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Accelerated quantum dynamics
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In this paper we establish a formalism for the computation of observables due to acceleration-induced
particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and
displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of
arbitrary particle number are obtained. The transition rate, power, and spectra are characterized by unique
polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The
acceleration-dependent multiplicities are computed in terms of the branching fractions of the associated
inertial processes. The displacement law of the spectra predicts that the energy of the emitted particles is

directly proportional to the accelerated temperature.

DOI: 10.1103/PhysRevD.92.024019

I. INTRODUCTION

As a first order approximation to quantum gravity,
quantum field theory in curved spacetime predicts the
creation of particles from the vacuum. Of particular
importance is the creation of thermalized particles via
the Parker [1], Hawking [2], and Unruh [3] effects.
These particle production mechanisms have given consid-
erable insight into the quantum properties of spacetimes
which contain horizons. The Rindler horizon present in
accelerated reference frames enables one to use the Unruh
effect, and its associated thermal bath, to induce particle
transitions, i.e. decays and excitations. Our current under-
standing of these processes begins with the original
computation of Mueller [4] which showed that one could
use acceleration to change the decay rate of weakly
interacting particles as well as excite stable particles into
more massive states. Matsas and Vanzella [5-7] extended
the analysis to fermions, analytically computed the power
emitted during the transition, and numerically computed
the spectra of the final state particles. In a previous work
[8], we used scalar fields to extend the formalism to
encompass transitions with arbitrary final state multiplicity.
In this paper, the analytic computation of both the power
and the spectra for arbitrary multiplicity is carried out. We
also import certain relevant inertial quantities, such as the
branching fractions of various decays, into the formalism
and compute the acceleration scale to select the relevant
decay pathway, i.e. multiplicity. Moreover, with the
Planckian spectra obtained, we compute the peak energy
of the emitted particles via a generalization of Wien’s
displacement law. This establishes that the most probable
energy of the emitted particles is peaked about the
accelerated temperature. These results are punctuated by
the entire analysis being carried out using a newly
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developed time-dependent formalism which agrees with
the previous developments of Obadia and Milgrom [9],
Kothawala and Padmanabhan [10], and Barbado and Visser
[11]. The time dependence and ability to compute a wide
class of observables developed in this paper establish a
basic foundation for an acceleration-induced particle phys-
ics phenomenology with applications to highly accelerated
systems e.g. the inflationary epoch of the early universe or
perhaps the evaporation of black holes.

In this paper, Sec. II computes the generalized response
function. Using a fully relativistic treatment, i.e. quantized
fields, the response function is derived in a similar manner
as one would in the case of constant acceleration. However,
to extend the analysis to encompass time dependence, the
generalized response function is expressed as the Fourier
transform with respect to the rapidity rather than the proper
time. This prescription allows for the use of the same
mathematical treatment in computing observables as in the
case of constant proper acceleration. Section III focuses on
the time-dependent formalism utilized to compute various
spacetime quantities for use in characterizing the accel-
erated motion, e.g. trajectories, spacetime intervals, and
Lorentz gamma. These quantities are used to evaluate the
Wightman functions and its variants which correspond to
the relevant observables. In Sec. IV, the appropriate variants
of the Wightman functions corresponding to the transition
rate, power, and spectra are computed for arbitrary trajec-
tories. Each is then evaluated along the appropriate time-
dependent trajectory derived in the previous section. In
Sec. V we evaluate the acceleration-induced transition rate.
In doing so, we also derive the transition rate polynomials
of multiplicity, characterized by an integer index, along
with the associated bosonic thermal distribution. Section VI
utilizes the transition rates to compute the acceleration scale
that selects the dominant multiplicity based on the branch-
ing fractions of the relevant processes in the inertial limit.
Specific limiting cases are considered which yield analytic

