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Transfer Trajectory and Departure Maneuver . . . . . . . . . . . . . . 112

5.6 Three-Dimensional Transfer Trajectory to the Vicinity of L4 in the Earth-
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ABSTRACT

Irrgang, Lucia R. M.S.A.A., Purdue University, August, 2008. Investigation of Trans-
fer Trajectories to and from the Equilateral Libration Points L4 and L5 in the Earth-
Moon System. Major Professor: Kathleen C. Howell.

In the Earth-Moon system, the equilateral libration points L4 and L5 have been

the focus of attention in the recent years. For example, their location in space is

ideal for the placement of a communications satellite to support deep space missions,

or for a space observatory. Therefore, it is necessary to determine transfer trajec-

tories to and from the region near the equilateral points. An initial exploration of

the problem includes two- and three-dimensional flow in the vicinity of the collinear

libration point L2 as well as L4/L5. Initially, the focus is on planar transfers. An

analysis of the the behavior of planar L2 Lyapunov invariant manifold trajectories as

a function of different amplitude, Ay, reveals a range of planar orbits useful in the

design of planar transfers. Planar transfers originate from large Ay L2 Lyapunov or-

bits. Then, the transfer delivers to a planar periodic orbit near L4/L5. These planar

transfers between L2 Lyapunov orbits and planar periodic short-period L4/L5 orbits

are effective. Similarly, a range of three-dimensional L2 halo orbits, useful in the

design of three-dimensional transfer trajectories, is also identified through a study of

the behavior of the invariant manifolds associated with the periodic halo orbit for

different out-of-plane amplitudes, Az. Some three-dimensional transfer trajectories

are determined.
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1. Introduction

The region of space in the vicinity of the L4 and L5 equilateral libration points has long

captured the interest of mathematicians and astronomers. In the Sun-Jupiter system,

for example, the Trojan asteroids move in orbits near the triangular libration points,

ahead and/or behind Jupiter in its orbit around the Sun. [1] [2] Closer to home,

the Sun-Earth equilateral points, as well as the collinear points, are also gaining

the attention of scientists and engineers. Far away from the “noise” induced by

the Earth and the radiation of the Sun, the regions near the libration points are

increasingly becoming an attractive option for future spacecraft involved in scientific

and exploration missions. For example, deep space missions might require the support

of a communications satellite that could be placed at L4 and/or L5. The triangular

points would also be a suitable location for a space station. [3] Hence, it is of interest

to determine feasible transfer trajectories to the vicinity of the triangular libration

points.

On August 12th, 1978, the International Sun-Earth Explorer-3 (ISEE-3) spacecraft

was launched. The ISEE-3 mission was the first venture of a manmade vehicle to the

region of space near a collinear libration point. [4] With a successful insertion into a

Sun-Earth L1 halo orbit on November 20th, 1978, and the achievement of its scien-

tific goals, ISEE-3 paved the way for several subsequent libration point missions. [5]

More recently, the Japanese mission MUSES-A, launched on January 24th, 1990, has

successfully completed its mission objectives of ten lunar swingbys, insertion of a sub-

satellite into an orbit around the Moon, and two cislunar aerobraking experiments.

After launch, MUSES-A was renamed HITEN. By the end of March, 1991, HITEN

had completed all of its mission goals and had approximately 130 m/sec of maneuver

capability, |∆~V |, remaining on-board. Hence, after its tenth lunar flyby, on October

2nd, 1991, HITEN embarked on its follow-on mission: an excursion to the triangular
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points in the Earth-Moon system. The spacecraft looped once around L4, and then

once around L5. HITEN was the first spacecraft to fly to the vicinity of the triangular

points of the Earth-Moon system. [6]

1.1 Problem Definition

The libration points exist as equilibrium solutions to a problem based on the

gravitational interactions of multiple bodies. It is generally defined within the context

of the multi-body problem. The number of bodies can be selected as three. The

traditional “Three-Body Problem” (3BP) formally incorporates the motion of three

spherically symmetric bodies. Each body is modeled as a point mass, and their

motion is influenced solely by the gravitational forces they exert on one another. No

closed-form analytical solution to the general 3BP is available. However, a series of

simplifying assumptions aid in gaining further insight into the problem. First, it is

assumed that one body is of infinitesimal mass as compared to the other two bodies,

each of much larger, although not equal, mass. The two massive bodies are denoted

as the primaries. The larger body is arbitrarily labeled as the first primary, and the

other, as the second. Since the third mass is infinitesimal, the gravitational fields

created by the primaries influence all motion. Thus, the solution to the two-body

problem, that is, conics, describes the motion of the primaries. If the relative conic

trajectory is assumed to be a circle, then the problem is recognized as the “Circular

Restricted Three-Body Problem” (CR3BP). When used as a tool for mission design,

the spacecraft (s/c) is regarded as the infinitesimal mass. As expected, the position

of the s/c is vital in any mission design study. However, in spite of the simplifying

assumptions, still no closed-form analytical solution to the CR3BP is currently known

to exist.

For application to mission design, additional understanding of the motion of the

infinitesimal mass is necessary. To seek greater insight, equilibrium solutions are very

useful. When the problem is formulated in terms of the rotating frame associated
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with the primaries, there exist five particular solutions, i.e., equilibrium solutions,

also denoted libration points. Three of the five libration points, the collinear points,

are collocated on the line connecting the two primaries. The collinear point between

the primaries is labeled L1, the point beyond the second primary is labeled L2, and

the L3 point is located on the far side of the largest primary. The equilateral or

triangular points, the final two libration points, form equilateral triangles with the

primaries in their plane of rotation. The triangular point that is always ahead of the

second primary in its plane of rotation about the first primary, is labeled L4. The

triangular point that trails the second primary is L5. Analysis has revealed that the

collinear points are linearly unstable; the triangular points are stable in a linear sense

for a certain range of systems in the CR3BP, where a system is defined in terms

of the primary masses. Periodic and quasi-periodic solutions in the vicinity of these

libration points can be determined numerically. The equilateral points have generated

interest for many years. For applications, however, transfer trajectories between the

primaries and/or collinear points and the vicinity of L4 and L5 are necessary. This

investigation considers transfers specifically between L2 and L4/L5.

1.2 Previous Contributors

1.2.1 Historical Review

The solution to the n-Body Problem (nBP) in celestial mechanics has been a

focus of study for centuries. As early as 1687, Sir Isaac Newton published his Law

of Gravitation in Philosophiae Naturalis Principia Mathematica. Previously, Newton

had proven that the center of mass of n bodies moves with uniform speed and in

a straight line. He had also geometrically solved the Two-Body Problem (2BP) by

considering the relative motion of one body with respect to the other and proved

that the solution is an ellipse. However, Newton’s 1687 publication caused a shift in

the search approach for a solution to the nBP. The investigation moved away from

geometry and toward analytical mechanics.
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The formulation of the CR3BP originated as an intermediate step in the attempt

to solve a larger problem. The Three-Body Problem (3BP) was first formulated in

the rotating frame by Leonhard Euler in his second lunar theory, published in 1772.

That same year, Joseph Louis Lagrange identified the five equilibrium solutions in the

CR3BP in his memoir. Lagrange’s solutions do predict the Trojan asteroids in the

Sun-Jupiter system. However, the predictions from Lagrange were not verified until

1906, when 588 Achilles was first discovered in orbit near the triangular libration point

L4, i.e., ahead of Jupiter in its path around the Sun. In 1836, Carl Gustav Jacob

Jacobi reformulated the problem and demonstrated that an integral of the motion

exists. This integral leads to the constant of integration, Jacobi’s Constant, that is

associated with the equations of motion as formulated in a rotating frame. George

William Hill used Jacobi’s Constant to support the statement that the Moon can

never leave its orbit about the Earth as a result of the zero velocity curves, bounding

curves that exist as a result of Jacobi’s Constant. In his publications from 1877

and 1878, Hill considered a modified version of the Sun-Earth restricted three-body

problem to solve for the motion of the Moon. The modifying assumptions included

the following: (i) zero solar parallax, (ii) zero solar eccentricity, and (iii) zero lunar

inclination. Furthermore, Hill determined a family of periodic orbits around the

Earth, one of which possessed the same period as that of the Moon. [1] [2]

Influenced by Hill, one of the most important contributors to an understanding

of the 3BP was Jules Henri Poincaré. Between 1892 and 1899, Poincaré published

the three volumes that comprise Les Méthodes Nouvelles de la Mécanique Céleste.

Throughout these three volumes, Poincaré detailed new tools to study the 3BP. He

identified various types of periodic orbits and proved the existence of an infinite

number of such perfectly repeatable motions. He also proved that additional tran-

scendental integrals necessary to reduce the order of the equations of motion and,

thus, solve the 3BP, do not exist. [2]

Finally, in 1912, Karl Sundman published a solution to the problem in terms

of a complete convergent series, but only for n ≤ 3. [7] Then, in 1991, Qui-Dong
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Wang published a more general convergent series solution to the n-body problem. [8]

However, the solutions presented by Sundman and Wang possess such a slow rate

of convergence that both are currently impractical for any applications in mission

design. Hence, the series solutions presently offer no additional insight into the nBP.

Fortunately, other means of investigation are available. [7]

One of the first numerical approaches to investigate the 3BP was accomplished by

Sir George Howard Darwin. Between 1897 and 1910, Darwin numerically determined

several types of periodic orbits in the vicinity of the two libration points closest to

the second primary, as well as periodic orbits about the primaries themselves. [1] Be-

tween 1913 and 1939, the members of the Copenhagen Observatory identified several

types of orbits near the collinear points under the direction of Elis Strömgren. This

group of researchers also identified families of analytical solutions that asymptoti-

cally approached and departed the triangular libration points. [1] In 1920, Forest Ray

Moulton published a series of papers, compiled into one volume, under the name Peri-

odic Orbits. This volume included analytical and numerical studies of periodic orbits

with applications to the CR3BP. In particular, Moulton outlined the proof for the

existence of three types of orbits near the collinear points. [4] This compilation also

includes the construction of two- and three-dimensional orbits in the vicinity of the

equilateral points by Thomas Buck. [9] Additionally, Moulton identified a family of

retrograde periodic orbits that enclose L4. These retrograde orbits may be related to

the analytical solutions that asymptotically approach and depart the triangular libra-

tion points originally studied by Strömgren. [1] As research into the CR3BP became

more popular, different research groups focused on specific areas of the problem.

1.2.2 Motion Near the Triangular Libration Points

As computational technology became more efficient and accessible, the use of com-

puters and numerical algorithms has greatly expanded the study of orbital mechan-

ics, and this is most certainly true in the restricted three-body problem. Considering
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the equilateral libration points, two papers published by Rabe, in 1961 and 1962,

offer evidence of this shift to computational approaches. In his 1961 publication,

Rabe includes a survey of planar periodic orbits of the Trojan type, that is, orbits

in the vicinity of the triangular points in the Sun-Jupiter system. All orbits are

represented by a convergent fourier series solution, whose coefficients are computed

numerically. [10] [11] The following year, 1962, Rabe and Schanzle applied these same

methods to compute the same type of orbits in the Earth-Moon system. [12] Later, in

1966, Goodrich used Rabe’s approach to compute planar, short-period orbits near L4

and L5. [13] In March of 1967, Schanzle numerically determined a family of horseshoe-

shaped orbits in the Sun-Jupiter system, which originates with a horseshoe-shaped

orbit previously determined by Rabe in 1961. [14] After nearly a quarter century, in

1985, Zagouras finally improved Buck’s third-order approximation for vertical trian-

gular point orbits to fourth-order. Zagouras also numerically computed this same

family of orbits in the Sun-Jupiter system. Emanating from L4 and terminating at

L5, Zagouras found this family to bifurcate with the family of vertical L3 orbits. In

other words, both families include one orbit in common. [15]

Increasing interest in the equilateral points as potential locations for spacecraft in-

volved in exploration missions pushed the development of models more accurate than

the CR3BP. Hence, in 1964, DeVries investigated the stability of the motion in the

vicinity of the triangular points by numerical integration in a higher fidelity model.

The Sun-Earth-Moon four-body problem formed the basis of DeVries’ analysis. He

used the ephemerides for the Sun, Earth, and Moon, and linearized relative to the

triangular points. [1] In 1970, Tapley and Schutz propagated the motion of a parti-

cle in the restricted four-body problem, including the gravity of the Sun, Earth, and

Moon. The position of the primaries was obtained from ephemeris data and the initial

alignment of the bodies was assumed to coincide with a lunar eclipse. The particle,

with initial conditions at an equilateral point, remained in the vicinity of the libration

point, except when a lunar encounter occurred. [16] In 1974, Katz tested the behavior

of a particle placed at the Earth-Moon L5 point, when the motion is propagated in
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a “real” astronomical model. The particle appeared to escape before three years had

elapsed. [17] In 1987, Simó, Martinez, Gómez, Libre, Flury, and Rodriguez-Canabal

presented a study on quasi-periodic motion about the equilateral points in the Earth-

Moon system for the purpose of placing an array of free-flying telescopes at these

libration points. However, when all perturbations were included, the quasi-periodic

motion was found to possess a baseline variation unacceptably large for optical inter-

ferometry. [18] More recently, in 2005, Muñoz and Schutz determined periodic orbits

relative to the triangular libration points in the Sun-Earth-Moon bicircular problem.

Due to high accuracy requirements, the orbits lose periodicity after one period, but

remain in the vicinity of the equilateral point. Adding the Sun’s eccentricity did affect

the results, while the Moon’s eccentricity seemed to favor the repeating orbit. [19]

1.2.3 Motion Near the Collinear Libration Points

Research on motion near the collinear libration points progressed in parallel with

the investigation of orbits near the triangular/equilateral libration points. In 1963,

Goudas published a paper discussing nine families of doubly-symmetric periodic or-

bits in the CR3BP. Three of these nine families are three-dimensional periodic orbits

near L1, L2, and L3. Parts of these families were originally computed by Moulton

in 1920. [20] In 1965, Hénon published a paper, in two parts, in which he provides

a new method to numerically compute simply periodic orbits near the collinear li-

bration points in the restricted three-body problem. In total, six different classes of

orbits are presented and, more importantly, their stability is assessed. [21] [22] By

1967, Bray and Goudas had numerically explored out-of-plane perturbations of three-

dimensional periodic orbits near the collinear libration points. [23] Also searching for

three-dimensional motion, in 1973, Farquhar and Kamel obtained third-order approx-

imations for quasi-periodic motion about the translunar point in the Earth-Moon

system, that is, L2. They also predicted and computed ‘halo’ orbits in the vicinity of

this libration point. [24] Approximations, truncated to fourth-order, for quasi-periodic
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motion about libration points L1 and L2 in the Sun-Earth system were developed by

Richardson and Cary in 1975. [25] Their analysis was accomplished in the Sun-Earth

elliptic restricted problem and incorporated Lunar perturbations. In more theoretical

studies, Hénon studied and computed plane periodic orbits with out-of-plane pertur-

bations and published the results in 1973. He also defined a vertical stability index,

av, that characterized a stable orbit when |av| < 1. Additionally, he determined a

critical vertical orbit that possesses a vertical stability index |av| = 1. [26] Hénon’s

work was later extended into a family of three-dimensional vertical periodic orbits by

Michalodimitrakis in 1978. [27] During April of 1979, Zagouras and Kazantzis pre-

sented several types of periodic orbits near the collinear libration points and included

an assessment of their stability; some are now familiar as stable L1 ‘halo’ orbits. [28]

Continuing the work of Farquar and Kamel, Breakwell and Brown extended the fam-

ilies of L2 ’halo’ orbits and computed an expanded family of L1 ‘halo’ orbits in the

Earth-Moon system. They also identified a narrow band of stable orbits in each fam-

ily. [29] Furthermore, in a paper published in 1984, Howell and Breakwell developed

and applied approximations for almost rectilinear ‘halo’ orbits near all three collinear

libration points. [30] Additionally, in a second paper published in the same volume of

Celestial Mechanics, Howell presented a thorough study on families of ‘halo’ orbits at

the collinear libration points, including orbit stability, for different values of the sys-

tem mass parameter. [31] Four years later, Howell and Pernicka developed a numerical

method to determine quasi-periodic motion near the collinear libration points, i.e.,

‘Lissajous’ trajectories. [32] More recently, in 1999, Howell and Campbell completed

an extensive study on families of periodic solutions in the Earth-Moon system and

their bifurcations to other families of periodic orbits. [33]

1.2.4 Transfer Trajectories

To incorporate periodic orbits about any of the libration points as options in the

trajectory design process to support space exploration, it is first required to transfer
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to the vicinity of the libration point. Hence, the topic of transfer trajectories nat-

urally arises. In 1974, D’Amario published results concerning transfer trajectories

between a parking orbit around a primary body and a libration point. Specifically,

D’Amario considered transfers from a lunar parking orbit to the Earth-Moon L2 libra-

tion point. [34] Since 1974, various studies have been completed on transfer trajecto-

ries to collinear libration points. [4] One of the first investigations to include transfer

trajectories to the triangular points was completed by Broucke in 1979. Broucke

detailed free-fall trajectories from libration points L1, L2, L4, and L5, to the Moon

in the planar CR3BP Earth-Moon system. [35] In 1990, Golan published optimal

low-thrust planar transfer trajectories from a low Earth parking orbit to libration

points L4 and L5 in the Earth-Moon system. More recently, in 2004, Matsumoto

and Kawaguchi completed a study of trajectories with multiple Jupiter flybys in the

Sun-Jupiter system for the purpose of Trojan asteroid exploration. [36]

1.3 Scope of Current Research

The focus of this work is the development of techniques for the numerical compu-

tation of two- and three-dimensional transfers between the libration points L2 and the

triangular points. To accomplish the objective, orbits near L2 and L4/L5 are com-

puted and their stability is analyzed. Also, transfers using the invariant manifolds

associated with L2 Lyapunov and L2 halo orbits are considered.

• Chapter 2: This chapter presents a general background of the CR3BP. The

differential equations of motion for the CR3BP are derived, and the correspond-

ing equilibrium solutions are identified. Also, linearized motion relative to the

equilibrium solutions is discussed. Basic differential corrections algorithms are

derived as well. Lastly, invariant manifold theory is briefly introduced.

• Chapter 3: Different aspects of the motion near the triangular points are of-

fered in Chapter 3. Linear, nonlinear, and perturbed trajectories are discussed.

This chapter includes procedures to determine periodic and quasi-periodic or-
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bits near L4/L5. Also, three-dimensional planar quasi-periodic motion near

the equilateral points is included. Additionally, some characterizing quantities

associated with orbits are introduced.

• Chapter 4: This chapter exposes some of the characteristics of two-dimensional

flow in the vicinity of the collinear point L2 as well as the equilateral points.

This flow is, then, employed to determine transfer trajectories between the two

regions. First, a procedure to determine transfer trajectories from L4 to an

L2 Lyapunov orbit is introduced. Then, a basic method to identify transfers

between L2 Lyapunov orbits and equilateral point orbits is presented. Some

sample two-dimensional transfer trajectories and their associated transfer costs

are discussed for each approach.

• Chapter 5: This chapter expands some of the two-dimensional concepts into

three-dimensional space. First, the three-dimensional flow near L2 and L4/L5

is explored. Then, this three-dimensional flow is utilized in a procedure to

determine three-dimensional transfer trajectories between L2 halo orbits and L4

quasi-periodic orbits. The effectiveness of the procedure is discussed in reference

to some sample three-dimensional transfer trajectories in various systems.

• Chapter 6: The main results and conclusions are summarized. Also, future

work and research interests are detailed.
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2. Background: The Circular Restricted

Three-Body Problem

The investigation of transfers to the equilateral libration points is based in the Circular

Restricted Three-Body Problem (CR3BP). This chapter details the derivation of the

equations of motion for the general three-body problem and the assumptions that

reduce it to the CR3BP. The calculation of equilibrium and periodic solutions as well

as invariant manifolds in the CR3BP, are the building blocks of trajectory design in

the multi-body regime. Furthermore, the position targeter, an invaluable tool to this

study, is also introduced.

2.1 The Circular Restricted Three-Body Problem

The derivation of the model in the CR3BP begins with the n-body problem.

Let there be n particles in the system. Each particle, Pi, possesses mass mi, where

i = 1, 2, ..., n. Let the position of Pi be described in terms of the position vector ~ri

with base point fixed in the inertial frame, I, and unit vectors X̂, Ŷ , Ẑ. Note that an

over bar “~ ” indicates a 3-element vector. Let ~rqi = ~ri − ~rq be the position vector

of Pi relative to Pq, as indicated in Figure 2.1. Each particle exerts a gravitational

force on all other particles. The force between Pi and Pq, represented via Newton’s

Law of Gravitation, is written

~fiq = −G̃
mimq

r3
qi

~rqi (2.1)

where G̃ is the dimensional universal gravitational constant. Thus, the total force on

Pi is such that

~Fi = −G̃
n∑

j=1
j 6=i

mimj

r3
ji

~rji (2.2)
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Figure 2.1. Particles in the n-Body System

From Newton’s second law of motion, the motion of Pi can be described by the

following differential equation

~ri
′′ = −G̃

n∑
j=1
j 6=i

mj

r3
ji

~rji (2.3)

where prime indicates a vector derivative with respect to dimensional time. The

rates of change are observed relative to an inertial frame. Although the notation is

arbitrary, P3 will designate the body of interest in the problem. Then, P1 and P2 are

natural bodies such as planets and/or moons, and are denoted as the primaries. For

n = 3, equation (2.3) for the motion of P3 reduces to

~r3
′′ = −G̃

m1

r3
13

~r13 − G̃
m2

r3
23

~r23 (2.4)

where P3 appears in Figure 2.2.
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Figure 2.2. Three Particles in the Inertial Frame

The general three-body-problem requires a mathematical model that includes

equation (2.4) but also differential equations that govern ~r1 and ~r2. Hence, to solve

for all position vectors simultaneously requires 18 integrals of the motion. However,

only 10 integrals of the motion are available. Thus, a closed-form solution does not

exist. To define a problem that is more tractable, two critical assumptions, beyond

those of the general three-body problem, are enforced. The first assumption is that

the mass of P3 is infinitesimal relative to that of P1 and P2, i.e., m3 << m1, m2. If

m3 is infinitesimal, P3 does not influence the motion of P1 or P2. Consequently, the

motion of P1 and P2 can be modeled in terms of the relative two-body problem, where

P1 is the larger primary and P2 is the smaller one. Finally, the second assumption is

that the two-body conic solution for the motion of the two primaries is a circle. The

general three-body problem is, thus, reduced to the Circular Restricted Three-Body
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Problem (CR3BP). Given these assumptions, the system’s center of mass, that is, the

barycenter B, is located along the line connecting the two primaries, as is apparent

in Figure 2.2. Consistent with the two-body problem, linear momentum is constant

and the barycenter can be considered inertially fixed. Thus, the origin of the inertial

frame can be moved to B. In this frame, the positions of P1, P2, and P3 are defined

by the vectors ~D1, ~D2, and ~P , respectively, with the corresponding magnitudes D1,

D2, and P . The position of P3 relative to P1 is ~D and the location of P3 relative

to P2 is ~R. Furthermore, let there be a rotating frame R, defined in terms of the

unit vectors x̂, ŷ, ẑ. Note that x̂ is parallel to ~D2, as is apparent in Figure 2.3, and

X̂ × Ŷ = Ẑ = ẑ = x̂ × ŷ. The rotating frame R is centered at B and rotates with

the primaries at a frequency I~ωR = θ′Ẑ = θ′ẑ. For the special case of circular orbits,

θ′ is a constant such that θ′ = N . With the new definitions, the equations of motion

Figure 2.3. Inertial and Rotating Frames
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for P3 can be rewritten such that

~P ′′ = −G̃
m1

D3
~D − G̃

m2

R3
~R (2.5)

Scalar equations of motion require a kinematic expansion for the acceleration, ~P ′′.

