the three-velocity
of the body in the global system. The expression (43) is the contribution to the metric of one
arbitrarily moving pointlike body in post-Minkowskian approximation. The metric for the
case of N pointlike bodies is simply obtained by a summation over N individual contributions
(43), in agreement with Eq. (10) in [9] or Eq. (11) in [11].

For many situations, the slow-motion approximation (v ≪ c) is of sufficient accuracy, e.g.
[15, 16]. Therefore, we will compare the metric (43) with previous results in the literature
in the slow-motion approximation. A corresponding series expansion of (43) yields

h00
(M) (t,x)=

2GM

c2
1

r (t)

(

1 +
v (t) · r (t)

c r (t)
+

(v (t) · r (t))2
c2 r2 (t)

+
3

2

v2 (t)

c2

)
∣

∣

∣

∣

∣

t=tret

+O
(

c−5
)

,

(44)

h0i
(M) (t,x)=

4GM

c2
1

r (t)

vi (t)

c

(

1 +
v (t) · r (t)

c r (t)

)
∣

∣

∣

∣

t=tret

+O
(

c−5
)

, (45)

hij
(M) (t,x)=

2GM

c2
1

r (t)
δij

(

1 +
v (t) · r (t)

c r (t)
+

(v (t) · r (t))2
c2 r2 (t)

− 1

2

v2 (t)

c2

)
∣

∣

∣

∣

∣

t=tret

+
4GM

c2
1

r (t)

vi (t) vj (t)

c2

∣

∣

∣

∣

t=tret

+O
(

c−5
)

. (46)

The retarded time-argument in (44) - (46) has to be replaced by the global coordinate time
using the following relations:

r (tret)= r (t) +
v (t)

c
r (t) +

v (t)

c

v (t) · r (t)
c

+O
(

c−3
)

+O (G) , (47)

r (tret)= r (t)

(

1 +
r (t) · v (t)

c r (t)
+

1

2

v2 (t)

c2
+

1

2

(v (t) · r (t))2
c2 r2 (t)

)

+O
(

c−3
)

+O (G) , (48)

vi (tret)

c
=

vi (t)

c
+O

(

c−3
)

+O (G) , (49)

where we have taken into account that for a system of N pointlike masses the acceleration
is proportional to gravitational constant due to the equations of motion; see also text below
Eq. (23) in [15]. Then, to order G we obtain:

h00
(M) (t,x)=

2GM

c2
1

r (t)

(

1− 1

2

(v (t) · r (t))2
c2 r2 (t)

+ 2
v2 (t)

c2

)

+O
(

c−5
)

, (50)

h0i
(M) (t,x)=

4GM

c2
1

r (t)

vi (t)

c
+O

(

c−5
)

, (51)

hij
(M) (t,x)=

2GM

c2
1

r (t)

(

δij −
1

2

(v (t) · r (t))2
c2 r2 (t)

δij + 2
vi (t) vj (t)

c2

)

+O
(

c−5
)

, (52)

which agrees with Eqs. (21) - (23) in [15] or with Eqs. (47) - (49) in [16] (for β = γ = ǫ = 1
in [16]); recall h0i = −h0i, while h00 = h00 and hij = hij , and all relations are valid only to
first order in G.
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C. Arbitrarily moving Spin-dipoles

Now we proceed with the consideration of the metric of a pointlike body with spin.
According to (2), the metric of a massive body with monopole and spin is, in its local rest
frame Xµ = (cT,X), given by

Hαβ (T,X) =Hαβ
(M) (T,X) +Hαβ

(S) (T,X) , (53)

where the monopole part has been given by Eq. (41) and the spin part is given by

H0a
(S) (T,X)=−4G

c3
ǫa b c

∂

∂Xb

Sc

R
, (54)

while all other components of the spin part vanish: H00
(S) = 0 and H ij

(S) = 0. Again, for

simplicity we assume here that the co-moving system is located at the center of mass of this
body, and we neglect the time-dependence of the spin vector in the local system.