© 2015 American Physical Society
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results. The radiated power is computed in Sec. VII using
the appropriate variant of the Wightman function. In doing
so, we also obtain the power polynomials of multiplicity,
characterized by a half-integer index, along with the
associated fermionic thermal distribution. Section VIII
contains the derivation of the energy spectra. The resulting
Planck-like spectra are expressed in terms of the spectra
polynomials of multiplicity, characterized by an integer
index, and the associated bosonic thermal distribution at
finite chemical potential. In Sec. IX the displacement law of
the peak energy emitted is computed for arbitrary accel-
eration, multiplicity, and transition energy. The result
generalizes Wien’s displacement law, in that the peak
energy is proportional to the accelerated temperature
weighted by a numerically determined parameter. Final
comments and a summary of the conclusions are presented
in Sec. X. All calculations are performed using the natural
units A =c =k = 1.

II. GENERALIZED RESPONSE FUNCTION

In this section we set up a formalism capable of
computing a wide class of particle transitions regardless
of the number of final state products [4,8]. To facilitate the
analysis, we consider all particles to be scalars. Consider an
initial Rindler particle moving along an arbitrary time-
dependent accelerated trajectory and decaying into a final
state containing np Rindler particles and n Minkowksi
particles. This process is schematically written as
U= U+ W+ 4+ 0, + ¢+ + (1)

The initial and final Rindler particles are denoted by V;
and are used to describe any particle under acceleration. We
consider the initial Rindler particle to be massive while the
final state Rindler particles can be massless or massive in
any combination. The massless Minkowski particles in the
final state are denoted by ¢, and are used to describe any
particles propagating along inertial trajectories. To describe
these transitions, we consider their coupling to be described
by the following general interaction action,

+ -
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d*xy —9<H W0y (x
=1
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The coupling constant G,, is labeled by the multiplicity
and can be determined by fixing it to a known process in the
inertial limit. We note that the coupling may be dimen-
sionful depending on the transition in question. The LK term
is included to absorb the overall normalization of our
Rindler states. The domain of integration is confined to the
right Rindler wedge where the modes of our accelerated
fields are defined. We denote the Fock states of our Rindler
particles |W;) with the index j characterizing their energies.
As usual, we label our Minkowski states |k,) by their
momenta. We use the notation | [[7 k;) = |ki,Kk,, - k,)
for the Fock states of both the Rindler and Minkowski
fields. Note that we leave off subscripts denoting the
Rindler and Minkowski Fock states and let the field
operators imply the label, ie. |¥;), = |¥;) and
|k;)y — |k;). Working in the interaction picture, the
acceleration-induced probability amplitude for our massive
initial state to transition into N = np +n final state
particles is given by

A= ([[x1e ([w5lw 00, ©
7=1 j=1

The magnitude squared of the transition amplitude gives
the differential probability per unit momenta of each
Minkowski particle, i.e. <2 = | A|?>. Note that we are using

D3k
the more compact notation []_, &*k; = D;k. Moreover,
since we are taking the magnitude squared of a complex
integral, we remind the reader that there are two
dummy variables in expressions such as | [ f(x)dx|* =
[Jdxdx’|f (x)[*, where |f(x)[> = f(x)f*(x). Thus the dif-
ferential probability of our N-particle acceleration-induced
transition is given by

H

) ® |0)

oI &
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By factoring out the n complete sets of momentum
eigenstates we can further simplify the above expression.
The resultant two-point functions, i.e. Wightman functions,
characterize the probability for each Minkowski particle to
propagate along the accelerated trajectory. The product of the
|

G2 oo
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n Wightman functions then characterizes the total probability
that all of the n Minkowski particles simultaneously propa-
gate together. Moreover, we will endow each Wightman
function with the index m to label each of the Minkowski
particles and also the relevant observables computed. Hence
n n_ 2
[Tk [T a0}
m=1

llll/ o <f:l

2 n

[T (0l (") () 0)

m=1

ﬁ Gilx', x|. (5)

The inner products over our Rindler fields in the above expression select the appropriate mode function of each particle.