For a problem formulation in terms of the rotating frame, let the position vector ~P

be defined in terms of the following scalar components

~P = xdx̂ + ydŷ + zdẑ (2.6)

where xd, yd, and zd are dimensional quantities measured relative to the rotating

frame. Then, the second derivative of ~P with respect to an inertial observer, ~P ′′, is

written

~P ′′ =
(
x′′d − θ′′yd − 2θ′y′d − θ′2xd

)
x̂ +

(
y′′d + θ′′xd + 2θ′x′d − θ′2yd

)
ŷ (2.7)

+ (z′′d) ẑ

Because θ′ = N is a constant, θ′′ = 0. Thus, equation (2.7) reduces to the following

form

~P ′′ =
(
x′′d − 2Ny′d −N2xd

)
x̂ +

(
y′′d + 2Nx′d −N2yd

)
ŷ + (z′′d) ẑ (2.8)

Equation (2.8) can be substituted in equation (2.5).

Before expressing equation (2.5) completely in scalar form, it is convenient to

nondimensionalize the relevant quantities. Since ~D1 and ~D2 are parallel by definition,

the characteristic length, L∗, is defined such that

L∗ = D1 + D2 (2.9)

Then, the nondimensional vector quantities corresponding to ~D1, ~D2, ~R, and ~D are

~d1 =
~D1

L∗
, ~d2 =

~D2

L∗
, ~r =

~R
L∗

, and ~d =
~D

L∗
, respectively. The characteristic mass, M∗, is

obtained from the primary masses, that is

M∗ = m1 + m2 (2.10)
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Then, nondimensional primary masses are

µ =
m2

M∗ (2.11)

1− µ =
m1

M∗ (2.12)

The characteristic time, T ∗, is defined such that the nondimensional gravitational

constant, G = G̃
(

M∗T ∗2

L∗3

)
= 1. Thus, T ∗ is evaluated as

T ∗ =

√
L∗3

G̃M∗
(2.13)

and nondimensional time is defined as τ = t
T ∗

. Recall that dimensional mean motion

N = θ′. From the kinematic expression for two-body orbital angular momentum

θ′ =
h

r2
(2.14)

where h is also written

h =

√
G̃M∗ (1 + e cos θ) (2.15)

and r results from the conic equation

r =
a(1− e2)

1 + e cos θ
(2.16)

Thus, θ′ is rewritten

θ′ =

√
G̃M∗

[a(1− e2)]3
(1 + e cos θ)2 (2.17)

For circular orbits, e = 0 and a = L∗. Thus, the dimensional value of N becomes

N =

√
G̃M∗

L∗3 (2.18)

and exploiting the characteristic time, T ∗, the nondimensional mean motion is then

evaluated as

n = NT ∗ = 1 (2.19)



17

Given these characteristic quantities, the differential equations are nondimensional-

ized in a straightforward manner.

Nondimensionalization of the equations of motion allows the generalization of

the results across various systems. The nondimensional location of the infinitesimal

particle P3 is labeled as ~ρ such that
~P

L∗
= ~ρ = xx̂ + yŷ + zẑ, where x = xd

L∗
, y = yd

L∗
,

and z = zd

L∗
. The kinematic expansion in equation (2.8) evolves to the following

nondimensional form

~̈ρ = (ẍ− 2ẏ − x) x̂ + (ÿ + 2ẋ− y) ŷ + (z̈) ẑ (2.20)

where dot indicates a derivative with respect to nondimensional time. The nondi-

mensional form of the forces on the right-hand side of the vector differential equation

(2.5) then appears as follows

~̈ρ = − (1− µ)

(
1

d3

)
~d− (µ)

(
1

r3

)
~r (2.21)

where ~d and ~r are defined such that ~d = ~ρ − ~d1 and ~r = ~ρ − ~d2 as indicated in

Figure 2.4. Using the definition of the center of mass, ~d1 and ~d2 are written

~d1 = −µx̂ (2.22)

~d2 = (1− µ) x̂ (2.23)

Thus, the nondimensional position vectors locating P3 with respect to each of the

primaries, ~d and ~r, are expressed as follows

~d = (x + µ) x̂ + (y) ŷ + (z) ẑ (2.24)

~r = (x− (1− µ)) x̂ + (y) ŷ + (z) ẑ (2.25)

The resulting nondimensional set of scalar, second-order differential equations that

govern the motion in the CR3BP are

ẍ− 2ẏ − x = −(1− µ) (x + µ)

d3
− µ (x− (1− µ))

r3
(2.26)

ÿ + 2ẋ− y = −(1− µ) y

d3
− µy

r3
(2.27)

z̈ = −(1− µ) z

d3
− µz

r3
(2.28)
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Figure 2.4. Nondimensional Position Vectors in the Rotating Frame

where all time derivatives are with respect to nondimensional time, τ . A pseudo-

potential function can be defined such that

U =
1

2

(
x2 + y2

)
+

(1− µ)

d
+

µ

r
(2.29)

Then, equations (2.26) through (2.27) can be written as follows

ẍ− 2ẏ = Ux (2.30)

ÿ + 2ẋ = Uy (2.31)

z̈ = Uz (2.32)

where Ua = ∂U
∂a

. Furthermore, the differential equations (2.26)–(2.28) or (2.30)–(2.32)

admit a constant of integration. The Jacobi Constant, C, is related to the pseudo-

potential as follows

C = 2U −
(
ẋ2 + ẏ2 + ż2

)
(2.33)
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Among other things, the Jacobi Constant serves as a means to check the accuracy of

the numerical integration of the equations of motion.

2.2 Equilibrium Points

There are five known equilibrium solutions to the differential equations in (2.26)-

(2.28) or (2.30)-(2.32). These five points, that is, the libration or Lagrangian points,

are denoted as Li, where i = 1, 2, 3, 4, 5. Each Li is fixed relative to the rotating

frame. Define (xLi
, yLi

, zLi
) as the location of the ith libration point. As equilibrium

points, both velocity and acceleration (relative to the rotating frame) must be zero

at Li, i.e., ẋLi
= ẏLi

= żLi
= ẍLi

= ÿLi
= z̈Li

= 0. If these conditions are applied to

equations (2.26) through (2.28), the following relationships result

−xLi
= −(1− µ) (xLi

+ µ)

d3
Li

− µ (xLi
− (1− µ))

r3
Li

(2.34)

−yLi
= −(1− µ) yLi

d3
Li

− µyLi

r3
Li

(2.35)

0 = −(1− µ) zLi

d3
Li

− µzLi

r3
Li

(2.36)

where the notation ~dLi
and ~rLi

indicate the values for ~d and ~r when they are evaluated

at Li, that is

~dLi
= (xLi + µ) x̂ + yLi

ŷ + zLi
ẑ (2.37)

~rLi
= (xLi − (1− µ)) x̂ + yLi

ŷ + zLi
ẑ (2.38)

Solving for (xLi
, yLi

, zLi
) in equations (2.34) through (2.36) yields the five equilibrium

solutions. All five points lie in the x̂-ŷ plane, i.e., zLi
= 0. There are two solutions

located off the x̂-axis and these are denoted as the equilateral points. The name

stems from the fact that they lie at the vertex of an equilateral triangle that also

contains the two primaries as demonstrated in Figure 2.5. Their exact locations are(
1
2
− µ,

√
3

2
, 0

)
and

(
1
2
− µ,−

√
3

2
, 0

)
.

The relative positions of the remaining three equilibrium points also appear in

Figure 2.5. These three points are all located along the x̂-axis and, thus, are labeled
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Figure 2.5. Libration Points

the collinear points. For a given mass parameter µ, the position along the x̂-axis (in

nondimensional units) of the collinear libration points can be computed numerically.

Each curve in Figure 2.6 reflects the relationship between position along the x̂-axis

and mass ratio.

2.3 Linearization Relative to the Libration Points

To gain insight into the nature of the motion near the libration points, the system

can be linearized relative to the equilibrium solutions and the stability can be in-
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Figure 2.6. Relation between Position of Collinear Libration Points
along the x̂-Axis and the Mass Ratio, µ

vestigated via the variational equations. The specific developments employed in this

section closely follow the discussion in Szebehely [1].

The linearization of the equations of motion can be achieved by perturbing the

state from the equilibrium solution. Let x, y, and z be defined such that ξ, η, and ζ

represent position relative to the equilibrium point Li, that is

x = xLi
+ ξ (2.39)

y = yLi
+ η (2.40)

z = zLi
+ ζ (2.41)
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Of course, the first and second time derivatives of x, y, and z can easily be expressed

in terms of the variations ξ, η, and ζ as

ẋ = ξ̇ (2.42)

ẏ = η̇ (2.43)

ż = ζ̇ (2.44)

ẍ = ξ̈ (2.45)

ÿ = η̈ (2.46)

z̈ = ζ̈ (2.47)

When in the vicinity of the libration point, Ux, Uy, and Uz can be expanded via a

Taylor series about the equilibrium solution. If only the first-order terms are retained,

then Ux, Uy, and Uz are approximated as

Ux = Ux

∣∣
~XLi

+ Uxx

∣∣
~XLi

ξ + Uxy

∣∣
~XLi

η + Uxz

∣∣
~XLi

ζ (2.48)

Uy = Uy

∣∣
~XLi

+ Uyx

∣∣
~XLi

ξ + Uyy

∣∣
~XLi

η + Uyz

∣∣
~XLi

ζ (2.49)

Uz = Uz

∣∣
~XLi

+ Uzx

∣∣
~XLi

ξ + Uzy

∣∣
~XLi

η + Uzz

∣∣
~XLi

ζ (2.50)

where ~xLi
= (xLi

, yLi
, zLi

), Ua = ∂U
∂a

, and Uab = ∂2U
∂a∂b

. The second order partials are

evaluated from the following expressions

Uxx = 1− (1− µ)

d3
− µ

r3
+

3 (1− µ) (x + µ)2

d5
+

3µ (x− 1 + µ)2

r5
(2.51)

Uxy =
3 (1− µ) (x + µ) y

d5
+

3µ (x− 1 + µ) y

r5
= Uyx (2.52)

Uxz =
3 (1− µ) (x + µ) z

d5
+

3µ (x− 1 + µ) z

r5
= Uzx (2.53)

Uyy = 1− (1− µ)

d3
− µ

r3
+

3 (1− µ) y2

d5
+

3µy2

r5
(2.54)

Uyz =
3 (1− µ) yz

d5
+

3µyz

r5
= Uzy (2.55)

Uzz = −(1− µ)

d3
− µ

r3
+

3 (1− µ) z2

d5
+

3µz2

r5
(2.56)
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By definition, Ux

∣∣
~XLi

= Uy

∣∣
~XLi

= Uz

∣∣
~XLi

= 0. Also, since all Li are in the plane of the

primaries, Uxz = Uzx = Uyz = Uzy = 0. Thus, the linear equations of motion become

ξ̈ − 2η̇ = Uxx

∣∣
~XLi

ξ + Uxy

∣∣
~XLi

η (2.57)

η̈ + 2ξ̇ = Uyx

∣∣
~XLi

ξ + Uyy

∣∣
~XLi

η (2.58)

ζ̈ = Uzz

∣∣
~XLi

ζ (2.59)

Note that the linearized in-plane and out-of-plane motions are decoupled. Thus, they

can be examined separately.

The out-of-plane motion is governed by an ordinary differential equation, where

Uzz

∣∣
~XLi

< 0. Thus, the general form of the solution is known to be sinusoidal, that is

ζ = C1 cos (ντ) + C2 sin (ντ) (2.60)

where ν =

√∣∣∣Uzz

∣∣
~XLi

∣∣∣ is the out-of-plane frequency and C1 and C2 are constants to

be determined from the initial conditions.

The in-plane motion is dictated by a coupled system of linear ordinary differential

equations. Hence, the general form of the solution is

ξ =
4∑

j=1

Aje
λjτ (2.61)

η =
4∑

j=1

Bje
λjτ (2.62)

where λj are the in-plane frequencies and Aj and Bj are constants to be determined

from the initial conditions. However, Aj and Bj are not independent. If equations

(2.61)–(2.62) are substituted back into equation (2.57), a relationship between the

constants emerges

Bj =
λ2

j − Uxx

∣∣
~XLi

2λj

Aj (2.63)

The in-plane frequencies, λj, are the solutions to the following characteristic polyno-

mial

λ4 +
(
4− Uxx

∣∣
~XLi

− Uyy

∣∣
~XLi

)
λ2 + Uxx

∣∣
~XLi

Uyy

∣∣
~XLi

− Uxy

∣∣2
~XLi

= 0 (2.64)
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Furthermore, the specific nature of the linearized solutions will depend on the value

of µ and the specific libration point under examination.

2.3.1 Linearized Motion Relative to the Collinear Points

In addition to possessing a position in the plane of motion of the primaries, the

collinear libration points are also on the x̂-axis as defined in the rotating frame. A

location on the x̂-axis implies yLi
= 0 and, from equation (2.52), Uxy

∣∣
~XLi

= Uyx

∣∣
~XLi

=

0. Thus, equation (2.64) can be simplified to

λ4 +
(
4− Uxx

∣∣
~XLi

− Uyy

∣∣
~XLi

)
λ2 + Uxx

∣∣
~XLi

Uyy

∣∣
~XLi

= 0 (2.65)

Let κ1 and κ2
2 be defined as follows

κ1 = 2−
Uxx

∣∣
~XLi

+ Uyy

∣∣
~XLi

2
(2.66)

κ2
2 = −Uxx

∣∣
~XLi

Uyy

∣∣
~XLi

(2.67)

Then, the following expression can be obtained for λ2

λ2 = −κ1 ±
√

κ2
1 + κ2

2 (2.68)

At the collinear points, Uxx

∣∣
~XLi

> 0 and Uyy

∣∣
~XLi

< 0, so Uxx

∣∣
~XLi

Uyy

∣∣
~XLi

< 0 and

κ2
2 > 0. Thus, the in-plane frequencies are written in the following form

λ1,2 = ±
√
−κ1 +

√
κ2

1 + κ2
2 ∈ < (2.69)

λ3,4 = ±
√
−κ1 −

√
κ2

1 + κ2
2 ∈ = (2.70)

where < represents the set of all real numbers and λ3,4 are recognized as members of

the set of all purely imaginary numbers, that is, =. Note that any motion that excites

the in-plane frequencies λ1,2 is unstable and will not remain in the vicinity of the

libration point. However, initial conditions can be selected to ensure that the latter

is not the case. Recall that coefficients Aj and Bj are related by equation (2.63). The
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initial state variations are, of course, employed to evaluate the independent constants.

If equation (2.63) is incorporated, the initial variations are related to Aj as follows

ξ0 =
4∑

j=1

Aje
λjτ0 (2.71)

ξ̇0 =
4∑

j=1

λjAje
λjτ0 (2.72)

η0 =
4∑

j=1

λ2
j − Uxx

∣∣
~XLi

2λj

Aje
λjτ0 (2.73)

η̇0 =
4∑

j=1

λj

λ2
j − Uxx

∣∣
~XLi

2λj

Aje
λjτ0 (2.74)

Selecting only initial conditions such that A1 = A2 = 0, the unstable frequencies are

eliminated from the solution. To determine these initial states, first fix A1 = A2 = 0,

then specify an initial position (ξ0, η0), and finally, solve for the initial velocity (ξ̇0, ˙η0).

The resulting linear solution is

ξ = ξ0 cos (sτ) +
η0

κ3

sin (sτ) (2.75)

η = η0 cos (sτ)− κ3η0 sin (sτ) (2.76)

ζ = ζ0 cos (ντ) +
ζ̇0

ν
sin (ντ) (2.77)

where κ3 and s are defined as

κ3 =
s2 + Uxx

∣∣
~XLi

2s
(2.78)

s =

√
−κ1 −

√
κ2

1 + κ2
2 ∈ < (2.79)

The in-plane and out-plane frequencies ν and s are not commensurate. Therefore,

the linearized three-dimensional motion relative to the collinear libration points is not

periodic. However, the in-plane motion is periodic and serves as a good initial guess

in a search for periodic motion near the collinear points in the nonlinear system.
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2.3.2 Linearized Motion Relative to the Equilateral Points

For a given µ, the location of the equilateral points is precisely known. Thus, the

values of the partials associated with the pseudo-potential are easily evaluated

Uxx

∣∣
~XL4,5

=
3

4
(2.80)

Uyy

∣∣
~XL4,5

=
9

4
(2.81)

Uxy

∣∣
~XL4

=
3
√

3

2

(
µ− 1

2

)
(2.82)

Uxy

∣∣
~XL5

= −3
√

3

2

(
µ− 1

2

)
(2.83)

Uzz

∣∣
~XL4,5

= −1 (2.84)

Thus, ν = 1 in equation (2.60) that can be rewritten in terms of and the initial

conditions in the ζ̂-direction, ζ0 and ζ̇0 as

ζ = ζ0 cos (τ) + ζ̇0 sin (τ) (2.85)

Also, the in-plane frequencies at the equilateral points can be expressed as functions

of µ as follows

λ1,2 = ±

√
−1 +

√
1− 27µ + 27µ2

2
(2.86)

λ3,4 = ±

√
−1−

√
1− 27µ + 27µ2

2
(2.87)

Note that λ1,2 ∈ = and λ3,4 ∈ = for 0 ≤ µ ≤ 0.03852. Any system of interest to

be considered for application here possesses a µ value within this range. Thus, for

any three-body system in this study, all motion that originates near the equilateral

points will remain in their vicinity (at least, within the range of validity of the linear

assumptions). To simplify notation, let λ1,2 = ±s1i and λ3,4 = ±s2i, where s1 < s2.

Then, the general form of the solution for the in-plane motion in equations (2.61) and

(2.62) can be rewritten, after reduction, in the following form

ξ = α1 cos(s1τ) + α2 sin(s1τ) + α3 cos(s2τ) + α4 sin(s2τ) (2.88)

η = β1 cos(s1τ) + β2 sin(s1τ) + β3 cos(s2τ) + β4 sin(s2τ) (2.89)
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where αj and βj are coefficients to be determined from the initial conditions. The

coefficients αj and βj are related to Aj and Bj, that is,

α1 = A1 + A2 (2.90)

α2 = (A1 − A2)i (2.91)

α3 = A3 + A4 (2.92)

α4 = (A3 − A4)i (2.93)

β1 = B1 + B2 (2.94)

β2 = (B1 −B2)i (2.95)

β3 = B3 + B4 (2.96)

β4 = (B3 −B4)i (2.97)

But, like Aj and Bj, αj and βj are not independent. Thus, from equations (2.90)–(2.97)

and (2.63), a set of relationships between αj and βj can be derived

β1 = Γ1

(
2s1α2 − Uxy

∣∣
~XLi

α1

)
(2.98)

β2 = −Γ1

(
2s1α1 + Uxy

∣∣
~XLi

α2

)
(2.99)

β3 = Γ2

(
2s2α4 − Uxy

∣∣
~XLi

α3

)
(2.100)

β4 = −Γ2

(
2s2α3 + Uxy

∣∣
~XLi

α4

)
(2.101)

where Γ1 and Γ2 are such that

Γ1 =

 s2
1 + Uxx

∣∣
~XLi

4s2
1 + Uxy

∣∣2
~XLi

 (2.102)

Γ2 =

 s2
2 + Uxx

∣∣
~XLi

4s2
2 + Uxy

∣∣2
~XLi

 (2.103)

Note that the general solution exhibits short period, 2π
s1

, and long period, 2π
s2

, frequen-

cies that are not commensurate. Thus, the general solution is not periodic. However,

again, initial conditions can be selected such that one of the frequencies is elimi-

nated, making this specific solution periodic. The latter can be achieved by (i) fixing
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the value of all coefficients corresponding to one frequency to be equal to zero, (ii)

specifying any two initial conditions, and (iii) solving for the remaining two initial

conditions. For example, if ξ0 and η0 are specified and the values of the long period

coefficients are set equal to zero, then, α1 = α2 = 0. From equations (2.98) and

(2.99), it is also implied that β1 = β2 = 0. Then, ξ̇0 and η̇0 can be evaluated from

ξ̇0 =
1

2

(
Uxy

∣∣
~XLi

ξ0 +
η0

Γ2

)
(2.104)

η̇0 = −1

2

[(
s2
2 + Uxx

∣∣
~XLi

)
ξ0 + Uxy

∣∣
~XLi

η0

]
(2.105)

The resulting linearized short-period solution is

ξ = ξ0 cos(s2τ) +
ξ̇0

s2

sin(s2τ) (2.106)

η = η0 cos(s2τ) +
η̇0

s2

sin(s2τ) (2.107)

Similarly, the short period terms can be eliminated from the solution by setting

α3 = α4 = 0. From equations (2.100) and (2.101), it is also implied that β3 = β4 = 0.