Now we perform an instantaneous Poincaré transformation of the local metric (54), and
obtain the spin part in global coordinates for an arbitrarily moving pointlike body with spin:

hαβ
(S) (t,x) =

4G

c3
Λ

(µ
0 (tret) Λ

ν)
a (tret) ǫa b c Λ

λ
b (tret) Sc

∂

∂xλ

1

ρ
, (55)

where for R we have used the invariant expression ρ given by (6) for the distance. By
performing the very same steps as described in some detail in section IID, we obtain for
(55) the following expression:

hµν
(S) (t,x) =

4G

c4
rα (t) S

α(µ
global u

ν) (t)

γ3 (t)

(

r (t)− v (t) · r (t)
c

)3

∣

∣

∣

∣

∣

∣

∣

∣

∣

t=tret

. (56)

Eq. (56) is the result for the spin part of the metric of one arbitrarily moving pointlike
massive body with spin, cf. Eq. (16) in [11]. Recall, that (35) was valid for the case of an
extended body but in uniform motion. Like in the previous section, the metric of a system
of N arbitrarily moving pointlike spin-dipoles is simply obtained by a summation over the
contributions (56) of N individual pointlike spin-dipoles. In many situations, the metric for
a spinning body in slow-motion (v ≪ c) is sufficient, e.g. [17]. Hence, like for the case of
pointlike monopoles, we will compare (56) with results previously obtained in the literature
in the slow-motion approximation. By inserting (47) - (49) into (56) we obtain

h00
(S) (t,x)=−4G

c4
1

r3 (t)
ra (t) Sb ǫabc vc (t) +O

(

c−5
)

, (57)

h0i
(S) (t,x)=−2G

c3
1

r3 (t)
ra (t) ǫiab Sb +O

(

c−5
)

, (58)

hij
(S) (t,x)=−4G

c4
1

r3 (t)
ra (t) Sb ǫab ( i vj ) (t) +O

(

c−5
)

, (59)

in agreement with Eqs. (C.17) - (C.19) in [17]. Recall, that (58) generates the Lense-Thirring
effect, the spin in the local frame is time-independent, and all relations are valid to first order
in G.
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IV. CONCLUSIONS

Extremely high precision astrometry, high precision space missions and certain tests
of General Relativity, require the knowledge of the metric tensor of the solar system, or
more generally, of a gravitational N-body system in post-Minkowskian approximation. So
far, the metric outside of massive and moving bodies in only known in post-Newtonian
approximation. In our study, we have considered the metric of massive bodies in motion in
post-Minkowskian approximation, that is valid to any order in velocity v/c. Two different
scenarios were on the scope of our investigation: (i) the case of one body with full mass and
spin multipole structure in uniform motion (v = const) in post-Minkowskian approximation,
and (ii) the case of N arbitrarily moving pointlike bodies with time-dependent speed v (t)
in post-Minkowskian approximation.

For the first problem, a co-moving inertial system of coordinates has been introduced and
the starting point is the local metric given in terms of Damour-Iyer moments. A Poincaré
transformation then yields the metric tensor in the global system (13) in post-Minkowskian
approximation. We have demonstrated that our results are in agreement with known results
for pointlike masses having monopole and spin structure and moving uniformly.

Then we have derived the global metric for pointlike massive bodies in arbitrary motion
having monopole structure (43) and spin structure (56). We have shown that our results
are exact to post-Minkowskian order for the problem of pointlike mass-monopoles and spin-
dipoles in arbitrary motion.

The problem to find a global metric for a system of N arbitrarily moving and arbitrarily
shaped bodies in post-Minkowskian approximation is highly complex and one encounters
many subtle difficulties. Especially (in contrast to the case of pointlike bodies), such a
metric cannot be obtained by a simple instantaneous Poincaré transformation of the metric
(2) for extended bodies. Moreover, it is obvious that for this problem a corresponding
accelerated local reference system has to be constructed. It is clear that such a local system
can be defined in many different ways (e.g., Fermi normal coordinates or special harmonic
ones). As is well known, however, that even in the case of vanishing gravitational fields,
i.e., in Minkowski space, such a construction is highly problematic; the reader is referred to
[21–28]. At the moment being, we consider our study as one more step towards the aim of
a global metric for a system of N arbitrarily shaped and arbitrarily moving massive bodies
in post-Minkowskian approximation.
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Appendix A: Notation for the metric tensors