For Rindler particles [12], these mode functions can be written as fy [x(7)]

e~'7, Analyzing the transition process in a frame

comoving with the initial accelerated particle allows us to parametrize the system with its proper time. This implies that its
energy is just its rest mass, i.e. w; = m;, while the final particles have an arbitrary energy w,. The inner products then imply

H\If |0, (x H\If (x)|®,)

Note that we have defined the Rindler space transition energy AE = ) % | w,

lmTHf\I}
mﬂmw

ng

T) iw,t

@]] eIBET, (6)

— m; to be the total energy difference

between the final and initial Rindler states. We then find our acceleration- 1nduced transition probability, Eq. (5), to be

ng

G2
:—"//d4xd4x’\/—_g /_g/
K

We can now use the overall normalization associated
with the overlap of the spatial waveforms « [4,8] to simplify
the above expression. In experimental settings the initial
accelerated particle will be described by a wave packet with
mode functions of the form fy(x) ~ Kj,/q(2e®)g(x ).
The spatial distribution of the initial particle, in the
directions perpendicular to the acceleration, is assumed
to be finite, e.g. Gaussian, and is given by g(x ). With the
mode functions properly normalized [13], x will be of order
unity. Hence

K= //d3xd3x’\/—_g\/—_g’

fo k@ [[ o 6@ - ®)
r=1

[[1 W (x
:G?%// d4xd4x’\/—_g\/jg/ [f\y [x(7)]
:%ﬂ&ﬁh@f@hwﬂ

>ﬂ@mw 1 ]
r=1
)] :| iAET H Gm X, x|

o350 T] Gl . )

m=1

T1/5 x(0)]
r=1
115 o]
r=1

Having integrated over the spatial coordinates of the
right Rindler wedge and noting that we still have to
integrate over the proper times, it should be mentioned
that the trajectories which characterize the Wightman
functions must only depend on the proper time and have
no spatial dependence. With this in mind, our transition
probability becomes

P=G2 // drdr e A=) H Gilx', x]. 9)
m=1

Upon inspection of the above transition probability we
find that we have now effectively reproduced the formalism
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the would be obtained if we had used an Unruh-DeWitt
detector provided we identify the energy gap of the
detector with the initial and final state Rindler energies
AE. To better incorporate the time dependence of our
current analysis we will make the following change of
variables to the rapidity variables u’ and u defined by
u(t) = [*a(7)dr. Hence

dr d7’
drdt = dudu' ——
rdrt uudd/

11
= dudu’' —— . 10
udl —— (10)

We dropped the proper time dependencies in terms of the
more compact notation @’ = a(z’") which we also apply for
all other variables. In terms of the rapidity, the transition
probability then takes the following form:

P =G> // drdr e 1AE[T—7) H GiL[x, x|
m=1

11
aa

Finally we decouple the integrals by formulating the new
variables in terms of the difference £ = u’ — u and average
n==u *“ rapldltles The inversions of these transformations
are glven by ' =¢&/2+n and u = —&/2 + 5. With this
new rapidity parametrization, the transition probability
takes the similar form

P:Gﬁ//dndfe"” =) HGix x.  (12)

For the sake of clarity we note that under this
parametrization the primed and unprimed variables will
all have dependencies such as a' =a(é/2+1#n) and
a=a(-=£/2+n). All components of the integrand
depend on these variables in this manner. Moreover, we
will eventually want to determine the transition rate, i.e.
the probability per unit time I = %. We shall choose the
proper time parametrization 7, that characterizes the
rapidity variable # via the definition dy = a(z,)dr, for
this purpose. Finally, using the notation a(z,) = a, we find
the transition rate to be

P = GZ//dnd.f —zAET —-7) HGmx )C

ST=0G / d(f;—’; eibEWT) H GEY, ). (13)

m=1

o—iBE(T 1) H Galx,x].  (11)

We mention as well the ability to compute the differential
transition probability per unit rapidity I', = 11—7; that follows
along with this derivation as well. To develop the integrand