Then, ξ̇0 and η̇0 can be evaluated from

ξ̇0 =
1

2

(
Uxy

∣∣
~XLi

ξ0 +
η0

Γ1

)
(2.108)

η̇0 = −1

2

[(
s2
1 + Uxx

∣∣
~XLi

)
ξ0 + Uxy

∣∣
~XLi

η0

]
(2.109)

The resulting linearized long-period solution is

ξ = ξ0 cos(s1τ) +
ξ̇0

s1

sin(s1τ) (2.110)

η = η0 cos(s1τ) +
η̇0

s1

sin(s1τ) (2.111)

This motion serves as a good starting point in a search for periodic motion in the

vicinity of the equilateral points in the nonlinear system.

2.4 State Transition Matrix

Given a set of initial conditions, a numerical integration process will propagate the

state forward in time. For various applications, the path may require modification,
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e.g., targeting, rendezvous, determination of periodic orbits, and guidance algorithms.

To adjust the path correctly and efficiently requires information available from the

State Transition Matrix (STM).

As previously derived, the linearized equations of motion can be obtained via a

first-order Taylor expansion relative to the reference solution. The reference solutions

considered thus far, i.e., the libration points, have been fixed in time with respect to

the rotating frame. However, if the reference solution is some nominal path, ~xn(τ) =[
xn(τ) yn(τ) zn(τ) ẋn(τ) ẏn(τ) żn(τ)

]T

, that varies with time, the variation

δ~x(τ) is defined as

δ~x(τ) = ~x(τ)− ~xn(τ) (2.112)

and the linear variational equations are

δẍ− 2δẏ = Uxx

∣∣
~xn(τ)

δx + Uxy

∣∣
~xn(τ)

δy + Uxz

∣∣
~xn(τ)

δz (2.113)

δÿ + 2δẋ = Uyx

∣∣
~xn(τ)

δx + Uyy

∣∣
~xn(τ)

δy + Uyz

∣∣
~xn(τ)

δz (2.114)

δz̈ = Uxz

∣∣
~xn(τ)

δx + Uyz

∣∣
~xn(τ)

δy + Uzz

∣∣
~xn(τ)

δz (2.115)

where variations are defined with respect to the nominal and the partials are evaluated

along the path. Equations (2.113)–(2.115) can be rewritten in matrix form as follows

δ~̇x(τ) = A(τ)δ~x(τ) (2.116)

where A(τ) is

A(τ) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Uxx

∣∣
~xn(τ)

Uxy

∣∣
~xn(τ)

Uxz

∣∣
~xn(τ)

0 2 0

Uyx

∣∣
~xn(τ)

Uyy

∣∣
~xn(τ)

Uzz

∣∣
~xn(τ)

−2 0 0

Uzx

∣∣
~xn(τ)

Uzy

∣∣
~xn(τ)

Uzz

∣∣
~xn(τ)

0 0 0


(2.117)

Since the variational equations are linear with time-varying coefficients, the general

solution to equation (2.116) is known to be

δ~x(τ) = Φ(τ, τ0)δ~x(τ0) (2.118)
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where δ~x(τ0) is the initial vector variation in the state with respect to the nominal.

Then, δ~x(τ) is the variation downstream from the initial state at some time τ > τ0.

The STM is represented as Φ(τ, τ0) and is defined as the matrix of partials

Φ(τ, τ0) =
∂~x(τ)

∂~x(τ0)
(2.119)

From equation (2.118), it is apparent that at time τ = τ0, δ~x(τ) = δ~x(τ0) and

Φ(τ0, τ0) = I (2.120)

If equation (2.118) is substituted into equation (2.116), the following system of dif-

ferential equations is obtained for the elements of Φ(τ, τ0)

Φ̇(τ, τ0) = A(τ)Φ(τ, τ0) (2.121)

Thus, the elements of the STM can be integrated numerically for all time, τ .

2.5 Position Targeter

The elements of the STM are useful in any differential corrections process. A

position targeter is a scheme that involves multiple shooting via differential corrections

to reach a specified position state. The position and velocity are combined in a six-

element state vector and denoted by ~x(τ). To identify a state that is located on the

reference or nominal path at some time τ , the notation is augmented, i.e., ~xn(τ).

Recall from equation (2.112) that the variation relative to the reference solution is

always δ~x(τ) = ~x(τ) − ~xn(τ). Suppose at some time τf , it is desired to be on the

nominal path. Then, a maneuver can be incorporated at some prior time τ0 to achieve

the required position. Determination of the required change in the initial state is the

essence of a position targeter.

The development of a position targeter originates with the definitions of the vari-

ation in the state. Let

δ~r(τ) =
[

δx(τ) δy(τ) δz(τ)
]T
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and

δ~v(τ) =
[

δẋ(τ) δẏ(τ) δż(τ)
]T

be the variations in position and velocity with respect to the nominal solution at time

τ , respectively. Assume an instantaneous change in velocity, but not in position, is

possible at time τ0, i.e., δ~r(τ0) = 0. From equation (2.118), it is apparent that δ~v(τ0)

is related to δ~r(τf ) by the elements of the STM as follows

δ~r(τf ) =


∂x(τ)
∂ẋ(τ0)

∂x(τ)
∂ẏ(τ0)

∂x(τ)
∂ż(τ0)

∂y(τ)
∂ẋ(τ0)

∂y(τ)
∂ẏ(τ0)

∂y(τ)
∂ż(τ0)

∂z(τ)
∂ẋ(τ0)

∂z(τ)
∂ẏ(τ0)

∂z(τ)
∂ż(τ0)

 δ~v(τ0) (2.122)

Since the goal is delivery to the “target” position at τf , the error in position that

exists if the initial state is propagated forward to τf is

~e = −δ~r(τf ) (2.123)

The change in the initial velocity, δ~v(τ0), that is necessary to eliminate ~e is computed

to be

δ~v(τ0) =


∂x(τf )

∂ẋ(τ0)

∂x(τf )

∂ẏ(τ0)

∂x(τf )

∂ż(τ0)

∂y(τf )

∂ẋ(τ0)

∂y(τf )

∂ẏ(τ0)

∂y(τf )

∂ż(τ0)

∂z(τf )

∂ẋ(τ0)

∂z(τf )

∂ẏ(τ0)

∂z(τf )

∂ż(τ0)


−1

~e (2.124)

Once δ~v(τ0) is applied to the original initial conditions, ~x(τ0), and the trajectory

is again propagated forward, the resulting error magnitude, |~e|, should be smaller.

However, because the STM is only a linear approximation of the sensitivities in the

nonlinear problem, an iterative procedure is required to reduce |~e| to approximately

zero (or, a value smaller than some specified tolerance ε). This algorithm is labeled

the fixed-time position targeter.

The time of flight, τf , can be incorporated as an additional control variable to

achieve the desired position. Thus, if time is also allowed to vary, equation (2.118)

can be augmented to include a variation in time of flight, δτf , as follows

δ~x(τf ) =
[

Φ(τf , τ0) ~̇x(τf )
]  δ~x(τ0)

δτf

 (2.125)
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Hence, equation (2.122) is also expanded to include time of flight variations

δ~r(τf ) =


∂x(τf )

∂ẋ(τ0)

∂x(τf )

∂ẏ(τ0)

∂x(τf )

∂ż(τ0)
ẋ(τf )

∂y(τf )

∂ẋ(τ0)

∂y(τf )

∂ẏ(τ0)

∂y(τf )

∂ż(τ0)
ẏ(τf )

∂z(τf )

∂ẋ(τ0)

∂z(τf )

∂ẏ(τ0)

∂z(τf )

∂ż(τ0)
ż(τf )


 δ~v(τ0)

δτf

 (2.126)

Then, a matrix expression for the changes in the initial velocity, δ~v0, and the time of

flight, δτf , that are required to eliminate ~e are

 δ~v(τ0)

δτf

 =


∂x(τf )

∂ẋ(τ0)

∂x(τf )

∂ẏ(τ0)

∂x(τf )

∂ż(τ0)
ẋ(τf )

∂y(τf )

∂ẋ(τ0)

∂y(τf )

∂ẏ(τ0)

∂y(τf )

∂ż(τ0)
ẏ(τf )

∂z(τf )

∂ẋ(τ0)

∂z(τf )

∂ẏ(τ0)

∂z(τf )

∂ż(τ0)
ż(τf )


+

~e (2.127)

where + denotes the Moore-Penrose generalized matrix inverse. Note that the Moore-

Penrose generalized matrix inverse provides the least-squares, or minimum norm so-

lution. Once δ~v(τ0) and δτf are applied to the initial conditions and the trajectory is

again numerically integrated, ~e should be of lesser magnitude than the previous step.

An iterative procedure will reduce the error, ~e, such that |~e| < ε. The algorithm that

incorporates a variation in τf is identified as a variable-time position targeter.

2.6 Periodic Solutions

The existence of periodic motion in the CR3BP is well-known. Within the context

of transfers between libration points, it is useful to identify periodic motion in their

vicinity. Hence, interest in potential methods to compute periodic orbits naturally

emerges. Algorithms that employ differential corrections schemes are frequently used

to determine periodic motion in the nonlinear system. Of course, it is required that

a reasonable initial guess for the state vector at τ0 be available to employ such a

method. Various types of families of periodic orbits have been successfully computed

in the CR3BP.
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2.6.1 Lyapunov Orbits

Different families of periodic orbits exist in the vicinity of the collinear libration

points. An example of planar periodic trajectories are the Lyapunov orbits. These

orbits lie in the rotating x̂-ŷ plane and possess symmetry with respect to the x̂-axis.

The Lyapunov orbits can be determined by exploiting the characteristics of periodic

trajectories. The mathematical features of a periodic solution are recognized via the

Mirror Theorem. Roy and Ovenden [37] include a discussion of the Mirror Theorem

as summarized in the following form:

Theorem 2.1 (The Mirror Theorem) If n-point masses are acted upon by their

mutual gravitational forces only, and at a certain epoch the radius vector from the

(assumed stationary) center of mass of the system is perpendicular to every velocity

vector, then the orbit of each mass after that epoch is a mirror image of its orbit prior

to that epoch.

Lyapunov orbits are an excellent example of periodic orbits that emerge from the

application of the Mirror Theorem.

The computation of a periodic orbit is based upon a close approximation of the

initial state. The Mirror Theorem yields a reasonable set of initial conditions. Assume

that the periodic orbit possesses an initial position on the x̂-axis. If the state is

propagated such that it departs the x̂-axis perpendicularly, a periodic orbit that

possesses symmetry with respect to the x̂-axis encounters a second perpendicular

crossing at a different point on the x̂-axis. If τP represents the period, the second

crossing occurs at a time τc, such that τc = 1
2
τP . Thus, the general form of the state

vectors on the periodic orbit at the first and second crossing are

~xn(τ0) =
[

xn(τ0) 0 0 0 ẏn(τ0) 0
]T

(2.128)

~xn(τc) =
[

xn(τc) 0 0 0 ẏn(τc) 0
]T

(2.129)

Although the form of the state vectors in equations (2.128) and (2.129) is available,

the specific values are not yet determined. Also, τP , and consequently τc, are not
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known initially. From a reasonable initial guess, however, a corrections process will

produce a periodic orbit. Assume an initial guess for ~xn(τ0) of the desirable form

~x(τ0) =
[

x(τ0) 0 0 0 ẏ(τ0) 0
]T

(2.130)

The values for x(τ0) and ẏ(τ0) can be generated in various ways. One option is a

linear solution for motion relative to the collinear points. Since the initial position on

the x̂-axis is arbitrary, x(τ0) = xn(τ0). If the state in equation (2.130) is propagated

until the next crossing of the x̂-axis, then the resulting state at τc is of the form

~x(τc) =
[

x(τc) 0 0 ẋ(τc) ẏ(τc) 0
]T

(2.131)

The goal of the differential corrections process is to adjust the initial estimate until

the conditions that define the periodic orbit are met. The state at τc is not a per-

pendicular crossing and the velocity at τ0 requires modification. However, recall that

the variation at time τ0 and τc, much like in equation (2.112), are defined as

δ~x(τ0) = ~x(τ0)− ~xn(τ0) (2.132)

δ~x(τc) = ~x(τc)− ~xn(τc) (2.133)

and are related via equation (2.125) such that

δ~x(τc) =
[

Φ(τc, τ0) ~̇x(τc)
]  δ~x(τ0)

δτc

 (2.134)

Thus, the differential corrections to the state that are required at τ0 and the propa-

gation time can be estimated from the error at τc. From the definition of δ~x(τ), and

by comparing states in equations (2.128) and (2.130), it is apparent that δx(τ0) =

δy(τ0) = δz(τ0) = ẋ(τ0) = ż(τ0) = 0. Similarly, by comparing the states in equations

(2.129) and (2.131), the following conditions also apply, that is, δy(τc) = δz(τc) =

δż(τc) = 0. Lastly, δẋ(τc) = ẋ(τc). However, to eliminate the x̂-component of velocity,

the desired variation in ẋ is δẋ(τc) = −ẋ(τc). Hence, the following relationship results

from the time dependent variational state equations for δy(τc) and δẋ(τc).
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 0

−ẋ(τc)

 =

 ∂y(τc)
∂ẏ(τ0)

ẏ(τc)

∂ẋ(τc)
∂ẏ(τ0)

ẍ(τc)

 δẏ(τ0)

δτc

 (2.135)

Equation (2.135) is inverted to yield the required change in velocity at τ0, that is,

δẏ(τ0), as well as the propagation time, δτc

δẏ(τ0) =
−ẋ(τc)[

∂ẋ(τc)
∂ẏ(τ0)

− ẍ(τc)
ẏ(τc)

∂y(τc)
∂ẏ(τ0)

] (2.136)

δτc = − 1

ẏ(τc)

∂y(τc)

∂ẏ(τ0)
δẏ(τ0) (2.137)

A new guess for the initial state corresponding to the periodic orbit is obtained

by applying the change in equation (2.136). The updated value for ẏ(τ0) is then

incorporated to propagate the nonlinear equations to the first crossing of the x̂-axis.

The propagation time required to reach the x̂-axis is the new τc. The error at τc, in

terms of ẋ(τc), should be smaller than in the previous step. However, an iterative

procedure is necessary to reduce the magnitude of δẋ(τc) such that |δẋ(τc)| < ε, where

ε is some specified tolerance. Once the magnitude of the error, |δẋ(τc)|, is within the

specified tolerance, the corrected initial state represents the Lyapunov orbit of period

2τc.

Once the initial state for this first Lyapunov orbit is obtained, it can be used to

acquire the rest of the family of Lyapunov orbits. Let the initial state representing

the first Lyapunov orbit in the family be denoted by ~xn1(τ0). Also, let ∆x(τ0) be some

fixed step in the x̂-direction. Then, a first guess for the initial state corresponding to

the next Lyapunov orbit in the family can be obtained by modifying the x̂-component

of ~xn1(τ0) by ∆x(τ0). Similarly, as with the first Lyapunov orbit, the differential

corrections process can be applied to obtain the correct initial state for this second

periodic Lyapunov orbit in the family. Moreover, this continuation process can be

employed to obtain the rest of the Lyapunov orbit family. Part of a planar family

of L2 Lyapunov orbits in the Earth-Moon system appears in Figure 2.7. The orbit

highlighted in red is the bifurcation orbit into a three-dimensional family of orbits
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known as the L2 halo orbit family. This orbit is shared by both families of periodic

orbits. [38] Furthermore, each Lyapunov orbit can be uniquely characterized by the

parameter Ay, that orbit’s maximum ŷ-excursion as measured from the x̂-axis.

Figure 2.7. Earth-Moon L2 Lyapunov Family of Planar Periodic Orbits

2.6.2 Halo Orbits

Halo orbits are another example of periodic motion in the vicinity of the collinear

libration points. These families of periodic orbits are three-dimensional. Halo orbits

possess symmetry across the x̂-ẑ plane. Employing the Mirror Theorem, differential
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corrections schemes can be designed to exploit the family’s specific symmetry to

determine this type of periodic motion.

To develop a suitable differential corrections scheme, conditions specific to the

halo family must first be defined. Assume that the periodic orbit possesses an initial

position on the x̂-ẑ plane. If the state is propagated such that it departs the plane

perpendicularly, then from the Mirror Theorem, the periodic orbit must encounter

a second perpendicular crossing at a different point on the plane at a time exactly

equal to one-half of the period, i.e., τc = 1
2
τP . Hence, the general form of the state

vectors corresponding to the first and second crossings are

~xn(τ0) =
[

xn(τ0) 0 zn(τ0) 0 ẏn(τ0) 0
]T

(2.138)

~xn(τc) =
[

xn(τf ) 0 zn(τf ) 0 ẏn(τf ) 0
]T

(2.139)

The initial guess for ~xn(τ0) is of the same form

~x(τ0) =
[

x(τ0) 0 z(τ0) 0 ẏ(τ0) 0
]T

(2.140)

Let ∆z(τ0) denote some fixed step in the ẑ-direction. To initiate the search for three-

dimensional halo orbits, begin with the planar orbit that signals the bifurcation with

the family of Lyapunov orbits. Then, x(τ0) and ẏ(τ0) equal the values corresponding

to the states of the bifurcation Lyapunov orbit and an out-of-plane component is

introduced, that is, z(τ0) = ∆z(τ0). If equation (2.140) is propagated until the next

x̂-ŷ plane crossing, the following state results

~x(τc) =
[

x(τc) 0 z(τc) ẋ(τc) ẏ(τc) ż(τc)
]T

(2.141)

Once again, the goal of the differential corrections scheme is to adjust the initial state

until the conditions at the second crossing are met. By comparing equations (2.139)

and (2.141), the required variations at τc are

δy(τc) = 0 (2.142)

δẋ(τc) = −ẋ(τc) (2.143)

δż(τc) = −ż(τc) (2.144)
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Similarly, by comparing equations (2.138) and (2.140), it is apparent that δy(τ0) =

δẋ(τ0) = δż(τ0) = 0. However, one more constraint is necessary to solve for δx(τ0),

δz(τ0), δẏ(τ0) and δτc. If z(τ0) is fixed, then δz(τ0) = 0. Hence, consistent with

equation (2.125),

δ~x(τc) =
[

Φ(τc, τ0) ~̇x(τc)
]  δ~x(τ0)

δτc

 (2.145)

and the relation between the states at τ0 and τc is
0

−ẋ(τc)

−ż(τc)

 =


∂y(τc)
∂x(τ0)

∂y(τc)
∂ẏ(τ0)

ẏ(τc)

∂ẋ(τc)
∂x(τ0)

∂ẋ(τc)
∂ẏ(τ0)

ẍ(τc)

∂ż(τc)
∂x(τ0)

∂ż(τc)
∂ẏ(τ0)

z̈(τc)




δx(τ0)

δẏ(τ0)

δτc

 (2.146)

Thus, the initial variations are
δx(τ0)

δẏ(τ0)

δτc

 =


∂y(τc)
∂x(τ0)

∂y(τc)
∂ẏ(τ0)

ẏ(τc)

∂ẋ(τc)
∂x(τ0)

∂ẋ(τc)
∂ẏ(τ0)

ẍ(τc)

∂ż(τc)
∂x(τ0)

∂ż(τc)
∂ẏ(τ0)

z̈(τc)


−1 

0

−ẋ(τc)

−ż(τc)

 (2.147)

Another option is to fix x(τ0), then δx(τ0) = 0, and the relation between the states

at τ0 and τc results in the following
0

−ẋ(τc)

−ż(τc)

 =


∂y(τc)
∂z(τ0)

∂y(τc)
∂ẏ(τ0)

ẏ(τc)

∂ẋ(τc)
∂z(τ0)

∂ẋ(τc)
∂ẏ(τ0)

ẍ(τc)

∂ż(τc)
∂z(τ0)

∂ż(τc)
∂ẏ(τ0)

z̈(τc)




δz(τ0)

δẏ(τ0)

δτc

 (2.148)

Finally, the initial variations are
δz(τ0)

δẏ(τ0)

δτc

 =


∂y(τc)
∂z(τ0)

∂y(τc)
∂ẏ(τ0)

ẏ(τc)

∂ẋ(τc)
∂z(τ0)

∂ẋ(τc)
∂ẏ(τ0)

ẍ(τc)

∂ż(τc)
∂z(τ0)

∂ż(τc)
∂ẏ(τ0)

z̈(τc)


−1 

0

−ẋ(τc)

−ż(τc)

 (2.149)

After adjusting the initial conditions and the propagation time using either equation

(2.147) or equation (2.149) to calculate the updates, a new guess for the initial state

of the halo orbit results. The propagation of this new guess to the next plane crossing
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yields smaller values for |ẋ(τc)| and |ż(τc)| than in the previous step. However, an

iterative procedure is required to reduce |ẋ(τc)| and |ż(τc)| below some specified toler-

ance, ε. Once |ẋ(τc)| < ε and |ż(τc)| < ε, the corresponding initial state is associated

with the halo orbit of period 2τc.

The next halo orbit in the family is obtained by repeating the differential correc-

tions process on a slightly different set of initial conditions. Let ∆xk(τ0) and ∆zk(τ0)

denote the differences in x and z positions between the k-th orbit in the halo orbit

family and the previous one. If |∆xk(τ0)| > |∆zk(τ0)|, fix x(τ0), and change the (k−1)-

th halo orbit initial conditions by ∆xk(τ0). These new initial conditions serve as an

initial guess for the next halo orbit in the family. Similarly, if |∆xk(τ0)| < |∆zk(τ0)|,

fix z(τ0), and change the (k − 1)-th halo orbit initial conditions by ∆zk(τ0). In the

Earth-Moon system, representative periodic orbits in the L2 halo family of orbits are

plotted in Figure 2.8. Furthermore, each three-dimensional halo orbit is characterized

by the parameter Az, the maximum ẑ-excursion as measured from the x̂-ŷ plane.