All relations given here will be valid to first order in G, without explicit indication. For
weak gravitational fields the metric differs only slightly from flat space metric, that means

Gµν = ηµν +Hµν , Gµν = ηµν −Hµν , (A1)

where ηµν = ηµν is the metric of Minkowski space, and |Hµν | ≪ 1 and |Hµν | ≪ 1.
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The equations of linearized gravity take a simple form in the gothic metric [2, 18, 29],
defined by

Gµν√
−G

= ηµν +Hµν ,
√
−GGµν = ηµν −H

µν
, (A2)

where G = det (Gµν) is the determinant of metric tensor. The factor
√
−G implies that the

gothic metric is not a tensor but a tensor density. Let us further note the following relations
for the trace-reversed metric perturbation:

Hµν =Hµν −
1

2
ηµν H , H

µν
= Hµν − 1

2
ηµν H , (A3)

where H = ηαβ Hαβ . The inverse relation reads

Hµν =Hµν −
1

2
ηµν H , Hµν = H

µν − 1

2
ηµν H , (A4)

where H = ηαβ Hαβ. Finally we note H = −H , and we find

√
−G=1− 1

2
H ,

√
−G = 1 +

1

2
H . (A5)

Appendix B: Some relations for the Spin

1. Lorentz transformation of Spin

In the local frame the spin four-vector is denoted by Sµ = (0,S), while in the global
system the spin four-vector is denoted by Sµ

global =
(

S0
global,Sglobal

)

. The Lorentz transfor-
mation for the spin between the co-moving frame co-moving with the massive body and the
global frame reads

Si
global =Λi

µ S
µ = Si + (γ − 1)

v · S
v2

vi , (B1)

S0
global =Λ0

µ S
µ = γ

(

v · S
c

)

. (B2)

Note, that the spin four-vector in any Lorentz frame has three independent components only.
The transformation (B1) and (B2) agree with Eq. (8) in [11]. The inverse transformation
can easily be deduced from Eqs. (B1) and (B2) and is given by

Si =Si
global +

1− γ

v2
c

γ
S0
global vi . (B3)

Of course, relation (B3) can also be obtained from the inverse Lorentz transformation.
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2. Proof of relation (24)

In [11], some anti-symmetric spin tensor in global coordinates Sαβ
global has been employed.

Due to the anti-symmetry of this tensor and because of the orthogonality relation Sαβ
global uβ =

0, this spin tensor has three independent degrees of freedom like the spin four-vector Sµ
global,

thus both mathematical expressions are on an equal footing. Therefore, the anti-symmetric
spin tensor Sαβ

global and the spin four-vector Sglobal
µ in global coordinates are related to each

other by the following relation, cf. Eq. (5) in [11] and cf. Eq. (3.9) in [14]:

Sαβ
global = ηαβ γ δ Sglobal

δ

uγ

c
, (B4)

Sglobal
α =

1

2
ηαβ γ δ

uβ

c
Sγ δ
global , (B5)

where (B5) is the inverse of (B4). Here, ηαβγδ = − 1√−g
ǫαβγδ and ηαβγδ =

√−g ǫαβγδ are the

contravariant and covariant components of the Levi-Civita tensor, respectively, and ǫαβγδ is
the Minkowskian Levi-Civita tensor with ǫ0123 = 1. Let us note the following relations of
this tensor:

ǫi j 0 k = ǫ0 i j k = −ǫ0 i j k = −ǫi j k . (B6)

In harmonic coordinates g = −1 +O (G), we obtain from Eq. (B4), up to order O (G),

Sa 0
global = ǫa 0 γ δ uγ

c
Sglobal
δ = ǫa 0 k l uk

c
Sglobal
l . (B7)

And by means of (B6) we finally arrive at

Sa 0
global = ǫa k l γ

vk
c

Sglobal
l = γ

(

v × S

c

)a

, (B8)

where in the last term we have used (B1), i.e. v ×Sglobal = v ×S. Eq. (B8) is nothing but
relation (24); cf. Eq. (D1) in [11].