PHYSICAL REVIEW D 92, 024019 (2015)

into a more useful form, we Taylor expand the proper time
interval about the point £ = 0. Recalling the form of the
coordinate transformations used above, we find

L dr du' dr du

Tt i dé S <0+dd550§>
=3t agt
_ ¢
= (14)

Similarly, we expand the proper accelerations about the
same point but we also disregard terms of order j,/ a,% and
higher. Hence

da' d7' du’

!/
2 ~ —
a (5/ +’7) aﬂ + dT’ du/ dé 5_0

(15)

Similarly, we obtain a(—&/2 + ) ~ a, as well. We must
also recall that all other components of the integrand must
be expanded to the appropriate order. As such, we employ
the notation Gi[x/, x|, to imply the necessary Taylor
expansion of the Wightman function. Moreover, now that
acceleration is a function of one variable only, we will drop
the # subscript and define a, = a(z,) =a. Thus our
generalized response function takes the following form:

1 . &
r= Gﬁg/dfe"AE‘f/a H Gulx', x],,. (16)
m=1

This expression determines the transition rate for a
Rindler, i.e. accelerated, particle to decay into ng
Rindler, i.e. accelerated, particles accompanied by the
simultaneous emission of n Minkowski, i.e. inertial, par-
ticles. This is the process that is expressed schematically in
Eq. (1). A conceptual depiction of the above acceleration-
induced process is also illustrated in Fig. 1 for clarity. To
finalize this section we comment on the relationship
between the method of field operators, used in this manu-
script, with the alternative method of detectors [8]. The
method of fields enables a more general analysis via the
inclusion of an arbitrary number of Rindler particles of
varying energy in the final state. The energy difference, as
measured in the proper frame of the initial accelerated

024019-4
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FIG. 1 (color online). A pictorial representation of the accel-
eration-induced transition from Eq. (16).

particle, is given by AE=> % w,—m; see e.g.
Eq. (6) and the subsequent discussion. That is, the differ-
ence between the sum of all final state Rindler particle
energies and the initial accelerated particle’s mass. To map
the analysis to the method of detectors, all one needs to do
is identify this energy difference with the energy gap of the
detector, i.e. a two-level system. In short, the initial and
final state energies of the Rindler particles, as measured in
the proper frame of the initial accelerated particle, define
the two energy levels of the detector. For a more in-depth
discussion of this correspondence we refer the reader to
Ref. [8]. In the next section we develop the time-dependent
formalism that will be used to compute the Wightman
functions and their subsequent Taylor expansion used in
Eq. (16) above.

III. TIME-DEPENDENT SPACETIME
TRAJECTORIES

Prior to evaluating the Wightman functions we will
need the time-dependent spacetime trajectories that the
Minkowski fields propagate along. For the time-dependent
proper acceleration a(z), we recall that the rapidity is
defined by u(a) = [*a(r)dr. Using the Rindler chart to
characterize the resultant accelerated motion (see e.g. [14]),
we have

x(7) = /T dasinh [u(a)] + xo

(z) = / " darcosh [u(a)] + 1o, (17)

In order to compute these, and related, integrals we shall
make use of a simple variant of the method of steepest
descent. Here, we will maintain the appropriate expansion
and again disregard terms of order j/a’. As such, the
method utilized can accommodate general acceleration
profiles quite easily but depending on the system additional
care must be taken if the acceleration goes to zero within

PHYSICAL REVIEW D 92, 024019 (2015)

the interval. Thus we consider the following change of
variables and integration by parts [15],

1= /T dae™(@

LA
— - u(a) d
[ +a(a) da (e Jda

— 1 eiu(a) ‘ :I:/T ](a) eiu(a)da
+a(a) . Je

/

ej:u(a):| ) (18)

T

Q

L;(a)

Note that we used the fact that u'(z) = a(r) and
u"(7) = j(z). Moreover we see that we obtained a solution
to the integral to zeroth order in j/a®> as required to be
consistent with the development of the generalized
response function in the previous section. We then have
the general form of the integral to be applied to our
spacetime intervals. Hence