2.7 Invariant Manifold Theory

An understanding of invariant manifold theory is critical for trajectory design

in this regime. Manifolds offer a basis for the computation of transfers between

different regions in the CR3BP. Invariant manifolds associated with periodic orbits

are of particular interest. Therefore, relevant concepts about invariant manifolds for

fixed points are initially introduced. Maps are then used to relate fixed points to

periodic orbits. Finally, invariant manifolds for periodic orbits and the process for

their numerical computation is detailed.

2.7.1 Invariant Manifolds for Fixed Points

Investigation of nonlinear systems includes the determination of equilibrium points

and the linearization relative to such solutions whenever possible. Such a step usually
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Figure 2.8. Earth-Moon L2 Halo Family of Three-Dimensional Periodic Orbits

offers the first insight into the behavior of the system. Nonlinear systems possess other

properties as well.

Consider the following system of nonlinear differential equations

~̇x(τ) = ~f (~x(τ)) (2.150)

where ~x(τ) is an m-dimensional state vector. Recall that the system in equation

(2.150) can be linearized about some reference or nominal solution, ~xn(τ), such that

δ~̇x(τ) = A(τ)δ~x(τ) (2.151)

where A(τ) = D~f (~xn(τ)) is the Jacobian matrix of first partial derivatives of ~f ,

evaluated on the reference solution. If ~xn(τ) = ~xn is a fixed point, i.e., an equilibrium
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or stationary point of the system in equation (2.150), then, A(τ) = A is constant. In

the case of a constant A, the general solution to equation (2.151) is

δ~x(τ) = eA(τ−τ0)δ~x(τ0) (2.152)

Equation (2.152) can be written in the form

δ~x(τ) =
m∑

j=1

Cje
λj(τ−τ0)~vj (2.153)

where Cj are coefficients to be determined from the initial conditions; λ1, ..., λm are

the eigenvalues of A and ~u1, ..., ~um are the eigenvectors of A that span <m. [39] [40]

To gain insight into the behavior of the solution in equations (2.152) and (2.153),

it is necessary to examine the vector subspace(s) containing the solution at the initial

time, τ0. Let s eigenvalues possess a negative real part, u eigenvalues have a positive

real part and, then, c eigenvalues are purely imaginary, such that m = s + u + c.

Thus, <m can be decomposed into three vector subspaces:

(i) the stable subspace, Es = span {~v1, ..., ~vs}

(ii) the unstable subspace, Eu = span {~vs+1, ..., ~vs+u} (2.154)

(iii) the center subspace, Ec = span {~vs+u+1, ..., ~vs+u+c}

Note that equation (2.153) depends on the initial conditions, δ~x(τ0), that dictate

which Cj will be nonzero. Thus, δ~x(τ0) also specifies the vector subspace(s) that

define the solution at τ0. Since Es, Eu, and Ec are invariant, if δ~x(τ) is contained

in a vector subspace(s) at τ0, then, δ~x(τ) will remain in the same vector subspace(s)

as the system evolves. Thus, from equation (2.153), it is apparent that for any

δ~x(τ0) ∈ Es, δ~x(τ) → 0 as τ →∞, for any δ~x(τ0) ∈ Eu, δ~x(τ) → 0 as τ → −∞, and

for any δ~x(τ0) ∈ Ec, δ~x(τ) will remain in the vicinity of ~xn as τ → ±∞. [40]

The flow in the vicinity of the fixed point, ~xn, can be linked to the stable and

unstable invariant manifolds corresponding to that fixed point through the following

definition by Guckenheimer and Holmes [40]:
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Definition 2.1 The local stable and unstable manifolds of ~xn, W s
loc (~xn), and W u

loc (~xn),

are defined as follows

W s
loc (~xn) = {~x ∈ U |φτ (~x) → ~xn as τ →∞, and φτ (~x) ∈ U for all τ ≥ 0}

W u
loc (~xn) = {~x ∈ U |φτ (~x) → ~xn as τ → −∞, and φτ (~x) ∈ U for all τ ≤ 0}

where U is a neighborhood of ~xn and φτ (~x) is a mapping from <m to <m. The in-

variant manifolds, W s
loc (~xn) and W u

loc (~xn), are nonlinear analogues of the eigenvector

subspaces of the linear system, Es and Eu.

The following theorem, as stated by Guckenheimer and Holmes, is particularly useful

to relate the stable and unstable invariant manifolds to the stable and unstable vector

subspaces at the fixed point. [40]

Theorem 2.2 (Center Manifold Theorem for Flows) Let ~f be a Cr vector field

on <m vanishing at the origin
(

~f(~0) = ~0
)

and let A = D~f(~0). Divide the spectrum

of A into three parts, σs, σc, σu with

<(λ)


< 0 if λ ∈ σs,

= 0 if λ ∈ σc,

> 0 if λ ∈ σu.

Let the (generalized) eigenspaces of σs, σc, and σu be Es, Ec, and Eu, respectively.

Then there exist Cr stable and unstable invariant manifolds W u and W s tangent to Eu

and Es at 0 and a Cr−1 center manifold W c tangent to Ec at 0. The manifolds W u,

W s, and W c are all invariant for the flow of ~f . The stable and unstable manifolds

are unique, but W c need not be.

The invariant manifolds, W s and W u, mentioned in the Center Manifold Theorem for

Flows, are the global analogues to the local invariant manifolds, W s
loc and W u

loc. The

global invariant manifolds can be obtained by propagating points in W s
loc backwards

in time and by propagating points in W u
loc forwards in time. [40] A planar projection

of the stable and unstable manifolds at ~xn appears in Figure 2.9. For the example

in Figure 2.9, the stable and unstable eigenvector subspaces are each comprised of
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one eigenvector, i.e., Es = ~vs and Eu = ~vu. The invariant manifold branch W s+

corresponds to the propagation of ~vs and, W s− corresponds to the propagation of

−~vs. Similarly, W u+ corresponds to the propagation of ~vu and W u− corresponds to

the propagation of −~vu.

Figure 2.9. Stable and Unstable Manifolds of a Fixed Point

2.7.2 Maps

The techniques employed to study the behavior of the flow in the vicinity of an

equilibrium point are no longer useful when the reference solution is a function of time.

However, if the continuous-time system can be reduced to a discrete-time system via

a mapping, then the time-varying nominal solution can be reduced to a fixed point.

Congruously, methods similar to those previously presented for a stationary point
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can be developed to study the behavior of the flow in the vicinity of a time-varying

reference solution. A periodic orbit is an example of such a solution.

Let ~x∗n identify a fixed point. Consider the periodic orbit Γ and let it be a solution

to equation (2.150) through point ~x∗n and with period T . Let Σ be the (m − 1)-

dimensional hypersurface transversal to Γ at ~x∗n. Then, for any point ~x ∈ Σ sufficiently

close to ~x∗n, the solution to equation (2.150) through ~x, will intersect Σ again at point

P (~x), near ~x∗n. The mapping P : ~x → P (~x) is a first return or Poincaré map. [41] [42]

Furthermore, P is smooth and possesses a smooth inverse, i.e., it is diffeomorphic. [40]

Figure 2.10 illustrates the concept of a Poincaré map for a low-dimensional system.

Figure 2.10. Poincaré Map

A stroboscopic map is a special type of Poincaré map that samples the flow at

periodic intervals. When the reference is the periodic orbit, the sampling period is

that of the periodic orbit. This type of mapping effectively reduces Γ to the fixed
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point, ~x∗n ∈ Σ, since ~x∗ → P (~x∗) = ~x∗. Recall that equation (2.150) can be linearized

relative to the nominal solution, in this case Γ, to obtain equation (2.151); the general

solution to equation (2.151) is equation (2.118). Furthermore, equation (2.118) can

be rewritten for the discrete-time system with period T as follows

δ~x(τ0 + kT ) = Φ ( τ0 + kT, τ0 + (k − 1)T ) δ~x(τ0 + (k − 1)T ) (2.155)

where δ~x(τ0 +kT ) and δ~x(τ0 +(k−1)T ) are the perturbations from the periodic orbit

at the kth and (k− 1)th crossing of Σ. Note that the STM is the first derivative of P ,

i.e., Φ ( τ0 + kT, τ0 + (k − 1)T ) = DP . Using the STM for each crossing, equation

(2.155) can be rewritten in the following manner

δ~x(τ0 + kT ) =
k∏

j=1

Φ ( τ0 + (k − j + 1) T, τ0 + (k − j) T ) δ~x(τ0) (2.156)

where δ~x(τ0) is some initial perturbation with respect to Γ. Because the following

property is true for all integers k ≥ 2,

Φ ( τ0 + (k − 1) T, τ0 + (k − 2) T ) = Φ ( τ0 + kT, τ0 + (k − 1) T ) (2.157)

equation (2.156) reduces to

δ~x(τ0 + kT ) = Φ ( τ0 + T, τ0 )k δ~x(τ0) (2.158)

where Φ ( τ0 + T, τ0 ) is the STM for one period of Γ, termed the monodromy ma-

trix. If Φ(τ0 + T, τ0) possesses m distinct eigenvalues, λ1, ..., λm, with corresponding

eigenvectors, ~v1, ..., ~vm, then, equation (2.158) is expressed as

δ~x(τ0 + kT ) =
m∑

j=1

Cjλ
k
j~vj (2.159)

where Cj are coefficients determined from the initial perturbation, δ~x(τ0 + kT ). As

is apparent from equation (2.159), the magnitude of the eigenvalues |λj| will dictate

the expansion or contraction of the perturbation after k iterations of the map. If

|λj| > 1, |δ~x(τ0 + kT )| will expand as k →∞, if |λj| < 1, |δ~x(τ0 + kT )| will contract

as k →∞ and if |λj| = 1, |δ~x(τ0 + kT )| remain unchanged as k →∞. [42]



46

2.7.3 Invariant Manifolds Associated with Periodic Orbits

For a periodic orbit represented as a fixed point on a map, it is possible to define

the invariant stable and unstable manifolds associated with the periodic orbit using

the map. Once again, consider the periodic orbit Γ, represented by fixed point ~x∗ on

the hypersurface Σ, and the stroboscopic map P : ~x → P (~x). Parker and Chua [42]

give the following definitions for stable and unstable invariant manifolds of Γ at ~x∗:

Definition 2.2 The stable manifold of Γ, denoted by W s(Γ), is defined as the set of

all points ~x such that P k(~x) approaches Γ as k →∞.

Definition 2.3 The unstable manifold of Γ, denoted by W u(Γ), is defined as the set

of all points ~x such that P k(~x) approaches Γ as k → −∞.

Let DP = Φ ( τ0 + T, τ0 ) be evaluated as the monodromy matrix associated with

a periodic orbit of period T . The m matrix eigenvalues are computed where the

number of eigenvalues that can be identified such that |λj| < 1 is s, u eigenvalues

possess magnitudes |λj| > 1 and c eigenvalues are computed with unit magnitude

such that |λj| = 1, such that s + u + c = m. Then, the stable, unstable and center

vector subspaces associated with the monodromy matrix at ~x∗ are [40]

Es = span {~vj | |λs| < 1}

Eu = span {~vj | |λj| > 1} (2.160)

Ec = span {~vj | |λj| = 1}

Then, W s(Γ) and W u(Γ) are locally tangent to Es and Eu at ~x∗, respectively, and

have the same dimension as the associated vector subspace. [42] Furthermore, the

monodromy matrix possesses a very specific eigenstructure. Lyapunov’s theorem

states [43] [44]

Theorem 2.3 (Lyapunov’s Theorem) If λj is an eigenvalue of the monodromy

matrix, Φ ( τ0 + T, τ0 ), of a t-invariant system, then λ−1
j is also an eigenvalue of

Φ ( τ0 + T, τ0 ), with the same structure of elementary divisors.
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In the CR3BP, the second-order system possesses three degrees of freedom and, thus,

the monodromy matrix is defined in terms of six eigenvalues. Because Γ is a periodic

orbit, one pair of eigenvalues is always equal to one; let λ1 = λ2 = 1. If some λ3 ∈ <,

then there exists a λ4 ∈ < such that λ4 = 1
λ3

. Of course λ3 and λ4 then correspond

to the local stable and unstable modes. Also, if some λ5 is complex, then there exists

a complex conjugate λ6 = λ∗5. However, periodic solutions do not always include a

reciprocal pair of real eigenvalues, e.g., λ3 and λ4. Thus, periodic solutions are not

always associated with one-dimensional stable and unstable invariant manifolds.

Any family of periodic orbits in the CR3BP may include some members that

possess stable and unstable invariant manifolds and some that do not. Therefore, it

is of interest to identify those members that do possess stable and unstable manifolds

for potential transfers. A stability index, σ, can be defined that is associated with

each member in a family of periodic orbits to qualify its stability, that is

σ =
1

2
(|λs|+ |λu|) (2.161)

In equation (2.161), λs and λu are the real-valued reciprocal pair of eigenvalues,

where |λs| ≥ 1 and |λu| ≤ 1. If |σ| ≤ 1, then, the periodic orbit is considered to

possess marginal stability, i.e., the corresponding eigenvalues do not yield stable and

unstable invariant manifolds. Similarly, if |σ| > 1, then, the periodic orbit includes an

eigenvalue greater than one, i.e., associated stable and unstable invariant manifolds

can be computed. Furthermore, as the stability index increases in size, the faster the

manifolds approach or depart the orbit. [31] [38]

2.7.4 Computation of Invariant Manifolds

To use invariant manifolds for transfers, their computation is, of course, required.

Let the monodromy matrix associated with a periodic orbit include the eigenvalue

λu associated with eigenvector ~vu, such that |λu| > 1. The invariant manifolds as-

sociated with the periodic orbit Γ intersect at the fixed point ~x∗, that is, the point

that represents the orbit on hyperplane Σ. Thus, if ~x∗ is removed from W u(~x∗), two
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half-manifolds, W u+(~x∗) and W u−(~x∗), result. Note that, similar to an equilibrium

point, W u+(~x∗) and W u−(~x∗) diverge from ~x∗ along the directions ~vu and −~vu, re-

spectively. [42] [44] Let ~xW u+ ∈ W u+(~x∗) be a point on the half-manifold, and let

~W ⊂ W u+(~x∗) be the set of points on W u+(~x∗) between ~xW u+
and the first iterate of

the map, P (~xW u+
). Then,

W u+(~x∗) =
∞⋃

j=−∞

P j( ~W ) (2.162)

The set ~W can be determined by selecting some ~xW u+
that lies on ~vu and is close to

~x∗

~xW u+

= ~x∗ + α ~vu (2.163)

where α > 0. [42] Traditionally, the eigenvector ~vu is normalized in position, since

position is usually much larger than the velocity components. Thus, equation (2.163)

can be written such that

~xW u+

= ~x∗ +

(
d

v
(R)
u

)
~vu (2.164)

where v
(R)
u is the norm of the position components in the eigenvector ~vu and d > 0.

The displacement d is sufficiently small to avoid violating the linear approximation

but still large enough to allow the unstable manifold to actually depart the vicinity of

the periodic orbit within a reasonable time interval. For example, a typical value for

the Earth-Moon system is d ∼= 50 km. [44] Thus, the initial conditions from equation

(2.164) are numerically integrated forwards in time to obtain W u+(~x∗). Similarly,

initial conditions are obtained for W u−(~x∗), W s+(~x∗) and W s−(~x∗) as follows

~xW u±
= ~x∗ ± d

~vu

v
(R)
u

(2.165)

~xW s±
= ~x∗ ± d

~vu

v
(R)
s

(2.166)

Like ~xW u+
, ~xW u−

is integrated numerically forward in time to obtain W u−(~x∗). How-

ever, ~xW s+
and ~xW s−

are integrated backwards in time to obtain W s+(~x∗) and W s−(~x∗),

respectively. The planar projections of the stable and unstable manifolds for an L2

halo orbit in the Earth-Moon system appear in Figure 2.11.
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Figure 2.11. Planar Projection of Stable and Unstable Manifolds As-
sociated with an L2 Halo Orbit in the Earth-Moon System
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3. Background: Motion in the Vicinity of

the Triangular Points

The investigation of transfers to and from the triangular points is based on an under-

standing of the dynamical structure in their vicinity. From fundamental models in the

restricted three-body problem and the collinear points, focus now shifts specifically to

the equilateral points. Methods are developed to further explore analytical solutions,

numerically compute periodic solutions, and generate quasi-periodic motion near L4

and L5.

3.1 Linearized Motion Relative to L4 and L5

Linearization of the equations of motion relative to the equilateral points offers

an initial understanding of the behavior near L4 and L5. To derive the variational

equations relative to either of the triangular points, let the reference frame L be

defined by the unit vectors ξ̂, η̂ and ζ̂, where ξ̂ and η̂ appear in Figure 3.1, and ζ̂

completes the right-handed triad.

Analytical short- and long-period solutions to the linear system of equations are

derived by selecting specific initial conditions (see Chapter 2). As an example, con-

sider planar motion in the vicinity of the equilateral points in the Earth-Moon system,

that is, µ = 0.01215056494073513, L∗ = 384, 388.174 km, and T ∗ = 4.34227926404811

days. The sensitivity of the system requires a large number of significant digits for

reproducibility. The in-plane nondimensional frequencies associated with the system,
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Figure 3.1. Reference Frame L at the Equilateral Points

linearized relative to the equilateral points, i.e., λ1,2 = ±s1i and λ3,4 = ±s2i, are

computed from equations (2.86) and (2.87) as follows

λ1,2 = ±

√
−1 +

√
1− 27µ + 27µ2

2
= ±0.29820789544347032i (3.1)

λ3,4 = ±

√
−1−

√
1− 27µ + 27µ2

2
= ±0.95450094347526815i (3.2)

Frequencies λ1,2 are associated with long-period solutions to the linear system of

equations, while λ3,4 are associated with short-period solutions. The linear long

period in the Earth-Moon system is PLlin
= 91.491 days, and the linear short period is

PSlin
= 28.5839 days. Note that PSlin

is approximately one revolution of the primary
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system, while PLlin
is almost three revolutions of the primary system. Suppose an

initial position, relative to L4, is specified as ξ0 = 384.388174 km and η0 = ζ0 = 0 km.

Substitute ξ0 and η0 into equations (2.104) and (2.105), that is

ξ̇0 =
1

2

(
Uxy

∣∣
~XLi

ξ0 +
η0

Γ2

)
(3.3)

η̇0 = −1

2

[(
s2
2 + Uxx

∣∣
~XLi

)
ξ0 + Uxy

∣∣
~XLi

η0

]
(3.4)

where Γ2 is computed as per equation (2.102)

Γ2 =

 s2
2 + Uxx

∣∣
~XLi

4s2
2 + Uxy

∣∣2
~XLi

 (3.5)

Evaluate the partial derivatives of the pseudo-potential function at L4. Then, the

result yields the relative initial velocity for a short-period solution to the system of

equations linearized relative to L4. The initial state for this short-period solution is

listed in Table 3.1. Furthermore, substituting ξ0, η0, ξ̇0 and η̇0 into equations (2.106)

and (2.107)

ξ = ξ0 cos(s2τ) +
ξ̇0

s2

sin(s2τ) (3.6)

η = η0 cos(s2τ) +
η̇0

s2

sin(s2τ) (3.7)

generates the analytical representation of the short-period solution as a function of

nondimensional time, τ . The linear short-period solution relative to L4 is plotted in

Figure 3.2, where the angle, θ ~XL4
, is derived subsequently in this section.

The same initial position also belongs to a long-period analytical solution for the

linear system relative to L4. Substitute ξ0 and η0 into equations (2.108) and (2.109)

ξ̇0 =
1

2

(
Uxy

∣∣
~XLi

ξ0 +
η0

Γ1

)
(3.8)

η̇0 = −1

2

[(
s2
1 + Uxx

∣∣
~XLi

)
ξ0 + Uxy

∣∣
~XLi

η0

]
(3.9)

where Γ1 is computed as per equation (2.103),

Γ1 =

 s2
1 + Uxx

∣∣
~XLi

4s2
1 + Uxy

∣∣2
~XLi

 (3.10)
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Table 3.1 Initial State for a Short-Period Linear Solution Relative to
L4 in the Earth-Moon System

ξ0 384.388174 km

η0 0 km

ζ0 0 km

ξ̇0 6.493012243087153× 10−4 km/s

η̇0 −8.509362006775028× 10−4 km/s

ζ̇0 0 km/s

Again, evaluate the partial derivatives of the pseudo-potential function at L4. Then,

the resulting relative initial velocities associated with the analytical long-period so-

lution appear in Table 3.2. Substitute ξ0, η0, ξ̇0 and η̇0 into equations (2.110) and

(2.111)

ξ = ξ0 cos(s1τ) +
ξ̇0

s1

sin(s1τ) (3.11)

η = η0 cos(s1τ) +
η̇0

s1

sin(s1τ) (3.12)

to produce the linear analytical long-period solution over time. This long-period

motion is plotted for one period in Figure 3.2.