Appendix C: Prof of relation (30)

In order to show (30), we insert into Eq. (28) the explicit form for the Lorentz matrix
and obtain

ha0
B (t,x)=−2G

c3
γ
(

ǫija Sj + (γ − 1)
va vk
v2

ǫijk Sj

) Xi

ρ3
, (C1)

where we have used the abbreviation

Xi= ri (tret) + (γ − 1)
vi
v2

(v · r (tret))− γ r (tret)
vi
c
. (C2)

The metric (C1) is still given in terms of the local spin Sµ = (0,S) comoving with the
massive body, and we have to transform it into the spin tensor in global coordinates. For
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the first term in the parentheses of Eq. (C1) we will use the following relation (a proof is
given below):

γ ǫija Sj =Sai
global +

γ − 1

v2
(v · S) ǫaij vj , (C3)

while for the second term in the parentheses of Eq. (C1) we will use relation (24), and then
we obtain

ha0
B (t,x)=−2G

c3

(

Sa i
global +

γ − 1

v2
c

γ
S0
global ǫa i j vj +

1− γ

v2
va c S

i 0
global

)

Xi

ρ3
. (C4)

For the last term in (C3) we have also used relation (B2). The metric (C4) is now given in
terms of global spin variables. But we still have to express the second term in (C4) by the
global spin tensor. Therefore, we use the following relation, cf. Eq. (B5),

S0
global =

1

2
ǫk lm

uk

c
Slm
global . (C5)

Inserting (C5) into (C4) yields (recall the anti-symmetry of spin-tensor):

ha0
B (t,x)=−2G

c3
Xi

ρ3

×
(

Sa i
global +

γ − 1

v2
va vb S

i b
global + (γ − 1)Sa i

global +
γ − 1

v2
vi vb S

b a
global +

1− γ

v2
va c S

i 0
global

)

,

(C6)

where for the second term in the parentheses of Eq. (C4) after inserting (C5) we have used

ǫaij ǫklm =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δak δal δam

δik δil δim

δjk δjl δjm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We recognize that the second and last term in the parentheses of Eq. (C6) cancel each other,

as one can see by using the relation vb S
a b
global = c Sa 0

global due to Sαβ
global uβ = 0. For the fourth

term in the parentheses of Eq. (C6) we use vb S
b a
global = −c Sa 0

global and obtain

ha0
B (t,x) =−2G

c3
Xi

ρ3

(

γ Sa i
global +

1− γ

v2
vi c Sa 0

global

)

. (C7)

Now we reinsert (C2) and obtain, recall c γ = u0 and vi S
a i = c Sa 0,

ha0
B (t,x)=

2G

c4
rγ (tret) S

γa
global u

0

ρ3
, (C8)

where we have used the anti-symmetry of the spin-tensor; note rγ (tret) = (−r(tret), r(tret)),
and rγ = (r(tret), r(tret)). Eq. (C8) is just relation (30).
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Finally let us proof relation (C3). We insert the Lorentz transformations (B1) and (B2)
into relation (B4) and obtain up to order G,

Si j
global = ǫi j γ δ Sglobal

δ uγ

= ǫi j k Sk γ + ǫi j k
γ − 1

v2
(v · S) vk γ − ǫi j k

(

v · S
c

)

γ2 vk
c

, (C9)

where we have also used u0 = −c γ, u0 = c γ and uk = uk = γ vk; note Sglobal
0 = −S0

global,

ǫi j k = ǫi j k, and ǫ0 i j k = −ǫ0 i j k. Then, by using the relation (γ − 1) γ − v2

c2
γ2 = 1− γ, we

obtain from Eq. (C9),

Si j
global = γ ǫi j k Sk +

1− γ

v2
(v · S) ǫi j k vk , (C10)

which is just relation (C3); cf. Eq. (D2) in [11].
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