/T daeiu(a) _ 1 eiu(r’) _ 1

iu(r). 1

We now apply the above formula to compute all
necessary spacetime quantities associated with our gener-
alized hyperbolic trajectory. Considering first the spacelike
interval Ax = x’ — x, we find

Ax = / " dersinh [u(a)] + x — ( / " dasinh [u(a)] +x0>
= [1/ dasinh [u(a))

_ % / " dafer@ — gmula)]
- %T/)cosh ()] - %cosh (7). (20)

Utilizing the same coordinate transformation, i.e. u,
u' — £ and Taylor expansion, ie. da'(&n),a(én) —
a, = a as in Sec. II, the above spacelike interval becomes

! N - — u(t
Ax = mcosh [u(7)] a(?) cosh [u(7)]
= mcosh [£/2 +n] - ﬁcosh [—£/2 + 7]

1
=~ (cosh [¢/2 + ] = cosh [-&/2 + 1))
2
= —sinh [£/2] sinh[p]. (21)
a
Note the use of the hyperbolic double angle formula to

obtain the last line. Similarly, for the timelike interval
At =1 —t we find

024019-5
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T
dacosh [u(a)] + 1) — </ dacosh [u(a)] + t0>

dacosh [u(a)]

sinh [u(7')] — —— sinh [u(7)]. (22)
The subsequent Taylor expansion to zeroth order in j/a” then yields

At =

- (IT 5 sinh u(2)] - %sinh [u(2)]

1 . 1
RPN Rl Te T

(sinh [/2 4 5] — sinh [-&£/2 + 7])

sinh [-&/2 + 7]

S

1

N Q|

= Esinh [£/2] cosh[x]. (23)

It should be noted that the addition of the complex regulator to the timelike interval can be added in without changing the
computation. Next we compute the complex regulated square of the spacetime interval, Ax?> — (At — ie)?, more commonly
found in Wightman functions. We can evaluate this quantity by substitution of the previously computed spacelike and
timelike intervals; however, in the interest of further developing the time-dependent formalism, we shall first carry out a few
more manipulations to obtain a more general form. Thus

Ax? — (At —ie)? = [x(7) — x(2)]* = [t(¢) — t(7) — ie]?

- [ / " darsinh [u(a)) — / " dasinh [u(a)]]z— [ / " dexcosh [u(a)] - / " darcosh [u(a)] — ie|
- [ / * dasinh [u(a)]} 2— [ / " deccosh [u(a)] - ie] ’

= /[T/ dadf(sinh [u(a)] sinh [u(f3)] — cosh [u(a)] cosh [u(f)]) 4 2ie lf da cosh [u(a)]

= - //1/ dadp cosh [u(a) — u(p)] + 2ieAt. (24)

Note in the last line that we used the hyperbolic double angle formula and rewrote the term on the complex regulator as
At. Focusing on the integral, we break up the hyperbolic argument into exponentials to obtain a more convenient form.

Hence
// dadp cosh (u(a) // dadpe@ e~ (ul@)—u(p))
:—/ dae"@ / dﬂe‘“ l/r/ dae"@ /T/ dﬂe”(/’)
2 T T 2 T T
7 7
_ / dae"(® / dpe-rh). (25)

Note in the last line that we interchanged indices a<>/} to combine the exponentials into one expression. We should also
note a similar expression was obtained in [10]. Thus the square of the spacetime interval, along with its complex regulator,
can be expressed in the following more compact form:

024019-6
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Ax? — (At —ie)? = / dae"l / dpe="¥) 1 2jeAt. (26)

In turning our task to evaluating the above integrals, we find

7 1 1 1 1
d d —u(f) — u(®) _ _— Lulr)| | _ —u(7') _— ,=u7)
[ daes [ apen = <[ e - e [ e e