Table 3.2 Initial State for a Long-Period Linear Solution Relative to
L4 in the Earth-Moon System

ξ0 384.388174 km

η0 0 km

ζ0 0 km

ξ̇0 6.493012243087153× 10−4 km/s

η̇0 −4.297671260030953× 10−4 km/s

ζ̇0 0 km/s
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Figure 3.2. Short- and Long-Period Analytical Solutions to the Linear
Variational Equations Relative to L4 in the Earth-Moon System: ξ0 =
384.388174 km

The equations of motion can also be linearized relative to L5. Short- and long-

period analytical solutions to the appropriate linear system of equations is generated

using an approach similar to that employed for L4. First, specify an initial position

relative to L5, for example, ξ0 = 384.388174 km and η0 = ζ0 = 0 km. Then, the com-

plete initial state for the short-period solution is generated using equations (3.3)-(3.5)

with the result in Table 3.3. Of course, the partial derivatives of the pseudo-potential

function are evaluated at L5. Using this initial state, the analytical representation for

the short-period solution over time is written from equations (3.6)-(3.7). When plot-

ted for one period, the short-period linear analytical solution relative to L5 appears
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Table 3.3 Initial State for a Short-Period Linear Solution Relative to
L5 in the Earth-Moon System

ξ0 384.388174 km

η0 0 km

ζ0 0 km

ξ̇0 −6.4930122430871529× 10−4 km/s

η̇0 −8.5093620067750277× 10−4 km/s

ζ̇0 0 km

Table 3.4 Initial State for a Long-Period Linear Solution Relative to
L5 in the Earth-Moon System

ξ0 384.388174 km

η0 0 km

ζ0 0 km

ξ̇0 −6.4930122430871529× 10−4 km/s

η̇0 −4.2976712600309528× 10−4 km/s

ζ̇0 0 km

in Figure 3.3, where the angle, θ ~XL5
, is addressed later in this section. Similarly, the

initial state corresponding to the long-period solution is generated using the spec-

ified relative initial position and equations (3.8)-(3.10); the linear solution for the

long-period motion over time is written by substituting the initial state provided in

Table 3.4 into equations (3.11)-(3.12). The linear long-period solution relative to L5

is also plotted in Figure 3.3 for one period.

It is apparent, from Figures 3.2 and 3.3, that the linear short- and long-period so-

lutions in the vicinity of L4, and L5 are elliptical in shape, as proven by Szebehely. [1]

This fact is not surprising given the sinusoidal solutions in equations (3.6)-(3.7) and

(3.11)-(3.12). Some useful characteristics also stem from this derivation. Hence, con-
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Figure 3.3. Short- and Long-Period Analytical Solutions to the Linear
Variational Equations Relative to L5 in the Earth-Moon System: ξ0 =
384.388174 km

sider the analytical long-period solution from equations (3.11) and (3.12), expressed

in terms of unspecified coefficients α1, β1, α2 and β2

ξ = α1 cos (s1τ) + α2 sin (s1τ) (3.13)

η = β1 cos (s1τ) + β2 sin (s1τ) (3.14)

Multiplying equation (3.13) by β1, and equation (3.14) by −α1, then, adding yields

β1ξ − α1η = (α2β1 − α1β2) sin (s1τ) (3.15)
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Further, if equation (3.13) is multiplied by β2, and equation (3.14) is multiplied by

−α2, the addition of these two equations produces

β2ξ − α2η = (α1β2 − α2β1) cos (s1τ) (3.16)

After squaring equations (3.15) and (3.16), their addition results in the following

relationship(
β2

1 + β2
2

)
ξ − 2 (α1β1 + α2β2) ξη +

(
α2

1 + α2
2

)
η = (α2β1 − α1β2)

2 (3.17)

As derived previously, in Chapter 2, β1 and β2 are expressed in terms of α1 and α2

via equations (2.98) and (2.99). Thus, these expressions are used to substitute for β1

and β2 in equation (3.17). The following form is a result, i.e.

Γ2
1

(
4s2

1 + Uxy

∣∣2
~XLi

)
ξ2 + η2 + 2Γ1Uxy

∣∣
~XLi

ξη = 4s2
1Γ

2
1

(
α2

1 + α2
2

)
(3.18)

which is the equation for an ellipse since∣∣∣∣∣∣ Γ2
1

(
4s2

1 + Uxy

∣∣2
~XLi

)
Γ1Uxy

∣∣
~XLi

Γ1Uxy

∣∣
~XLi

1

∣∣∣∣∣∣ = 4s2
1Γ

2
1 > 0 (3.19)

Similarly, the linear short-period solution is also written in the general form for a

conic such that

Γ2
2

(
4s2

2 + Uxy

∣∣2
~XLi

)
ξ2 + η2 + 2Γ2Uxy

∣∣
~XLi

ξη = 4s2
2Γ

2
2

(
α2

3 + α2
4

)
(3.20)

The form in equation (3.20) is also the equation for an ellipse since∣∣∣∣∣∣ Γ2
2

(
4s2

2 + Uxy

∣∣2
~XLi

)
Γ2Uxy

∣∣
~XLi

Γ2Uxy

∣∣
~XLi

1

∣∣∣∣∣∣ = 4s2
2Γ

2
2 > 0 (3.21)

Given that the linear solutions are elliptical, it is apparent that the angles, θ ~XL4
and

θ ~XL5
in Figures 3.2 and 3.3 determine the orientation of the semi-major axis of each

ellipse as measured from ξ̂ in reference frame L, respectively. Using the coefficients

corresponding to the long- or short-period solutions in equation (3.18) or (3.20), the

following relationship is derived

tan
(
2θ ~XLi

)
=

2Γ1,2Uxy

∣∣
~XLi

Γ2
1,2

(
4s2

1,2 + Uxy

∣∣2
~XLi

)
− 1

(3.22)
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Thus, equation (3.22) is used to compute θ ~XL4
and θ ~XL5

. In the Earth-Moon system,

the semi-major axis of linear solutions in the vicinity of L4 possesses an orientation

angle of θ ~XL4
= −29.69296243300747 ◦, as indicated in Figure 3.2. The angle of

orientation of the semi-major axis of the linear solutions in the vicinity of L5 is

θ ~XL5
= 29.69296243300747 ◦, as marked in Figure 3.3.

3.2 Planar Quasi-Periodic Motion

The short- and long-period analytical solutions to the system of linearized varia-

tional equations relative to the equilateral points do not exist in the nonlinear system.

However, both types of solutions offer first approximations to the motion in the vicin-

ity of L4 and L5 in the nonlinear system. Propagation of the initial conditions that

correspond to the linear solution in the nonlinear equations of motion demonstrates

this fact. Recall that initial conditions representing the analytical solutions are de-

termined relative to the libration point. However, the nonlinear differential equations

are derived with respect to the system barycenter. Hence, given a set of initial condi-

tions in the linearized model, that is,
[

ξ0 η0 ζ0 ξ̇0 η̇0 ζ̇0

]T

, the corresponding

initial conditions in the nonlinear system are defined

x(τ0)

y(τ0)

z(τ0)

ẋ(τ0)

ẏ(τ0)

ż(τ0)


=



xLi
+ ξ0

yLi
+ η0

ζ0

ξ̇0

η̇0

ζ̇0


(3.23)

Propagating the initial conditions from Tables 3.1 and 3.2 with the nonlinear dif-

ferential equations yields the motion plotted in green in Figures 3.4(a) and 3.4(b),

respectively. The motion is propagated in the nonlinear system for ten periods of

the corresponding linear motion. Thus, for the initial conditions corresponding to

the short-period solution, the propagation interval equals 10PSlin
= 285.8389 days,
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and a ten-period interval originating from initial conditions computed from the long-

period solution is 10PLlin
= 914.9102 days. The linear solution is plotted in black, for

comparison. As is apparent in the figures, the propagated motion follows the linear

approximation very closely for the duration of the integration. The average time per

revolution as the nonlinear propagation evolves also remains close to the linear pe-

riod. The average time per revolution is 28.5831 days in Figure 3.4(a) and, 91.4893

days in Figure 3.4(b).

Motion near L4 is related to motion near L5 via the Mirror Theorem. [37] The

equations of motion that model the CR3BP are invariant under the following trans-

formation

x̃ = x (3.24)

ỹ = −y (3.25)

z̃ = z (3.26)

τ̃ = −τ (3.27)

where tilde indicates a transformed variable. Therefore, if

~x (τ) =
[

x(τ) y(τ) z(τ) dx
dτ

(τ) dy
dτ

(τ) dz
dτ

(τ)
]T

is a solution, then so is

~̃x (τ̃) =
[

x̃(τ̃) ỹ(τ̃) z̃(τ̃) dex
deτ (τ̃) dey

deτ (τ̃) dez
deτ (τ̃)

]T

where dex
deτ , dey

deτ , and dez
deτ are defined such that

dx̃

dτ̃
= −dx

dτ
(3.28)

dỹ

dτ̃
=

dy

dτ
(3.29)

dz̃

dτ̃
= −dz

dτ
(3.30)

The transformation in equations (3.24) through (3.30) represents a reflection across

the x̂-axis and exhibits the time invariance property that is characteristic of the
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equations of motion that define the CR3BP. Thus, motion in the vicinity of L5 can

be viewed as a reflection across the x̂-axis of the motion in the neighborhood of L4.

Consequently, the trajectories in Figures 3.4(a) and 3.4(b) can be reflected across the

x̂-axis, via equations (3.24)-(3.30), to yield the motion in the vicinity of L5. The

reflected trajectory arcs are plotted in green in Figures 3.4(c) and 3.4(d). Consistent

with the time transformation in equation (3.27), the initial conditions in Tables 3.3

and 3.4 are propagated backwards in time to yield the same motion that is seen in

Figures 3.4(c) and 3.4(d), respectively. As expected, the initial relative velocities

in Tables 3.3 and 3.4 reflect the transformation, via equations (3.28) and (3.29), of

the initial relative velocities in Tables 3.1 and 3.2. The corresponding short- and

long-period analytical solutions to the linear system appear in black in Figures 3.4(c)

and 3.4(d), for comparison. As expected, the propagated motion in Figures 3.4(c)

and 3.4(d) follows the linear solution very closely and, of course, the average time

per revolution is the same as the trajectory propagation in Figures 3.4(a) and 3.4(b),

respectively. Nonetheless, the linear solutions are a good approximation to the motion

in the nonlinear system only if the initial conditions are sufficiently close to the

equilateral points.

Consider a new example with initial conditions that are constructed further from

the libration point. Let the initial position relative to the libration point be specified

at ξ0 = 3, 843.8817 km and η0 = ζ0 = 0 km, a distance from L4/L5 that is one order of

magnitude larger. Then, the corresponding initial velocity components for the short-

and long-period solutions to the system variational equations, relative to each of the

equilateral points, can be computed using the previous approach and yield the values

listed in Table 3.5. The four sets of initial conditions in Table 3.5 all correspond

to planar motion, i.e., ζ̇0 = 0 km/s. The numerical propagation of the nonlinear

equations with the initial conditions corresponding to the linear short-period solution

near L4 and L5 appears in green in Figures 3.5(a) and 3.5(c), respectively. Once

again, the duration of each propagation is of 10PSlin
= 285.8389 days. Similarly, the

propagation of the initial conditions associated with the linear long-period solutions
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(a) (b)

(c) (d)

Figure 3.4. Numerical Propagation of Linear and Nonlinear Equa-
tions; Earth-Moon System: ξ0 = 384.388174 km

at L4 and L5 appears in green in Figures 3.5(b) and 3.5(d), respectively, where the

propagation interval is of 10PLlin
= 914.9102 days. The short- and long-period linear

solutions are also plotted in black, for comparison. As seen from the figures, an

increase of approximately 3,460 km in ξ0 is sufficient to visibly offset the nonlinear

propagation from the linear solutions. Correspondingly, the behavior observed in

the nonlinear system also influences the average time per revolution. This one is

somewhat smaller than the period of the analytical solutions. The average time per
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Table 3.5 Initial Velocities for Short- and Long-Period Linear So-
lutions Relative to L4 and L5 in the Earth-Moon System: ξ0 =
3, 843.8817 km

ξ̇0 η̇0

(km/s) (km/s)

Short-Period (L4) 6.493012243087154× 10−3 −8.5093620067750279× 10−3

Long-Period (L4) 6.493012243087154× 10−3 −4.2976712600309528× 10−3

Short-Period (L5) −6.493012243087154× 10−3 −8.5093620067750279× 10−3

Long-Period (L5) −6.493012243087154× 10−3 −4.2976712600309528× 10−3

revolution for the motion in Figures 3.5(a) and 3.5(c) is 28.576 days and 91.481 days

for the motion in figures 3.5(b) and 3.5(d).

As the initial state shifts away from the libration point, it is not surprising that

the linear approximation breaks down. Let the initial position be offset from the

triangular point by a larger distance, that is, ξ0 = 38, 438.8174 km. Then, Table 3.6

details the relative initial velocities corresponding to the short- and long-period ana-

lytical solutions to the system linearized relative to L4 and L5. Once again, the linear

solutions are plotted in black in Figure 3.6. The propagation in the nonlinear system

appears in green. As is evident from Figure 3.6, the linear approximation is no longer

an adequate representation of the motion in the nonlinear system. Correspondingly,

the average time per revolution continues to drift away from the periods computed for

the linear solutions. The average time per revolution for the motion in Figures 3.6(a)

and 3.6(c) is 28.5059 days and 91.8757 days for the motion in Figures 3.6(b) and

3.6(d). Note also that the orientation angle from equation (3.22) ceases to accurately

represent the orientation of the motion about the libration point; at this distance

the symmetry is lost. However, and perhaps more importantly, the nonlinear motion

remains bounded relative to the libration point.
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(a) (b)

(c) (d)

Figure 3.5. Numerical Propagation of the Linear and Nonlinear Equa-
tions; Earth-Moon Systems: ξ0 = 3, 843.8817 km

3.3 Numerically Determined Families of Periodic Orbits near the Equi-

lateral Points

In the close vicinity of the equilateral points, the evolution of the motion in the

nonlinear CR3BP can be approximated by the linear solutions. Of course, the linear

approximation breaks down as the distance from L4/L5 increases. Nonetheless, these

analytical approximations do serve as a good first guess to the periodic motion that

exists in the neighborhood of L4 and L5 in the nonlinear system. Two families of

planar periodic orbits are of particular interest: families that are based on initial
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Table 3.6 Initial Velocities for Short- and Long-Period Linear So-
lutions Relative to L4 and L5 in the Earth-Moon System: ξ0 =
38, 438.8174 km

ξ̇0 η̇0

(km/s) (km/s)

Short-Period (L4) 6.4930122430871526× 10−2 −8.5093620067750272× 10−2

Long-Period (L4) 6.4930122430871526× 10−2 −4.2976712600309525× 10−2

Short-Period (L5) −6.4930122430871526× 10−2 −8.5093620067750272× 10−2

Long-Period (L5) −6.4930122430871526× 10−2 −4.2976712600309525× 10−2

guesses that originate with the linear short- and long-period solutions in the vicinity

of L4 and L5. To distinguish the two families, they will be labeled as the “short-”

and “long-period planar periodic orbits” in the nonlinear system.

The nonlinear short- and long-period planar periodic orbits near L4 and L5 are

asymmetric. Thus, unlike the Lyapunov or halo families of periodic orbits near the

collinear points in the CR3BP, there are no symmetry properties to exploit in a

differential corrections algorithm. Consequently, a modified corrections scheme in

conjunction with a continuation procedure is used to identify L4/L5 short-period and

long-period planar periodic orbits in the nonlinear system. The process described

below was first published by Markellos and Halioulias in 1977 [45].

The development of the corrections scheme follows Grebow [38]. Grebow has

recently updated the corrections process. [46] For this planar application, the form of

the initial guess is

~x(τ0) =
[

x(τ0) y(τ0) 0 ẋ(τ0) ẏ(τ0) 0
]T

(3.31)

where x(τ0), y(τ0), ẋ(τ0), and ẏ(τ0) are available from the linear solutions relative to

the equilateral points. For a given set of initial conditions, assume that the value of

the position variable y is fixed throughout the corrections and continuation processes.

For planar periodic orbits near L4, y(τ0) = yL4 , and y(τ0) = yL5 for planar periodic
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(a) (b)

(c) (d)

Figure 3.6. Numerical Propagation of the Linear and Nonlinear Equa-
tions; Earth-Moon System: ξ0 = 38, 438.8174 km

orbits in the vicinity of L5. As a result, all orbits within the family are identified

by the same value y(τ0). Given a particular value of y(τ0), the corrections process is

derived from the following mappings that define the periodic orbit

x(τf ) = F
(

x(τ0) + δx(τ0), ẋ(τ0) + δẋ(τ0), ẏ(τ0) + δẏ(τ0)
)

= x(τ0) + δx(τ0) (3.32)

ẋ(τf ) = G
(

x(τ0) + δx(τ0), ẋ(τ0) + δẋ(τ0), ẏ(τ0) + δẏ(τ0)
)

= ẋ(τ0) + δẋ(τ0) (3.33)
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The first-order Taylor series expansion for the mappings relative to the periodic orbit

are such that

F
(

x(τf ), ẋ(τf )
)

= x(τ0) + δx(τ0)

= F
(

x(τ0), ẋ(τ0)
)

+
∂F

∂x(τ0)
δx(τ0)

+
∂F

∂ẋ(τ0)
δẋ(τ0) (3.34)

G
(

x(τf ), ẋ(τf )
)

= ẋ(τ0) + δẋ(τ0)

= G
(

x(τ0), ẋ(τ0)
)

+
∂G

∂x(τ0)
δx(τ0)

+
∂G

∂ẋ(τ0)
δẋ(τ0) (3.35)

When rewritten in matrix form, equations (3.34) and (3.35) yield the following matrix

equation  δx(τf )

δẋ(τf )

 =

 ∂F
∂x(τ0)

− 1 ∂F
∂ẋ(τ0)

∂G
∂x(τ0)

∂G
∂ẋ(τ0)

− 1

 δx(τ0)

δẋ(τ0)

 (3.36)

where the partial derivatives with respect to the state variables are derived from

equation (2.125)

δ~x(τf ) =
[

Φ(τf , τ0) ~̇x(τf )
]  δ~x(τ0)

δτf

 (3.37)

such that

∂F

∂x(τ0)
=

δx(τf )

δx(τ0)
=

∂x(τf )

∂x(τ0)
− ∂y(τf )

∂x(τ0)

ẋ(τf )

ẏ(τf )
(3.38)

∂F

∂ẋ(τ0)
=

δx(τf )

δẋ(τ0)
=

∂x(τf )

∂ẋ(τ0)
− ∂y(τf )

∂ẋ(τ0)

ẋ(τf )

ẏ(τf )
(3.39)

∂F

∂ẏ(τ0)
=

δx(τf )

δẏ(τ0)
=

∂x(τf )

∂ẏ(τ0)
− ∂y(τf )

∂ẏ(τ0)

ẋ(τf )

ẏ(τf )
(3.40)

∂G

∂x(τ0)
=

δẋ(τf )

δx(τ0)
=

∂ẋ(τf )

∂x(τ0)
− ∂y(τf )

∂x(τ0)

ẍ(τf )

ẏ(τf )
(3.41)

∂G

∂ẋ(τ0)
=

δẋ(τf )

δẋ(τ0)
=

∂ẋ(τf )

∂ẋ(τ0)
− ∂y(τf )

∂ẋ(τ0)

ẍ(τf )

ẏ(τf )
(3.42)

∂G

∂ẏ(τ0)
=

δẋ(τf )

δẏ(τ0)
=

∂ẋ(τf )

∂ẏ(τ0)
− ∂y(τf )

∂ẏ(τ0)

ẍ(τf )

ẏ(τf )
(3.43)
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Thus, the necessary corrections in the initial conditions are obtained by solving for

the initial variations from equation (3.36) δx(τ0)

δẋ(τ0)

 =

 ∂F
∂x(τ0)

− 1 ∂F
∂ẋ(τ0)

∂G
∂x(τ0)

∂G
∂ẋ(τ0)

− 1

−1  δx(τf )

δẋ(τf )

 (3.44)

Once the initial conditions are updated with the corrections in equation (3.44), the

propagated trajectory should be closer to a periodic orbit. However, an iterative

procedure is required to reduce δx(τf ) and δẋ(τf ) to a value within some specified

tolerance, ε = 10−12. Once the periodic orbit is determined, the orbit is associated

with the differentially corrected set of initial conditions and a period τf . This initial

periodic orbit serves as the basis for the computation of an entire family.

For the computation of an entire family of periodic orbits, a continuation process

is necessary. Let the set of differentially corrected initial conditions that define a

periodic orbit be denoted as ~xn(τ0). Then, the initial guess for the next periodic orbit

in the family is denoted ~xn(τ0) + ∆~xn(τ0) such that

∆~xn(τ0) =
[

∆xn(τ0) 0 0 ∆ẋn(τ0) ∆ẏn(τ0) 0
]T

(3.45)

The components of ∆~xn(τ0) satisfy the following system of equations

∆xn(τ0) =
∂F

∂x(τ0)
∆xn(τ0) +

∂F

∂ẋ(τ0)
∆ẋn(τ0) +

∂F

∂ẏ(τ0)
∆ẏn(τ0) (3.46)

∆ẋn(τ0) =
∂G

∂x(τ0)
∆xn(τ0) +

∂G

∂ẋ(τ0)
∆ẋn(τ0) +

∂G

∂ẏ(τ0)
∆ẏn(τ0) (3.47)

S2 = [∆xn(τ0)]
2 + [∆ẋn(τ0)]

2 + [∆ẏn(τ0)]
2 (3.48)

where S is some fixed step between members of the asymmetric periodic orbit family.

The initial estimates for the elements in the update vector ∆~xn(τ0) in equation (3.45)

are evaluated by rearranging equations (3.46)-(3.48) such that

∆xn(τ0) = Sνη (3.49)

∆ẋn(τ0) = Sνξ (3.50)

∆ẏn(τ0) = Sν (3.51)
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where η, ξ and ν are specified as follows

η =

∂F
∂ẏ(τ0)

(
1− ∂G

∂y(τ0)

)
+ ∂F

∂y(τ0)
∂G

∂ẏ(τ0)(
∂F

∂x(τ0)
− 1

) (
∂G

∂y(τ0)
− 1

)
− ∂F

∂y(τ0)
∂G

∂x(τ0)

(3.52)

ξ =

∂G
∂ẏ(τ0)

(
1− ∂F

∂x(τ0)

)
+ ∂F

∂ẏ(τ0)
∂G

∂x(τ0)(
∂F

∂x(τ0)
− 1

) (
∂G

∂y(τ0)
− 1

)
− ∂F

∂y(τ0)
∂G

∂x(τ0)

(3.53)

ν =
1√

1 + η2 + ξ2
(3.54)

To move along the family it is necessary to switch the sign of S every time an ex-

tremum of the family is encountered. An extremum of the family occurs when both

of the following conditions are true

∆xn(τ0)×∆xn−1(τ0) < 0 (3.55)

∆ẋn(τ0)×∆ẋn−1(τ0) < 0 (3.56)

Then, the sign of S must be switched to the opposite of the sign associated with

the previous periodic orbit in the family. Once the new initial guess is obtained,

the differential corrections procedure to compute the next periodic orbit is applied.