]
— 7(1(1331(7) cosh [u(7') — u(z)] + :1’) azl(r)
—4 ' 1 , 2 1 1
= A [5(”(” - ”(T))} T @) 2@ T e
= m [(a(r’) — a('r))2 — 4a('r’)a(1)sinh2 B (u(7) — u(r))H . (27)

Finally, performing the necessary change of variables and Taylor expanding the acceleration we obtain the final form of
the ie regularized square of the spacetime interval. Hence

A = (Ar—ie) = s [(a( ') — a(7))? = 4a(7')a(c)sinh? E (u(7) - m»” + 2ieAt

1

= (. ‘f)az(—ﬂ, B [(d'(n,&) —a(n, &))? —4d (n, E)a(n, £)sinh?[£/2]] + 2ieAt

— —%Sinh2 [£/2] + iefsinh [£/2] cosh[y]
— _%51nh2[§/2] + 168 sinh [£/2] cosh [£/2]

4
= ——sinh?&/2 — iac]
a

= - % sinh?[£/2 — sgn(a)ie]. (28)

2°c‘f:1h[[‘fﬂ/ 4 out of the € and in the last line we

absorbed the magnitude of the acceleration into the regulator. We keep the overall sign of the acceleration so as to not
change the direction of the shift along the imaginary axis by changing the sign of e. To finalize the development of the
components necessary to compute each of our Wightman functions, we also require the use of a Lorentz gamma to boost
forward and backward between the proper and inertial lab frames. The Lorentz gamma can be computed by taking the
derivative of the inertial time. We also parametrize our proper time here using the variable 7, such that u(z,) = # as in the
previous section. Recalling df = ydr we have

Note that, in the third to last line, we pulled the positive definite factor

d ©
diqu = 7% da cosh [l/t(a)] + t()
= y = cosh[y]. (29)

In the next section we will utilize the above dictionary of formulas to evaluate the Wightman functions and its variants.
The Wightman functions will then be used to compute the acceleration-induced transition rate, power emitted, and spectra
of emitted particles.

IV. THE WIGHTMAN FUNCTION AND ITS VARIANTS

In this section we compute the variants of the Wightman functions used for the computation of various observables. We
will be working under the assumption that all Minkowski fields are massless To evaluate the vacuum to vacuum two-point
function [16], we use the canonically normalized field operator ¢ = i T\/z— [ay e’k x=0) 4 g e=ilkx=en] Thys,
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Guly'.x] = <0\¢m(x )b (x)[0)

Ak dPk -
2” // 0‘ k’a (k x'—k-x—o't' +wt) |0>

31/ 43
//d k'd k i(k/x'—k-x— mt’+mt)6(k —k)
2(2n)?

— 1 /d3ke i(k-Ax—wAt)
227)°) ®
1 &Pk
_ —ikt Ax,
2027 ) @ ¢ - (30)

Since we are dealing with the emission of Minkowski
particles by an accelerated field, it is advantageous to boost
the momenta into the frame that is instantaneously at rest
with the accelerated field. The integration measure is
Lorentz invariant, i.e. % = % When boosting the
momenta forward into the accelerated fields’ instantaneous
rest frame via k* — AYkY = k*, the Lorentz scalar nature of
the exponent necessitates the boosting of the spacetime
interval back via Ax* — (A~1)YJAx* = A¥*. It should be
noted that each Ax* is a proper quantity that has just been
boosted to the same velocity but in the opposite direction
and therefore all of the relativistic effects, e.g. length
contraction, remain the same. Also, here and throughout,
we will denote all proper quantities with a tilde. Therefore,
our Wightman function, evaluated in the proper frame, is
given by

L pa

2(27[)3 = ei(k~Ai—&)A?)' (31)

Gil¥, x| =

Integrals of this form are best evaluated in spherical
coordinates. Without loss of generality we rotate the coor-
dinate system until the momentum lies along the z-axis and
then we enforce the condition that our Minkowski fields are
massless, i.e. @ = k. As such, the integral reduces to

1 d31}
2(27)®

L

x ddOdg @ sin Del (@A cosb-oa7)

1 o0 1 ~ e -
_ - / / dd)d(COS g)éez(aJAx cos 0—wAT)
227)* Jo  Ja

1 1 o0 o -
dé i(AX—AT) _ ,—i@(AX+AT) )
2(27:) zAx/ ole ¢ ]

G ¥, x] = i(k-AX—®AT)

(32)

The above Wightman function will be used to compute
the acceleration-induced transition rate. To properly evalu-
ate the integral we require an infinitesimal shift along the

PHYSICAL REVIEW D 92, 024019 (2015)

imaginary time axis to regulate the oscillations at infinity.
This is accomplished by letting A7 — A7 — ie where € > 0.
Thus,

1 1 0 P
. dé io(Ax—(At—ic))
2(27)7 iR A wle

=i A+ (Af=ie))|

Gilx', x| =

11 1
" 2(27)%iA% [i(A)”c — (A7 —ie))

1
TR+ (Al - i@)}
1 1
- (27)% AX? — (AT — ie)?
1 1
 (22)2 ARAR,
1 1

S N (33)
(2m)* Ax*Ax,

Note in the last line we used the Lorentz invariance of the
scalar product to boost the spacetime interval forward into
the lab frame. This will facilitate later computations and
also highlights the appropriate Lorentz invariance of the
Wightman functions. It serves to also remember the
presence of the complex regulator within the time compo-
nent of the interval. Using the appropriately Taylor
expanded spacetime interval derived in Eq. (28) of the
previous section, we find the Taylor expanded Wightman
function Gy;[x’, x], to be

1 1
Gilx' x|, = — —_—
7 (2m)* Ax*Ax,
o 1
~ (27)* 4sinh?[£/2 — sgn(a)ie]
a’ 1

" 7 (47)?sinh?[£/2 — sgn(a)ie] (34)

The Wightman function characterizes the probability for
a particle to propagate along a given trajectory and is
summed over all energies, i.e. integrated. Thus, by multi-
plying each probability by the energy (see e.g. [6]), and
then integrating, we can effectively compute the average
energy carried by the particle during the transition process,
i.e. the power radiated. Denoting this energy weighted
Wightman function as Gif[x’ ,x]”, we then carry out its
computation in a similar manner. Beginning with Eq. (32),
we find
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%; / " dip ip [i(03 (A1)
2(2m)% iAX Jo
—i(])(Afc+(A;—ie))]

Gl x] =

s [
- 2(27)? iAX ([i(A% — (AT — i€))]?

1
~li(Ax + (A7 - ie))]z]
1 At —ie
T T2 [AR — (AT —ie)]?
1 Af—ie
2in? [AX*AX, ]
1 At/y -

T T 2in? [Ax"Ax] ’ (35)

Note that the presence of the proper frame timelike
interval in the above quantity necessitated the use of the
Lorentz gamma to boost it back to the lab frame via
A7 = A7 = At/y. Evaluation of this energy weighted
Wightman function along the Taylor expanded hyperbolic
trajectory yields

1 Ar—ie
Gnl¥' Xy =~ A A

1 Zsinh [£/2] —
T 2in [~ & sinh?[£/2 — sgn(a)ie]
- d sinh [£/2] — i%e

i(4r)? sinh*[£/2 — sgn(a)ie]

a® sinh [£/2] — isgn(a)e cosh [£/2]

C i(4n)? sinh*[£/2 — sgn(a)ie]

a’ 1
- i(4r)? sinh®[£/2 — sgn(a)ie] (36)

Again we pulled a positive definite factor 2 cosh [£/2]
out of the e. We also absorbed the magnitude of the
acceleration into the regulator and then recombined the
numerator into the hyperbolic sine since it was the Taylor
expansion about small e. Finally, examining how the
propagation, and thus emission probability, changes as
we vary the energy enables us to compute the spectra.
Taking the derivative of the Wightman function, Eq. (32),
yields

d 1 1

£ G i (AF-AT) _
', = 2(27)? zAx[ ¢

—ia(AX+AT) . (37
xa e

Substitution of the relevant trajectories, along with the
appropriate expansion, yields