If S is sufficiently small, the process usually takes approximately three iterations to

converge onto a neighboring periodic solution.

The procedure that incorporates differential corrections and continuation is used

to numerically compute both short- and long-period planar periodic orbits in the

vicinity of L4 and L5 in the nonlinear system. If the initial guess in equation (3.31) is

sought from a short-period linear solution, then, the resulting family members belong

to the short-period planar periodic orbit family in the nonlinear system. However, a

long-period linear solution serves as the origin of the initial guess for the members of

the long-period planar periodic orbit family. A subset of an Earth-Moon, L4 short-

period planar periodic family of orbits in the nonlinear system appears in Figure 3.7.

Of course, any such family is actually continuous with an infinite number of orbits. A

subset of an Earth-Moon L5 planar periodic family of orbits, i.e., the reflection of Fig-

ure 3.7, is represented in Figure 3.8. These short-period orbits can be parametrized
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Figure 3.7. Family of Earth-Moon L4 Short-Period Planar Periodic
Orbits in the Nonlinear System

by their orbital period. The orbits highlighted in red in Figures 3.7 and 3.8 possess

an orbital period of 28.5824 days; the period of the blue orbits is 27.5887 days. Thus,

as the equilateral short-period planar periodic orbits extend further away from the

libration point, they possess increasingly shorter orbital periods. However, the orbital

period of all the short-period planar periodic orbits is close to the linear short-period,

PSlin
. Represented in Figures 3.9 and 3.10 are a subset of the families of L4 and L5

long-period planar periodic orbit families in the nonlinear system, respectively. These

long-period orbits can also be parametrized in terms of their orbital periods. The or-

bits in red in Figures 3.9 and 3.10 possess an orbital period of 91.5012 days and the
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Figure 3.8. Family of Earth-Moon L5 Short-Period Planar Periodic
Orbits in the Nonlinear System

orbits highlighted in blue are defined by an orbital period of 100.1419 days. Hence,

unlike the short-period orbits, the long-period orbits possess increasingly longer pe-

riods as they move further away from the libration point. Nevertheless, the orbital

period corresponding to each long-period planar periodic orbit is close to the linear

long period, PLlin
.

3.4 Three-Dimensional Quasi-Periodic Motion

The triangular points are linearly stable for certain values of µ, that is, the fre-

quencies in the system linearized relative to L4 and L5 are purely imaginary. This
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Figure 3.9. Family of Earth-Moon L4 Long-Period Planar Periodic
Orbits in the Nonlinear System

linearly stable range of the mass ratio is 0 ≤ µ ≤ 0.03852. Recall, from Section 3.2,

that the planar linear solution is a good approximation to the nonlinear motion when

the initial position is close to the equilateral libration point. The same phenomenon

occurs with motion in the out-of-plane ẑ-direction. Therefore, the analytical solutions

to the linear system are used to generate three-dimensional quasi-periodic motion in

the nonlinear system.

In the linear system, the motion in the ẑ-direction is independent from the mo-

tion in the plane. Therefore, the out-of-plane motion can be completely specified

independent of the motion in the plane. As an example, consider the following set of
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Figure 3.10. Family of Earth-Moon L5 Long-Period Planar Periodic
Orbits in the Nonlinear System

initial states, relative to L4, that correspond to the out-of-plane position and velocity

components. Based in the Earth-Moon system, the out-of-plane elements are

ζ0 = −8, 968.3911584601865 km (3.57)

ζ̇0 = −0.18584127053112459 km/s (3.58)

Substituting ζ0 and ζ̇0 into equation (2.85)

ζ = ζ0 cos (τ) + ζ̇0 sin (τ) (3.59)

yields the out-of-plane analytical solution to the system of linearized variational equa-

tions relative to L4. Since the in-plane and the out-of-plane motion are independent
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in the linear model, the out-of-plane analytical solution and any in-plane linear trajec-

tory can be superimposed. Let the out-of-plane motion be paired with a short-period

linear solution. The complete set of initial conditions is listed in Table 3.7. If the

Table 3.7 Initial States Relative to L4 for the Linear Solution in the
Earth-Moon System

ξ0 -13,465.730932733601 km

η0 0 km

ζ0 -8,968.3911584601865 km

ξ̇0 -0.022746057689162068 km/s

η̇0 0.029809652570752229 km/s

ζ̇0 -0.18584127053112459 km/s

initial conditions in Table 3.7 are propagated in the nonlinear system, the resulting

motion appears in green in Figure 3.11. The linear solution appears in black, for

comparison. Both the linear solution and the propagation in the nonlinear system

are plotted for 10PSlin
= 285.8244 days. Note that the motion propagated in the non-

linear system remains in the vicinity of L4 and relatively close to the linear solution

for the duration of the integration.

Planar periodic orbits in the nonlinear system can also be employed to produce

three-dimensional quasi-periodic motion near the equilateral points. Consider a short-

period planar periodic orbit in the vicinity of L4 that is numerically determined in

the nonlinear system using a differential corrections scheme, and possesses a period

of 28.5824 days. The following initial conditions correspond to the planar periodic

orbit

x0 = 174, 057.8225966288 km (3.60)

y0 = 332, 889.92359831306 km (3.61)

ẋ0 = −0.022934210413102143 km/s (3.62)

ẏ0 = 0.028617722524131896 km/s (3.63)
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Figure 3.11. Three-Dimensional Quasi-Periodic Motion; Linear and
Nonlinear Propagations in the Earth-Moon CR3BP

The planar periodic orbit appears in black in Figure 3.12, as a reference. Also,

consider the initial conditions in the ẑ-direction from equations (3.57) and (3.58).

Recall that these out-of-plane components correspond to the linear result

z0 = −8, 968.3911584601865 km (3.64)

ż0 = −0.18584127053112459 km/s (3.65)

Then, if the complete initial state vector in equations (3.60) through (3.65) are prop-

agated with the nonlinear differential equations for 10PSlin
= 285.8244 days, the re-

sulting motion is three-dimensional, quasi-periodic, and remains in the vicinity of L4

for the duration of the propagation. As is apparent from Figure 3.12, the propagated

motion is also bounded in the ẑ-direction.
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Figure 3.12. Short-Period Planar Periodic Orbit and Three-
Dimensional Quasi-Periodic Orbit Propagated Via the Nonlinear
Equations of Motion in the Earth-Moon System
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4. Planar Transfers

There are several aspects to the design of a transfer trajectory from the vicinity of

the Earth or the Earth-Moon collinear points to the region near the triangular points

L4 and L5. However, the flow in the vicinity of the Earth in the Earth-Moon system

does not generally evolve directly towards L4/L5, but rather, is directed to L2. In

fact, there is an extensive study completed by Gordon that details the use of invariant

manifolds associated with a periodic orbit near L2 to transfer from a circular parking

orbit around the Earth to L2 Lyapunov orbits and three-dimensional halo orbits via a

maneuver in the vicinity of the Moon. [47] The focus of this chapter is the exploration

of transfer trajectories from the vicinity of L2 to the neighborhood of the equilateral

points. Of course, trajectories in the vicinity of any libration point can be three-

dimensional. However, the initial analysis constrains all motion to the rotating plane

of the primaries. First, the planar flow in the vicinity of libration points L2, L4, and

L5 is discussed. Then, methods to exploit this flow to transfer between the libration

points of interest is detailed, and some sample transfer trajectories are summarized.

4.1 Flow Near the Libration Points and the Zero Velocity Surfaces

In seeking a transfer trajectory in the region between the libration points L2 and

L4/L5, some points along the libration point orbits are reasonably employed as arrival

and/or departure locations. Hence, if the transfer trajectory is restricted to the plane

of the primaries, then the L2 Lyapunov orbits and L4 or L5 short-period, planar

periodic orbits are selected.

To connect the motions about the two libration points, it is necessary to under-

stand the behavior of the nearby flow. The stability index for L2 Lyapunov orbits is

such that σ > 1, and the stability index for L4/L5 short-period planar periodic orbits
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in the nonlinear system is unity, that is, σ = 1. [38] Hence, there exist stable and

unstable manifolds associated with the L2 Lyapunov orbits, but none corresponding

to the L4/L5 short-period planar periodic solutions. By definition, the stable and

unstable manifolds associated with an L2 Lyapunov orbit asymptotically approach

and depart the orbit, respectively. Therefore, it is possible that a vehicle can reach

the vicinity of the L4/L5 short-period planar periodic trajectories via the stable or

unstable manifolds associated with some specified periodic L2 Lyapunov orbit. Thus,

the manifolds serve as the basis for a search to construct transfer arcs between L2 and

L4/L5 libration point orbits. Fortunately, many stable manifold trajectories that cor-

respond to the L2 Lyapunov orbits originate in the vicinity of the triangular points,

and many unstable manifold trajectories do, in fact, pass through the region near the

triangular points. However, depending on the value of the Jacobi Constant corre-

sponding to the selected L2 Lyapunov orbit, these manifold trajectories may or may

not actually reach L4 and L5.

Recall that for a given state vector, equation (2.33) yields the Jacobi Constant,

C, as a function of the pseudo-potential function, U , and the velocity relative to

the rotating frame, R. However, suppose that the Jacobi Constant is specified, and

instead, it is desired to locate all positions with zero velocity. In other words, the

roots of the following equation are to be determined, i.e.,

C = −
(
x2 + y2

)
+ 2

(1− µ)

d
+ 2

µ

r
(4.1)

The resulting surface is rendered in three-dimensional space. For each energy level, a

different surface emerges and is denoted as a Zero Velocity Surface (ZVS). A contour

of the surface in a given plane yields a curve, and is typically labeled a Zero Velocity

Curve (ZVC). The ZVSs generally define regions of two types. In one type, motion

is physically possible. However, at the given energy level, it is not possible to enter

the other “forbidden” region. The region where motion is physically impossible is

frequently identified as the region of exclusion.

Each libration point, Li, is associated with a certain value of the Jacobi Constant,

CLi
. The Jacobi Constant values for all libration points in the Earth-Moon system
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are summarized in Table 4.1. As is apparent from Table 4.1, the values for the

Table 4.1 Jacobi Constant Values for Libration Points in the Earth-Moon System

Li CLi

L1 3.18834092715227

L2 3.17216029783538

L3 3.01214713002392

L4/L5 2.98799707128764

Jacobi Constant at the libration points decrease from CL1 to CL4/CL5 such that

CL4 = CL5 < CL3 < CL2 < CL1 . Of course, for a given value of Jacobi Constant,

all solutions to equation (4.1) define the corresponding ZVS. The contour in the x̂-ŷ

plane is the associated ZVC.

Since libration points are equilibrium solutions, they also satisfy equation (4.1).

Hence, for a given value of Jacobi Constant, CLi
, the libration point Li will lie on

the corresponding ZVSs. For example, for the Jacobi Constant value defined for

L2 in the Earth-Moon system, CL2 , the ZVSs appear in Figure 4.1. Note that a

large sphere surrounds the Earth, a small sphere surrounds the Moon, and there is

a small open tunnel between the two spheres. The outer-most surface in the figure

is nearly cylindrical in shape and extends to ±∞ in the ẑ-direction. This large

cylindrical structure is deformed near the Moon but, nevertheless, is tangent to the

sphere surrounding the Moon as both geometric structures cross the x̂-ŷ plane at

L2. For this value of Jacobi Constant, the region of exclusion is defined between the

two inner spheres and the outer-most surface. Hence, a spacecraft possessing a state

vector that corresponds to this value of Jacobi Constant only navigates outside the

Earth-Moon system (beyond the outer-most surface), or around the Earth or Moon

(within the boundary of one or both of the spheres). Without a maneuver that alters

the velocity state and, thus, the Jacobi Constant value, the ZVSs constrain the motion

throughout any time evolution. As the Jacobi Constant value is decreased from CL2
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Figure 4.1. ZVSs Corresponding to CL2 in the Earth-Moon System

to a value C such that CL3 < C < CL2 , a gateway surrounding L2 opens. This

gateway connects the regions inside the spheres and beyond the outer-most surface,

allowing flow between these regions. If the Jacobi Constant value is decreased further,

to C = CL4 = CL5 , the corresponding ZVSs have a significantly different shape, as

is apparent in Figure 4.2. Once again, the top and bottom surfaces extend infinitely

in both the ±ẑ directions, respectively. It is particularly apparent in the three-

dimensional view, that both surfaces coincide at the triangular libration points. In

fact, these two points represent the only intersection of these ZVSs with the x̂-ŷ plane.

In this case, the region of exclusion is defined above the top and below the bottom

surfaces. Furthermore, for values of Jacobi Constant, C, such that C < CL4 = CL5 =

2.98799707128764, the ZVSs do not intersect the x̂-ŷ plane. Therefore, motion in this

plane is unconstrained for state vectors that produce C values such that C < CL4 , CL5 .

An L2 Lyapunov orbit and its associated manifolds exist at the Jacobi Constant

value corresponding to the orbit itself. Recall that each member in the L2 Lyapunov
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Figure 4.2. ZVSs Corresponding to CL4/CL5 in the Earth-Moon System

family is uniquely characterized by the parameter Ay that measures the orbit’s max-

imum excursion in the ŷ-direction from the x̂-axis. A subset of the L2 Lyapunov

family in the Earth-Moon system is plotted in Figure 2.7 in Chapter 2. Each orbit

in Figure 2.7 is associated with a different energy level and, thus, a Jacobi Constant

value, C. The relation between Ay and C can be appreciated in Figure 4.3. Lyapunov

orbits near L2 that are relatively small in terms of Ay possess manifolds that exist at

a Jacobi Constant value close to that of the collinear point L2 itself. For example,

consider an L2 Lyapunov orbit in the Earth-Moon system. Select an orbit such that

Ay = 12, 413.8668 km, that is, the periodic orbit identified by a black circle in Fig-

ure 4.3. This orbit and its corresponding manifolds possess a Jacobi Constant equal

to C = 3.16944646137693. This value of Jacobi Constant is such that CL4 = CL5 < C

and, therefore, the ZVSs intersect the x̂-ŷ plane. A contour of the ZVS on the x̂-ŷ

plane reveals the ZVCs that appear in black in Figure 4.4. A zoomed-in view of Fig-

ure 4.4 in Figure 4.5, unveils the behavior of the manifold trajectories in the vicinity
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Figure 4.3. Jacobi Constant for L2 Lyapunov Orbits in the Earth-Moon System

of the Moon. The half-manifolds W s+ and W u+ are not affected by the Moon, while

the tube shape of W s− and W u− is distorted by the lunar gravity. Returning to

the overview in Figure 4.4, it is apparent that the triangular points are inside the

region of exclusion. Thus, the manifold trajectories never approach any closer to L4

or L5 than the edge of the ZVCs. Fortunately, L2 Lyapunov orbits with larger Ay

correspond to a lower Jacobi Constant value, one closer to that of L4 and L5. For

lower Jacobi Constant values, the region of exclusion is much smaller in the x̂-ŷ-plane,

with a boundary that surrounds the triangular points. Therefore, lower values of Ja-

cobi Constant allow manifold trajectories to move closer to L4 and L5. For example,

consider the Earth-Moon L2 Lyapunov orbit, with an amplitude Ay = 124, 162.0746

km, highlighted by a black square in Figure 4.3. For clarity, the orbit and the cor-

responding unstable and stable manifolds appear separately in Figures 4.6 and 4.7,

respectively. This orbit and its corresponding manifolds possess a Jacobi Constant

value such that CL4 = CL5 < C = 2.98865305270083. Therefore, the corresponding
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Figure 4.4. Small Amplitude Earth-Moon L2 Lyapunov Orbit and
Associated Manifolds; Ay = 12, 413.8668 km

ZVSs intersect the x̂-ŷ-plane and are plotted in black in both figures. As is apparent

from the figures, the manifolds are not tube-shaped for this size L2 Lyapunov orbit.

However, notice how the manifolds approach and depart the vicinity of the equilateral

points, passing close to the libration points. Finally, consider the L2 Lyapunov orbit

marked by a black triangle in Figure 4.3. This L2 Lyapunov possesses an amplitude

Ay = 134, 740.1505 and Jacobi Constant value C = 2.97783965474087 < CL4 = CL5 .

Therefore, there exist no ZVCs in the x̂-ŷ plane. As is apparent from Figures 4.8

and 4.9, the manifolds can reach the triangular points given this energy level. In

summary, L2 Lyapunov orbits with large Ay and, thus, lower Jacobi Constant values,

are identified with manifolds that evolve to a vicinity closer to the triangular points

than orbits with small Ay. Consequently, these larger amplitude Ay L2 Lyapunov

orbits are a suitable starting point in the design of a transfer trajectory between the

vicinities near libration points L2 and L4.
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Figure 4.5. Zoom-In View Near the Vicinity of the Moon

4.2 Transfer Trajectories and Costs

The flow in the vicinity of the collinear point L2 as well as the equilateral points

is used to determine transfers between the two regions. Due to the existence of the

stable and unstable manifolds associated with the larger L2 Lyapunov orbits, i.e.,

those with high Ay (and low Jacobi Constant), these planar L2 orbits are suitable

for transfer into and out of the L2 vicinity. There are several L2 Lyapunov manifold

trajectories that flow toward and away from the triangular points. Therefore, they

can be employed in the design of a transfer trajectory. First, a scheme to transfer

from the libration point L4 to an L2 Lyapunov orbit using stable invariant manifolds

and position targeting is presented. Also, the use of the Moon’s gravity is assessed

in some sample transfers. Then, L2 Lyapunov manifold trajectories are employed to

transfer from an L2 Lyapunov orbit to an L4 planar periodic short-period orbit that
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Figure 4.6. Large Amplitude Earth-Moon L2 Lyapunov Orbit and the
Associated Unstable Manifold: ZVCs in the Plane

is determined numerically in the nonlinear system. The return trip is also considered.

Further sample transfers are also discussed.

4.2.1 Transfers Directly from the Libration Point L4 to an L2 Lyapunov

Orbit

To begin, first study transfers from the libration point L4 to the vicinity of L2.

The transfer design scheme consists of three steps. Departing from L4, (i) target

some point on an stable manifold trajectory associated with an L2 Lyapunov orbit;

(ii) add a maneuver to remain on the stable manifold trajectory; and (iii) coast along

the stable manifold trajectory and smoothly inserts onto an L2 Lyapunov orbit.

To determine a transfer, consider the schematic of the L2 Lyapunov orbit and

the associated stable manifold trajectory that appears in Figure 4.10. Recall, from

Chapter 2, that given an initial state and a desired final position, a variable-time
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Figure 4.7. Large Amplitude Earth-Moon L2 Lyapunov Orbit and the
Associated Stable Manifold: ZVCs in the Plane

position targeter will yield the necessary update in initial velocity and time of flight to

attain the desired final position. For this application, the initial state is the equilateral

point L4. The desired final position is some point along an L2 Lyapunov stable

manifold trajectory that will be denoted the jth Lyapunov Manifold Insertion (LMI)

point, as labeled in Figure 4.10. The necessary initial velocity at L4 to reach the

jth LMI point is represented by ~V j
0 . Since L4 is an equilibrium point, the necessary

change in initial velocity and the initial velocity at L4 are both ~V j
0 . Subsequent to a

departure from L4, the transfer evolves and intersects the stable manifold trajectory.

This first intersection point is denoted j = 1. Thus, after departing L4, the transfer

trajectory arrives at the jth LMI point with velocity T ~V j
LMI ; there is no expectation

that the arrival velocity will match the velocity on the manifold at that point, that is
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Figure 4.8. Large Amplitude Earth-Moon L2 Lyapunov Orbit and the
Associated Unstable Manifold: No ZVCs in the Plane

M ~V j
LMI . Thus, to remain on the stable manifold, it is necessary to adjust the arrival

velocity by ∆~V j
LMI , given by

∆~V j
LMI = M ~V j

LMI −
T ~V j

LMI (4.2)

Then, the stable manifold trajectory asymptotically approaches the L2 Lyapunov

orbit. The Lyapunov Orbit Insertion (LOI) point is identified in Figure 4.10. (Note

that the “insertion point” simply identifies the fixed point employed to compute

the stable manifold. No maneuver is required at LOI.) The insertion cost from the

transfer trajectory to the manifold is |∆~V j
LMI |. Thus, the total cost for the transfer

that appears in Figure 4.10 is calculated as

|∆~V |jtotal = |~V j
0 |+ |∆~V j

LMI | (4.3)

However, the jth LMI point is merely one of an infinite number of points that com-

prise the stable manifold trajectory in Figure 4.10. Without a priori information to
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Figure 4.9. Large Amplitude Earth-Moon L2 Lyapunov Orbit and the
Associated Stable Manifold: No ZVCs in the Plane

identify the particular jth LMI point that is associated with the lowest transfer cost,

a continuation process is required.

The continuation process is designed to yield a reasonably effective transfer into

the L2 Lyapunov orbit as represented in Figures 4.10 and 4.11. Nonetheless, as a

critical element in the procedure, the variable-time position targeter is more sensitive

to small changes in the initial conditions when either the initial or target position is

close to the second primary and, thus, the L2 Lyapunov orbit. Therefore, the 1st LMI

point is selected closer to L4 than other subsequent points along the stable manifold

trajectory, as demonstrated in Figure 4.11. The continuation process is initiated once

Transfer 1 is determined, and ~V 1
0 is identified. As is apparent from the conceptual

diagram in Figure 4.11, the 2nd LMI point is selected closer to the L2 Lyapunov orbit

than the 1st LMI point, the 3rd closer than the 2nd, and so on, until the LOI point.

In general, transfer j can be determined using a variable-time position targeter and
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Figure 4.10. Conceptual Diagram: Planar Transfer Trajectory from L4

~V j−1
0 as an initial guess for the initial velocity ~V j

0 , where j = 2, 3, .... Therefore, the

distance between LMI points is sufficiently close such that ~V j−1
0 is a suitable initial

guess for ~V j
0 . Once a transfer trajectory to each LMI point is determined, the transfer

with lowest cost is identified as Transfer n to the nth LMI point.

Consider a sample transfer. Suppose it is of interest to transfer from L4 in the

Earth-Moon system to the L2 Lyapunov orbit with an amplitude Ay = 100, 186.9343

km. This orbit appears (in black) in Figure 4.12. For a first transfer design, consider

the stable manifold trajectory that is plotted in cyan, and arrives at the LOI point

along the Lyapunov orbit, marked by a cyan star. Let the 1st and nth LMI points

be selected as they appear in Figure 4.12, specified by black stars. Then, Transfer 1

(plotted in dotted black) and Transfer n (plotted in solid black) are determined. The

green dots on each transfer in Figure 4.12 indicate the location of closest approach

to the Moon. This Lunar flyby is associated with an altitude at closest approach,
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Figure 4.11. Conceptual Diagram: Continuation Process

hj
CA. The value for hj

CA, and other quantities associated with Transfers 1 and n are

summarized in Table 4.2.

Table 4.2 Example 1: Transfers from L4 to an L2 Lyapunov Orbit
with Cislunar-Passage of the Moon

Transfer 1 n

|~V j
0 | [m/s] 61.5309 87.0064

|T ~V j
LMI | [m/s] 414.7306 656.0976

|M ~V j
LMI | [m/s] 362.9998 621.6489

|∆~V j
LMI | [m/s] 131.0331 42.3730

|∆~V |jtotal [m/s] 192.5640 129.3794

hj
CA [km] 6,227.8541 7,463.3090

τ j
CA [days] 21.5503 19.6715
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Figure 4.12. Example 1: Transfers from L4 to an L2 Lyapunov Orbit
with Cislunar-Passage of the Moon

A comparison of Transfers 1 and n yields useful insight. As is apparent from

Table 4.2, Transfer n possesses a larger departure cost, |~V j
0 |, than Transfer 1. But,

Transfer n also requires a lower insertion cost, |∆~V j
LMI |, and, therefore, a lower total

cost, |∆~V |jtotal, than Transfer 1. Also, as a fortunate consequence, a larger departure

cost for Transfer n incurs a shorter time of flight to the point of closest Lunar ap-

proach, τCA, as measured from departure at L4. Therefore, the continuation process

yields a transfer with a lower total cost and a shorter time of flight. Also notable,

while the difference between the direction of the vectors T ~V n
LMI and M ~V n

LMI con-
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tributes to the insertion cost along Transfer n, |∆~V n
LMI |, most of the cost stems from

the difference between the vector magnitudes, |T ~V n
LMI | and |M ~V n

LMI |.

For a second example, consider the same L2 Lyapunov orbit from Example 1 in

conjunction with a different stable manifold trajectory (plotted in cyan) that appears

in Figure 4.13. Since the stable manifold trajectory selected for Example 2 is different

from that selected for Example 1, the LOI corresponding to each trajectory is also

different. Once again, Transfer n appears plotted in black, the nth LMI point is

marked by a black star, a cyan star represents the LOI point, and the point of

closest Lunar approach is indicated by a green dot. Unlike in Example 1, the transfer

trajectory in Example 2 initially approaches the right side of the L2 orbit, i.e., the

side of the L2 Lyapunov orbit that is farthest from the Moon. Consequently, after

an elapsed time τn
CA, the time to reach closest Lunar approach, the trajectory has

already completed approximately half a revolution around L2. Therefore, a more

representative transfer time is measured from the departure at L4 to the first crossing

of the x̂-axis, τc. The transfer time, τc, and other relevant quantities associated

with this transfer are listed in Table 4.3. For comparison of Examples 1 and 2, the

quantities associated with Transfer n from Example 1 are included in Table 4.3.

Table 4.3 Example 2: Transfer from L4 to an L2 Lyapunov Orbit with
Translunar-Passage of the Moon

Transfer n Example 1 Example 2

|~V n
0 | [m/s] 87.0064 202.0346

|T ~V n
LMI | [m/s] 656.0976 347.1434

|M ~V n
LMI | [m/s] 621.6489 207.9441

|∆~V n
LMI | [m/s] 42.3730 150.1060

|∆~V |ntotal [m/s] 129.3794 352.1406

hn
CA [km] 7,463.3090 9,541.8315

τn
CA [days] 19.6715 25.5571

τn
c [days] — 13.8784
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Figure 4.13. Example 2: Transfer from L4 to an L2 Lyapunov Orbit
with Translunar-Passage of the Moon

The most apparent difference between Examples 1 and 2 is that each transfer

trajectory initially approaches the L2 Lyapunov orbit from a different direction. As

a consequence, each transfer passes the Moon on the near- and far-side, respectively.

While Example 1 passes by the cislunar side of the Moon, Example 2 passes by the

translunar side of the Moon. It is evident, from Table 4.3, that Example 2 possesses

a larger total transfer cost, |∆~V |ntotal, and a longer time of flight to closest approach,

τn
CA, than Example 1. However, if the transfer time for Example 2 is represented by

τn
c , then the transfer time for Example 2 is shorter than that for Example 1. It is

also apparent that the departure cost at L4, |~V n
0 |, is also larger for Example 2. In
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both examples, most of the insertion cost, |∆~V n
LMI |, is necessitated by a decrease in

magnitude rather than a change in direction. Nonetheless, Transfer n from Example 2

must reduce its velocity from a substantially larger value than Transfer n in Example

1. There is also a noticeable difference in the Lunar altitude at closest approach, hn
CA.

The transfer in Example 1 passes the Moon at a lower closest approach altitude than

the transfer in Example 2. From the very limited analysis in these two examples, it

is noted that passing the Moon on its cislunar side at a lower altitude can lower the

total transfer cost. However, the transfer time increases.

In 1974, D’Amario and Edelbaum published a procedure to determine minimum

impulse (fuel-optimal) transfers from L2 to a Lunar parking orbit in the planar

Earth-Moon CR3BP. Among other transfer trajectories computed with this approach,

D’Amario and Edelbaum determined an optimal three-impulse transfer trajectory

from L2 to a 185.2 km circular parking orbit around the Moon that appears in Fig-

ure 4.14. The departure cost at L2 for this specific transfer is |∆~VL2| = 6.7 m/s, the

Figure 4.14. Optimal Three-Impulse Transfer Trajectory from L2 to
a 185.2 km Lunar Parking Orbit by L. A. D’Amario and T. N. Edel-
baum [34]

magnitude of the cost to insert into the Lunar parking orbit is |∆~VMoon| = 612.9 m/s,

and the magnitude of the interior impulsive maneuver that occurs between departure

at L2 and the arrival at the Moon is |∆~Vinterior| = 94.1 m/s. The total transfer cost
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is |∆~Vtotal| = 713.7 m/s. The transfer time from L2 to the Moon is τtransfer = 9.62

days. [34]

It is useful to compare the optimal three-impulse transfer trajectory determined

by D’Amario and Edelbaum to a transfer trajectory from an L2 Lyapunov orbit to a

Lunar parking orbit that possesses an altitude close to 185.2 km. If the selected L2

Lyapunov orbit is identified by an amplitude Ay = 100, 186.9343 km, and the Lunar

parking orbit is 170 km above the Moon’s surface, it is possible to determine the

transfer trajectory that appears in magenta in Figure 4.15. Note that the selected

Figure 4.15. Transfer Trajectory from an L2 Lyapunov Orbit to a 170
km Lunar Parking Orbit in the Earth-Moon System

L2 Lyapunov orbit is the same one employed in Example 1, previously discussed.

Since the transfer trajectory in Figure 4.15 is also an unstable manifold trajectory

associated with the L2 Lyapunov orbit, there is no cost corresponding to the departure

from the L2 orbit, marked by a magenta star. The first crossing of the x̂-axis after the
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trajectory departs the vicinity near L2 is denoted by a magenta cross. The transfer

time, as measured from the magenta cross to the insertion at the Lunar parking

orbit is τtransfer = 5.63 days. Then, the total transfer cost is located at the insertion

into the Lunar parking orbit, |∆~VMoon| = |∆~Vtotal| = 647 m/s. Note that the total

transfer cost and time for the magenta trajectory in Figure 4.15 are lower than the

transfer cost and time associated with the optimal three-impulse transfer trajectory

determined by D’Amario and Edelbaum. Hence, a transfer from an L2 Lyapunov

orbit to a Lunar parking orbit is possibly associated with a lower transfer cost and

time than that corresponding to a transfer from the collinear libration point L2.

In 1979, Broucke published an extensive study on free-fall trajectories from L1,

L2, L4, and L5 to the Moon; all analysis was accomplished in the planar Earth-

Moon CR3BP. It is of particular interest to highlight Broucke’s lowest cost transfer

trajectory from L4 to the Moon that appears in Figure 4.16. The departure cost at

Figure 4.16. Transfer Trajectory from L4 to the Moon by R. Broucke [35]

the libration point for this particular transfer is |~VL4| = 60 m/s. The transfer time

from L4 to the Moon is τtransfer = 22 days. Broucke does not include the arrival cost

at the Moon. However, when reproduced, this transfer trajectory is associated with

an arrival velocity at the Moon of |~VMoon| = 2, 315 m/s. [35] The circular velocity on a

Lunar parking orbit at an altitude of 170 km is |~Vcircular| = 1, 603 m/s. Then, the cost
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to insert into this Lunar parking orbit from Broucke’s transfer trajectory is estimated

as |∆~VMoon| = |~Vcircular| − |~VMoon| = 712 m/s. Thus, the total approximated cost

corresponding to this transfer trajectory is |∆~Vtotal| = 772 m/s.

Broucke’s transfer from L4 to the Moon can be compared to a transfer trajec-

tory that also passes near L2. Consider the combination of two transfer trajectories

previously discussed. The first trajectory is the transfer from Example 1 plotted in

solid black in Figures 4.12 and 4.17. The other trajectory is the transfer from an

L2 Lyapunov orbit to a Lunar parking orbit that is represented in magenta in Fig-

ures 4.15 and 4.17. Recall, from Table 4.3, that the total transfer cost for Example

Figure 4.17. Transfer Trajectory from L4 to an L2 Lyapunov Orbit
to a Lunar Parking Orbit
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1 is |∆~V |ntotal = 129 m/s. The addition of this total cost to that corresponding to

the transfer from the L2 Lyapunov orbit to the Lunar parking orbit, |∆~Vtotal| = 647

m/s, results in a new total cost of 776 m/s. Note that this cost is approximately the

same as that corresponding to the transfer trajectory from L4 directly to the Moon

determined by Broucke. Similarly, the transfer time from L4 to the L2 Lyapunov or-

bit, τn
CA = 19.6715 days, is added to the transfer time from the L2 orbit to the lunar

parking orbit, τtransfer = 5.63 days, to yield a total transfer time of 25.3015 days.

Note that the time spent on the L2 Lyapunov orbit is not included, since this one

may vary depending on how the manifold trajectories are numerically determined.

However, it is apparent that a transfer trajectory from L4 to a Lunar parking orbit,

will probably require a slightly longer transfer time to pass near L2.

4.2.2 Transfers between an L4 Short-Period Orbit and an L2 Lyapunov

Trajectory

Successful transfers to and from an equilateral point are available at a reasonable

cost. However, when the solution is shifted to a higher fidelity model, the precisely

defined equilibrium points do not exist. Transfers to orbits in the vicinity of L4/L5,

however, will be sustained in an ephemeris model.

Consider an unstable manifold trajectory that arrives near L4 from an L2 Lya-

punov orbit similar to the schematic appears in red in Figure 4.18. A stable manifold

trajectory departs the L4 region and asymptotically approaches an L2 orbit as well;

this possibility appears in blue. Suppose the unstable manifold trajectory inter-

sects an L4 short-period orbit at some point to be designated the arrival point. In

backwards time, the stable manifold trajectory intersects the same L4 orbit and the

intersection point is denoted the departure point. Let the velocity on the L4 orbit

at the arrival and departure points be labeled ~V SPO
a and ~V SPO

d , respectively. Then,

the stable and unstable manifold trajectories possess velocities ~V sm
a and ~V um

d at their
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Figure 4.18. Conceptual Diagram: Planar Transfer Trajectories that
Arrive and Depart an L4 Orbit

intersections with the periodic orbit at L4. The maneuver to insert into the orbit,

∆~Va, is computed as follows

∆~Va = ~V SPO
a − ~V um

a (4.4)

Similarly, the maneuver to depart the orbit, ∆~Vd, is computed such that

∆~Vd = ~V sm
d − ~V SPO

d (4.5)

The magnitude of the costs associated with the insertion and departure maneuvers

are defined as |∆~Va| and |∆~Vd|, respectively.

As an example, suppose it is of interest to transfer between an Earth-Moon L2

Lyapunov orbit and an orbit near L4. Such a transfer appears in Figure 4.19. The

planar L2 orbit is defined such that the amplitude is Ay = 134, 118.3508 km, and
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Figure 4.19. Transfer Trajectory from an L2 Orbit to an L4 Orbit in
the Earth-Moon System

the L4 short-period orbit is computed with a period of 28.5498 days. The L4 orbit

is a numerically determined solution to the nonlinear system of equations, and a

member of the family of short-period planar periodic orbits introduced in Section

3.3 of Chapter 3. A possible transfer trajectory, e.g., the transfer arc plotted in

magenta, appears in Figure 4.19. Originating from the point marked by a magenta

star, the transfer along the unstable manifold trajectory asymptotically departs the

L2 orbit. Note that the transfer trajectory completes approximately one and a quarter

of a revolution around L2 before reaching the point of closest approach to the Moon

(represented by a green dot), at a Lunar altitude hCA = 2, 676.7286 km. Then,
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the insertion near L4, also marked by a magenta star, is associated with a cost of

|∆~Va| = 89.618 m/s. The transfer time, as measured between magenta stars, is

40.8297 days. However, a more representative transfer time, τCA, can be defined as

the time measured from the point of closest Lunar approach to the point of insertion

into the L4 orbit. This transfer time is τCA = 14.6736 days.

A possible return transfer trajectory from the vicinity of L4 appears in Figure 4.20,

where the transfer arc is plotted in blue. The blue star on the L4 orbit indicates the

Figure 4.20. Transfer Trajectory from an L4 Orbit to an L2 Orbit in
the Earth-Moon System

departure point of the return transfer trajectory from the L4 orbit, that is associated

with a cost of |∆~Vd| = 78.6151 m/s. As the transfer trajectory approaches the L2

orbit, it first crosses the x̂-axis at the point marked by a green cross. Next the transfer

completes one and one half of a revolution about L2 before inserting into the L2 orbit

at the blue star (Recall, the the insertion point merely locates the fixed point used
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Table 4.4 Return Transfers from the Vicinity of L4 to an L2 Lyapunov Orbit

Transfer to L2 From L4 From L4 From L4 Orbit

Lyapunov Orbit Example 1 Example 2 Example 3

Figure 4.12 4.13 4.20

Departure Cost [m/s] 87.0064 202.0346 78.6151

Transfer Time [days] 19.6715 13.8784 18.1905

Lunar Altitude at 7,463.3090 9,541.8315 7,935.7693

Closest Approach [km]

to define the stable manifold; no insertion maneuver is required). The insertion point

also coincides with the closest Lunar approach at an altitude of hCA = 7, 935.7693

km. The transfer time, as measured between blue stars, is 49.7427 days. However,

measuring the time from the departure near L4 to the first crossing of the x̂-axis

yields a more representative transfer time, τc = 18.1905 days.

The L2 Lyapunov orbit in Figure 4.20 is of comparable size to the one employed

in the return transfer trajectories directly from the L4 equilateral point in Section

4.2.1 (Ay = 100, 186.9343 km). Therefore, descriptive quantities like departure cost,

transfer time and Lunar altitude at closest approach are selected for Examples 1 and

2 in Table 4.3, and for the transfer trajectory in Figure 4.20. Comparative quantities

are listed in Table 4.4. For the three examples cited, in terms of the departure cost, a

transfer to an L2 Lyapunov from an L4 orbit appears to be more cost effective than a

transfer from the libration point itself. There are no significant differences among the

transfer times. All transfer times are approximately half of the Moon’s period around

the Earth, that is approximately 30 days. Also, all three trajectories possess similar

altitudes at Lunar closest approach. Nonetheless, note that Example 3 possesses a

Lunar altitude at closest approach that is similar to the lunar altitude for Example

1. Thus, the lunar altitude at closest approach is likely to influence the transfer
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cost. Investigation of a wider range of Lyapunov orbits and manifold trajectories is

warranted.

As stated by the Mirror Theorem, the equations of motion in the CR3BP are

invariant under the following transformation, i.e., a reflection across the x̂-axis.

x̃ = x (4.6)

ỹ = −y (4.7)

z̃ = z (4.8)

dx̃

dτ̃
= −dx

dτ
(4.9)

dỹ

dτ̃
=

dy

dτ
(4.10)

dz̃

dτ̃
= −dz

dτ
(4.11)

τ̃ = −τ (4.12)

In the study of transfer trajectories between L2 and the triangular points, the results

of this theorem reduce the investigation to only one of the equilateral points. In-

formation about transfer trajectories to the unexplored point are available from the

transformation. For example, there exists an L5 short-period orbit that is the mirror

image of the L4 orbit in Figures 4.19 and 4.20. This short-period orbit at L5 appears

in Figures 4.21 and 4.22. Clearly, the magenta transfer trajectory in Figure 4.19 is

transformed to yield the cyan transfer trajectory in Figure 4.21. As per equation

(4.12), note that the direction of the cyan transfer is from the region near L5 toward

the Lyapunov orbit in the vicinity of L2. However, consistent with the Mirror The-

orem, the cost of departure from the L5 orbit is the same as the cost of insertion

into the L4 orbit. The magenta and cyan transfer trajectories also require exactly

the same transfer time. Similarly, the red transfer trajectory to the vicinity of L5 in

Figure 4.22 is associated with an insertion cost that is the same as the departure cost

of the blue return transfer trajectory in Figure 4.20. The blue and the red transfer

trajectories also share the same transfer time. Furthermore, the transfer trajectories

from L4 in Examples 1 and 2 in Table 4.4 can also be reflected across the x̂-axis to
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Figure 4.21. Transfer Trajectories from an L5 Short-Period Orbit in
the Earth-Moon System

yield transfer trajectories to L5. Therefore, the reflection of transfer trajectories from

L4 in Examples 1 and 2 compare to the transfer in Figure 4.22 in the same way that

the transfer trajectories in Examples 1 and 2 compare to the transfer trajectory in

Example 3.

4.3 Summary

A study of the planar flow in the vicinity of the libration points L2 and L4/L5

reveals that larger Ay amplitude, L2 Lyapunov trajectories are associated with Jacobi

Constant values that are closer to the Jacobi Constant value at the equilateral points.

Different Jacobi Constants correspond to different ZVSs and ZVCs that constrain the

region of exclusion. The regions of exclusion for Jacobi Constant values associated
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Figure 4.22. Transfer Trajectories to an L5 Short-Period Orbit in the
Earth-Moon System

with large amplitude L2 Lyapunov orbits permit the flow to reach the vicinity near

the triangular points.

The investigation of transfers between L4 and an L2 Lyapunov orbit in the Earth-

Moon system establishes a connection between previous studies and other explo-

rations. The use of stable invariant manifolds associated with L2 Lyapunov orbits

as an alternative to the libration point L2 itself appears to reduce the total transfer

cost. However, there is no corresponding negative impact on the transfer time. The

use of L4 short-period orbits in the vicinity of the libration point L4 further reduces

the total transfer cost in the limited analysis completed here. A low Lunar altitude at

closest approach is possibly related to low a transfer cost. Furthermore, the reflection

of transfer trajectories to and from the vicinity of L4 yield transfer trajectories to and

from the neighborhood of L5.



105

5. Three-Dimensional Transfers

Although planar trajectories add much insight and two-dimensional transfers are not

easy to compute, three-dimensional solutions are, indeed, much more challenging.

Certain three-dimensional periodic halo orbits in the vicinity of L2 still possess stable

and unstable manifolds that reach the vicinity of L4 and L5. The determination of

transfers, however, requires knowledge of three-dimensional solutions near the trian-

gular points. Such trajectories do exist, but their computation bring new difficulties.

Nevertheless, some point solutions can be computed. The details of their construction

are presented in this chapter. First, the three-dimensional flow in the vicinity of the

libration points is discussed. Then, a strategy to exploit this flow to transfer between

the vicinity of the collinear libration point L2 and the region near the triangular

points is developed. Finally, some sample three-dimensional transfer trajectories and

the corresponding costs are summarized.

5.1 Flow Near the Libration Points

When a transfer trajectory in the vicinity of the collinear libration point L2 and

the region surrounding L4 and/or L5 is not restricted to the plane of the primaries,

additional types of motion emerge. If the investigation of the planar transfers is

extended to three-dimensions, the family of periodic halo orbits near L2 are considered

as departure trajectories. A family of three-dimensional quasi-periodic solutions that

exists at the triangular libration points can be targeted for arrival. Some L2 halo orbits

possess one-dimensional stable and unstable manifolds that asymptotically approach

and depart the halo orbit. Thus, similar to the strategy to derive transfers in the

planar case, the manifolds can be exploited in the design of a transfer trajectory

between the region near L2 and the triangular points. Recall the definition of the
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Figure 5.1. Stability Index as a Function of Az for L2 Halo Orbits
in the Earth-Moon System (Black Dots Represent Unstable Orbits;
Orbits Represented by Red Dots Are Linearly Stable)

stability index, σ, introduced previously. A periodic orbit is linearly stable with

associated motion only in the center subspace if |σ| ≤ 1. [31] Otherwise, the orbit is

unstable and there exist stable/unstable manifolds associated with it. The magnitude

of the stability index, |σ|, for a subset of the L2 halo orbit family, appears in Figure 5.1

plotted as a function of the out-of-plane amplitude, Az. The L2 halo orbits represented

by a red dot possess a stability index such that |σ| = 1. A black dot represents L2 halo

orbits associated with a stability index such that |σ| > 1. The orbit marked by a black

circle will later be used in an example. As is apparent from Figure 5.1, the stability

index for L2 halo orbits in the Earth-Moon system is such that |σ| approaches unity



107

as the L2 halo orbits increase in size as indicated by Az. Of course, the closer |σ| is to

unity, and as the orbits approach stability, the longer the manifold trajectories require

to asymptotically approach and depart the periodic orbit; i.e., the winding/unwinding

time increases. Consquently, manifold trajectories corresponding to L2 halo orbits

with a stability index such that |σ| approaches unity result in increasingly long transfer

times when employed as transfer trajectories. Hence, an L2 halo orbit with a stability

index such that |σ| > 1 is required, however, meeting this requirement is not sufficient.

The value of Jacobi Constant that corresponds to the L2 halo orbit and associated

invariant manifolds is also important since this value restricts the regions that can be

accessed by the manifolds. The Jacobi Constant, C, for a subset of the L2 halo family

of orbits appears in Figure 5.2 plotted as a function of the out-of-plane amplitude,

Az. Once again, the halo orbits represented by a red dot possess a stability index

such that |σ| = 1, an L2 halo orbit is represented by a black dot if it possesses a

stability index such that |σ| > 1, and the orbit marked by a black circle will later

be used in an example. All the halo orbits represented in Figure 5.2 are associated

with a Jacobi Constant, C, such that 3.01522030060819 ≤ C ≤ 3.15200896580997,

and C > CL4 = CL5 = 2.98799707128764. Recall, from Chapter 4, that Jacobi

Constant values C > CL4 = CL5 = 2.98799707128764 are associated with ZVSs that

intersect the x̂-ŷ plane. Therefore, all the L2 halo orbits represented in Figure 5.2

and their associated manifolds correspond to ZVSs that intersect the plane of the

primaries. The unstable L2 halo orbit with an amplitude of Az = 1, 921.9409 km

and associated with a Jacobi Constant value of C = 3.15200896580997 corresponds

to the ZVCs plotted in black in Figure 5.3. Since the region of exclusion is bounded

by the ZVCs, and enclose the triangular points, the manifolds corresponding to this

L2 halo orbit will never evolve any closer to L4 and L5 than the edge of the black

ZVC. The linearly stable L2 halo orbit with an amplitude of Az = 77, 784.8407 km

and associated with a Jacobi Constant value of C = 3.01522030060819 corresponds

to the ZVC plotted in red in Figure 5.3. The region of exclusion for this L2 halo orbit

also encloses the triangular points. However, the red edge of the region of exclusion
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Figure 5.2. Jacobi Constant as a Function of Az for L2 Halo Orbits
in the Earth-Moon System (Black Dots Represent Unstable Orbits;
Orbits Represented by Red Dots Are Linearly Stable)

is closer to the equilateral points than the black edge. Nonetheless, since this orbit is

marginally stable, it possesses no stable/unstable manifolds; the manifolds all exist

in the center subspace. Naturally, it is of interest to select an L2 halo orbit with

the lowest Jacobi Constant possible, such that the corresponding manifolds can reach

the vicinity of L4 and L5. Unfortunately, the L2 halo orbits with the lowest Jacobi

Constant value in Figure 5.2 also possess no stable/unstable manifolds. Therefore,

the most useful L2 halo orbit must possess a Jacobi Constant with a value that is

sufficiently low such that the manifolds reach the vicinity of the triangular points. Yet,

the stability index must be of a magnitude greater than one and of a size such that
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Figure 5.3. ZVCs in the x̂-ŷ plane for L2 Halo Orbits in the Earth-
Moon System (Black ZVCs Correspond to the Jacobi Constant of an
Unstable L2 Halo Orbit; Red ZVCs Correspond to the Jacobi Con-
stant of a Linearly Stable L2 Halo Orbit)

the manifold trajectories reach the vicinity of the triangular point in a finite length

of time. The halo orbit that appears circled in black in Figures 5.1 and 5.2 represents

the compromise that must exist between the Jacobi Constant and the stability index.

5.2 Transfer Trajectories and Costs

Consistent with planar transfer trajectories, the stable and unstable manifolds

associated with L2 halo orbits do not flow directly into or out of orbits near the
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triangular points. However, some manifold trajectories do cross the region near L4

and L5. Hence, a maneuver can be applied in the vicinity of the triangular point to

insert into or depart from some three-dimensional quasi-periodic orbit near L4, for

example.

Although there are a variety of approaches possible, the strategy used to com-

pute the maneuver required for insertion into some three-dimensional quasi-periodic

motion near L4 is essentially the same as the method employed to compute planar

transfers. Unlike the L2 Lyapunov orbits, the L2 halo orbit manifold trajectories

possess out-of-plane components in position and velocity in addition to the in-plane

components. However, the position and velocity in the ẑ-direction are disregarded

for the purpose of calculating the maneuver in the vicinity of the triangular point.

Consider the projection of an L2 halo orbit unstable manifold trajectory onto the x̂-ŷ

plane like the red one represented in Figure 5.4. Suppose that the planar projection

of this manifold intersects, at some arrival point, a “reference” L4 short-period orbit

similar to the one represented in black. The actual reference L4 short-period orbit is

a planar and periodic solution to the nonlinear system of equations, and a member

of the short-period orbit family presented previously. Additionally, the term “refer-

ence” indicates that this L4 short-period orbit is not the target motion near L4, but

a guide to compute the maneuver. Let the reference L4 short-period orbit be defined

by velocity at the arrival point, ~V SPO
a , with the following components

~V SPO
a =

[
ẋSPO

a ẏSPO
a 0

]
(5.1)

Let ~V um
a represent the velocity on the manifold at the arrival point, such that

~V um
a =

[
ẋum

a ẏum
a żum

a

]
(5.2)

However, the velocity that appears in Figure 5.4, ~̃V
um

a , is the planar projection of

~V um
a , and is given by

~̃V
um

a =
[

ẋum
a ẏum

a 0
]

(5.3)
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Figure 5.4. Conceptual Diagram: Projection onto the x̂-ŷ Plane of a
Three-Dimensional Transfer Trajectory and the Arrival Maneuver

Then, the two-dimensional maneuver to insert into an L4 three-dimensional quasi-

periodic orbit is calculated as follows

∆~̃V a = ~V SPO
a − ~̃V

um

a (5.4)

and the associated cost is of magnitude |∆~̃V a|. After the two-dimensional maneuver,

the position and velocity in the x̂-ŷ plane match those of the reference L4 short-

period orbit. However, due to the remaining position and velocity components in the

ẑ-direction, the post-maneuver motion results in a three-dimensional quasi-periodic

L4 orbit.
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Figure 5.5. Conceptual Diagram: Projection onto the x̂-ŷ Plane of a
Three-Dimensional Transfer Trajectory and Departure Maneuver

The computation of the maneuver to depart some three-dimensional L4 quasi-

periodic orbit is very similar to the computation of the insertion maneuver, with

the exception that all motion is propagated in negative time. First, consider the

planar projection of an L2 halo orbit stable manifold trajectory associated with some

specified fixed point; such a trajectory arc is similar to the blue one represented in

Figure 5.5. Also in this case, suppose that the planar projection of this stable manifold

trajectory intersects with the reference L4 short-period orbit previously mentioned at
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some departure point. Let the reference L4 short-period orbit include a velocity at

the departure point, ~V SPO
d , with the following components

~V SPO
d =

[
ẋSPO

d ẏSPO
d 0

]
(5.5)

and let ~V sm
d represent the velocity on the stable manifold trajectory at the departure

point, such that

~V sm
d =

[
ẋsm

d ẏsm
d żsm

d

]
(5.6)

Nonetheless, the velocity that appears in Figure 5.5, ~̃V
sm

d , is the planar projection of

~V sm
d , and is given by

~̃V
sm

d =
[

ẋsm
d ẏsm

d 0
]

(5.7)

Then, the two-dimensional maneuver required to depart a three-dimensional quasi-

periodic L4 orbit is calculated as follows

∆~̃V d = ~V SPO
d − ~̃V

sm

d (5.8)

The magnitude of the maneuver associated with the departure is |∆~̃V d|. Once again,

prior to the two-dimensional maneuver, the state in the plane matches that of the

reference L4 short-period orbit. However, due to the position and velocity components

still present in the ẑ-direction from the stable manifold trajectory, the pre-maneuver

motion corresponds to a three-dimensional L4 quasi-periodic orbit.

One reference planar L4 short-period orbit can be associated with multiple three-

dimensional quasi-periodic L4 orbits. Recall, from Chapter 3, that a three-dimensional

quasi-periodic L4 orbit can be generated by perturbing some state on a reference

planar L4 short-period orbit in out-of-plane position and velocity. Therefore, given

a reference planar L4 short-period orbit, there exist different three-dimensional L4

quasi-periodic orbits associated with the reference orbit for every combination of (i)

state along the reference planar L4 short-period orbit, and (ii) position and velocity

perturbation in the ẑ-direction. Hence, if the planar projection of two different L2
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halo orbit manifold trajectories intersect the same reference planar L4 short-period

orbit at a different point, and each manifold corresponds to a different position and

velocity in the ẑ-direction at the point of intersection, then, the pre-maneuver or

post-maneuver motion associated with each manifold trajectory results in a different

three-dimensional L4 quasi-periodic orbit.

As previously mentioned in the case of the planar transfers, the results of the

Mirror Theorem reduce the investigation of three-dimensional transfers to the trian-

gular points L4/L5 to an investigation of only one of the equilateral points. Insight

gained from investigating one of the triangular points can be applied to the other

point. Hence, consider some example transfer trajectories between the vicinity of L2

and L4.

As an example, suppose it is of interest to transfer from the L2 halo orbit iden-

tified by a black circle in Figures 5.1 and 5.2 to the vicinity of L4. The selected

L2 halo orbit incorporates an out-of-plane amplitude Az = 67, 267.9305 km, a Ja-

cobi Constant value equal to C = 3.04445136971280 and a stability index such that

|σ| = 40.44345764289235. Let the reference L4 short-period orbit be defined in terms

of a period of 28.2964 days. Then, a possible transfer trajectory appears in red in

Figures 5.6-5.9. A red star marks the departure from the L2 halo orbit (plotted in

black), and another red star denotes the insertion into a three-dimensional quasi-

periodic L4 orbit (plotted in green). The three-dimensional quasi-periodic L4 orbit

is propagated for 2,829.64 days. The reference planar L4 short-period orbit appears

in black, for comparison. The insertion into the quasi-periodic L4 orbit is associated

with a cost of |∆~̃V a| = 320.7911 m/s. The transfer time, as measured between red

stars is 166.8234 days.
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Figure 5.6. Three-Dimensional Transfer Trajectory to the Vicinity of
L4 in the Earth-Moon System: x̂-ŷ View

Figure 5.7. Three-Dimensional Transfer Trajectory to the Vicinity of
L4 in the Earth-Moon System: x̂-ẑ View
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Figure 5.8. Three-Dimensional Transfer Trajectory to the Vicinity of
L4 in the Earth-Moon System: ŷ-ẑ View

Figure 5.9. Three-Dimensional Transfer Trajectory to the Vicinity of
L4 in the Earth-Moon System: Three-Dimensional View
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Employing the same L2 halo and reference L4 short-period orbits, it is also pos-

sible to identify a return transfer trajectory from the vicinity of L4. Such a transfer

trajectory appears in cyan in Figures 5.10-5.13. The 2,829.64-day propagation of the

three-dimensional quasi-periodic L4 orbit is plotted in green. Note that this is not the

same quasi-periodic L4 orbit in Figures 5.6-5.9. The reference L4 short-period orbit,

that is the same as the one in Figures 5.6-5.9, appears in black for comparison. The

departure from the three-dimensional quasi-periodic L4 orbit is marked by a cyan

star, and the insertion into the L2 halo orbit (plotted in black) is marked by a second

cyan star. The associated departure cost is |∆~̃V d| = 226.5054 m/s. The transfer

time, as measured between cyan stars, is 169.3225 days.

Figure 5.10. Three-Dimensional Return Transfer Trajectories from
the Vicinity of L4 in the Earth-Moon System: x̂-ŷ View
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Figure 5.11. Three-Dimensional Return Transfer Trajectories from
the Vicinity of L4 in the Earth-Moon System: x̂-ẑ View

Figure 5.12. Three-Dimensional Return Transfer Trajectories from
the Vicinity of L4 in the Earth-Moon System: ŷ-ẑ View



119

Figure 5.13. Three-Dimensional Return Transfer Trajectories from
the Vicinity of L4 in the Earth-Moon System: Three-Dimensional
View
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Provided that the planar projection of an unstable manifold trajectory associated

with an L2 halo orbit intersects some reference L4 short-period orbit without colliding

with the second primary, the described process is not guaranteed to yield a three-

dimensional quasi-periodic L4 orbit. Nonetheless, the success rate of this process does

change as a function of the system parameters. This fact is demonstrated by com-

paring two examples, one in the Earth-Moon system (µ = 0.01215056494074, L∗ =

384, 388.174 km , T ∗ = 4.34227926404811 days), and the other in the Saturn-Titan

system (µ = 2.374273428362894× 10−4, L∗ = 1, 222, 000 km, T ∗ = 2.53800188247267

days). In the Earth-Moon system consider the same L2 halo orbit and L4 short-period

orbit employed in the three-dimensional sample transfer trajectories in Figures 5.6-

5.13. That is, the L2 halo orbit marked by a black circle in Figures 5.1 and 5.2,

with Az = 67, 267.9305 km, C = 3.04445136971280 and |σ| = 40.44345764289235.

Near L4, consider the reference L4 short-period orbit with a period of 28.2964 days

(6.51648542578392 nondimensional units). Plots similar to the ones in Figures 5.1

and 5.2 can be generated for L2 halo orbits in the Saturn-Titan system. The stability

index for L2 halo orbits in the Saturn-Titan system is plotted in Figure 5.14 as a

function of the amplitude Az. The Jacobi Constant associated with the same set of

L2 halo orbits appears in Figure 5.15 also plotted as a function of amplitude Az. Let

the Saturn-Titan L2 halo orbit that appears circled in black in Figures 5.14 and 5.15

be selected for comparison. This L2 halo orbit is associated with Az = 61, 100.0 km,

C = 3.0040483982823125 and |σ| = 13.19051323497221. Note that the L2 halo orbits

selected for comparison in both systems lie in the same general region of the dia-

grams of the stability index and Jacobi Constant as a function of the amplitude Az.

Near L4 in the Saturn-Titan system, consider the planar L4 short-period orbit with

a period of 15.9581 days (6.2876 nondimensional units), approximately the period of

Titan around Saturn (15.94542068 days). This L4 short-period orbit is a member of

the family of planar and periodic short-period solutions to the nonlinear equations of

motion in the Saturn-Titan system. Note that the selected L4 short-period orbits in

both systems possess comparable periods in nondimensional units.
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Figure 5.14. Stability Index as a function of Az for L2 Halo Orbits
in the Saturn-Titan System (Black Dots Represent Unstable Orbits;
Orbits Represented by Red Dots Are Linearly Stable)

Having selected the departure L2 halo orbit and the reference L4 short-period orbit

in each system, it is necessary to determine a suitable set of manifold trajectories to be

used as transfer trajectories. First, identify all unstable manifold trajectories on W u+

associated with the selected L2 halo orbit that do not collide with the second primary,

i.e., the Moon or Titan. From this subset of manifold trajectories, determine those

whose planar projection intersects with the selected reference L4 short-period orbit.

Then, those unstable manifold trajectories that do not intersect the second primary,

but intersect the reference L4 short-period orbit constitute the subset of suitable

manifold trajectories that to be employed as transfer trajectories. Next, calculate
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Figure 5.15. Jacobi Constant as a function of Az for L2 Halo Orbits
in the Saturn-Titan System (Black Dots Represent Unstable Orbits;
Orbits Represented by Red Dots Are Linearly Stable)

and apply the two-dimensional maneuver, consistent with the previous procedure, for

each suitable unstable manifold trajectory. Then, check the post-maneuver behavior.

If the post-maneuver motion results in a three-dimensional quasi-periodic L4 orbit,

then, the maneuver is considered a success. However, if the post-maneuver motion

departs the vicinity of L4, then, the transfer is not successfully determined. A planar

projection of the L2 halo orbits selected in each system for this comparison study

appear plotted in black in Figure 5.16. Each manifold trajectory suitable for the

comparison study is associated with a departure point on the L2 halo orbit. If a

particular manifold trajectory is associated with a maneuver that results in a success,
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(a)

(b)

Figure 5.16. Effectiveness of Two-Dimensional Maneuver: (a) Earth-
Moom System (b) Saturn-Titan System

then, the planar projection of the corresponding departure point is plotted as a red

star. If the contrary is true, then, the planar projection of the corresponding departure
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point is marked with a red dot. Furthermore, if a certain manifold trajectory is

not suitable, then the planar projection of the associated departure point is not

plotted. From the lack of plotted departure points on the right side of the orbit

in Figure 5.16(a), it is apparent that there is a large group of manifold trajectories

that that do not result in successful three-dimensional transfers in the Earth-Moon

system assuming the given design strategy. The contrast in the Saturn-Titan case

in Figure 5.16(a) is great, since all manifold trajectories appear to render three-

dimensional transfers. Moreover, while only three of all potential transfer trajectories

result in a successful three-dimensional transfer in the Earth-Moon system case, all

the potential manifold trajectories yield a successful three-dimensional transfer in

the Saturn-Titan system. Through the comparison of these Earth-Moon and Saturn-

Titan cases, it is apparent that the described procedure more consistently yields three-

dimensional transfer trajectories in the Saturn-Titan system. Of course, alternate

design procedures are to be investigated in continuing research efforts.

5.3 Summary

A study of the three-dimensional flow in the vicinity of the collinear libration point

L2 and the equilateral points L4/L5 reveals that L2 halo orbits and their associated

invariant manifolds are used successfully in the design of three-dimensional transfer

trajectories between the two regions. An approximate range of useful L2 halo orbits

can be identified through the examination of the stability index, and Jacobi Constant

associated with different out-of-plane amplitude, Az, L2 halo orbits. Using this range

of useful L2 halo orbits, the procedure produces some three-dimensional transfer

trajectories. However, this process is not guaranteed to yield a three-dimensional

transfer trajectory in every case. Furthermore, the approach is more reliable in some

systems than others. As an example, it is shown that it works better in the Saturn-

Titan system than in the Earth-Moon system.
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6. Summary and Future Work

6.1 Summary

The primary focus of this investigation is an understanding of the flow in the

vicinity of the collinear libration point L2 and the equilateral libration points L4/L5,

and to explore methods that exploit the evolution of the flow to design transfer

trajectories between the two regions. Different schemes to identify planar and three-

dimensional transfer trajectories are detailed. Furthermore, some sample transfer

trajectories are discussed in each case.

An initial exploration of the problem restricts all motion to the plane of the pri-

maries. A study of the planar flow in the vicinity of the L2 and L4/L5 libration points

indicates that the behavior of invariant manifolds for L2 Lyapunov orbits changes as

a function of the in-plane orbit amplitude, Ay. Larger Ay amplitude L2 Lyapunov

orbits and the associated invariant manifolds possess values of Jacobi Constant that

correspond to Zero Velocity Surfaces and Zero Velocity Curves that allow invariant

manifolds to reach the vicinity of the equilateral points. Therefore, a range of L2

Lyapunov orbits with larger Ay amplitudes is employed in the design of transfer tra-

jectories. First, a position targeting scheme is combined with a continuation process

to determine transfer trajectories directly from the triangular point L4 to an L2 Lya-

punov orbit. The transfer consists of an initial impulsive maneuver at the departure

from L4 to target some point along an L2 Lyapunov orbit stable manifold, and a

second impulsive maneuver to insert into the stable manifold trajectory. Then, the

stable manifold trajectory asymptotically approaches the L2 Lyapunov orbit without

any additional maneuver. Next, the invariant manifolds associated with a planar pe-

riodic L2 Lyapunov orbit are employed to transfer between the L2 orbit and a planar

and periodic short-period orbit near L4. This second type of planar transfers consist
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of a single impulsive maneuver to insert into, and to depart the L4 orbit. Transferring

to and from an orbit in the vicinity of L4 produces transfers with lower costs than

using the equilateral L4 point itself. Furthermore, planar transfers to and from the

vicinity of L5 can be obtained through a transformation of the transfers to and from

the neighborhood of L4.

Extending the analysis of the problem to three-dimensions presents new chal-

lenges. The behavior of L2 halo orbit invariant manifold trajectories changes as a

function of the orbit out-of-plane amplitude, Az. Nonetheless, a range of useful L2

halo orbits can be identified and employed in the design of three-dimensional trans-

fer trajectories. The procedure developed to determine three-dimensional transfer

trajectories between the vicinity of L2 and the equilateral points consists of a single

two-dimensional impulsive maneuver to insert into or depart an L4 quasi-periodic or-

bit. While, this method yields some transfer solutions, it is not guaranteed to succeed

in every case. A comparison between a case in the Earth-Moon system and a case in

the Saturn-Titan system demonstrates that the effectiveness of the procedure differs

between systems.

6.2 Future Work

Naturally, since this investigation is only an initial exploration of the problem,

further development is planned. Initially, the goal is to complete a more extensive

analysis of planar transfers including a variety of L2 and L4 orbits. The schemes

employed to determine transfer trajectories in this study are heavily dependent on

the nearby flow. It is a high priority to develop a more robust and automated method

with which to determine more optimal transfer trajectories between the vicinity of

L2 and L4/L5. It may also be of interest to investigate transfer costs from the Moon

to the neighborhood of L2. An additional goal for future work is to incorporate the

planar periodic long-period orbits near the triangular points to the study of planar

transfers. Specifically, it is of interest to determine how transfer trajectories into and
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from these orbits differs from planar transfer trajectories already considered. It would

also be useful to develop the capability of computing three-dimensional periodic orbits

near the L4 and L5, and to determine what transfer costs are associated with such

orbits. Furthermore, the ultimate objective of future work is to identify a family or

families of transfer trajectories between the neighborhoods of L2 and the triangular

points.
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