PHYSICAL REVIEW D 92, 024019 (2015)

di"G"il[xl’x]n _ 2(21 ) Al [ei(b(A)'c—Ai) _ e—i(ZJ(Ai+A?)]
w )" 1AX
1 e—t(uAt ) o
= (277:)2 F S ((UA.X')
1 e—idJAt/y ) _
= (2r7 7Ax sin (@yAx)
a o—i@2sinh (£/2)

~ (2x)%sinh (£/2) sinh (27)

X sin (% sinh (£/2) sinh (2’7)>
)

(2m)?

~
~

emio¢/a, (38)

In the last line we expanded the arguments about small &.
Note that we have kept, to first order, a dependence in the
phase so we still encode the dynamics. Now that we have
our catalog of the Wightman function and its variants, the
remaining sections will be devoted to the computation of
the relevant observables of the theory.

V. TRANSITION RATE

The generalized response function developed previously
will now be used to compute the acceleration-induced
transition rate. This will enable us to analyze the decay of
unstable particles as well as the excitation of stable particles
into states of higher energy. We begin by recalling the
functional form of the response function, Eq. (16),

1 . "
r=G,- / deem B T] GElx'.x],. (39)

m=1

To compute the transition rate we use all n of the
Wightman functions in the above product over our final
state particles. Recalling the form of the Wightman
functions, Eq. (34), we find that the transition rate of n-
particle multiplicity simplifies to

r=G3- / d&e"AE‘f/“HGmx A,

2 n
(2l —iAEE/a | _ a !
G, / dée [ (47)?sinh?[¢/2 — sgn(a)ie]

o (la 2nsgn —zAE§/a
=G <7T> / é:smhz” [£/2 —sgn(a)ie]” (40)

At this point we must focus the integral. Specifically we
must note how the integration depends on the sign of the
acceleration. By letting £ — sgn(a)& we see the integration
is independent of the sign of the acceleration. As such we
set sgn(a) = 1, leaving the transition rate dependent only
on the magnitude of the acceleration |a|. Hence,
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r— G2 2n i
471 lal

We now see that the removal of the ie yields a singularity
structure with poles of order 2n at £ = 2zic with the integer
o> 0. Now that we know the pole structure, we rid
ourselves of the complex regulator. Rewriting the denom-
inator of the integrand in exponential form will yield a more
useful form. Hence,

: 2n 1 —iAEE/|al
4z ) |a| sinh*"[£/2 — ie]

o—iAEE/ |al

sinh®[¢/2 — ie]

PHYSICAL REVIEW D 92, 024019 (2015)

Employing the more convenient change of variables
w = ef we find

- GZ ia\2" 1 dé e—iAEé/W
27 |a| [€€/2 — e=¢/2)2n

5 2n —lAEé/\a|+n1
=g (L .
ORTES =

The above expression can be integrated usir_lig the residue
theorem. The integral is of the form % with the

appropriate identification for f, y, and 0. "Also note the

(43)

ia\ 2 e—iAEE/|al
=G <2 > / T g (42) added conditions that y is an integer and J is an even
z)  lal [/ — &7 integer. Evaluation of this generalized integral yields
|
wibtr 2 SN A wibtr
/dw =G 1 2 [[W_l]aiﬁ] -
w—1]°  (6=1)! 4 dw W= 1)) _pizes
2mi

-

— (1 —if+7) . wibtr=ot1]
(6—-IT(=ifp+y—-56+2) 0

O

_ 2ri (1 - lﬁ+7 Ze2naﬂ+12ﬂny -5)
(=DIT(=ip+y—-56+2)4
i T(1—if+y) 1

T G-DIT(—ifty-06+2)1—e&
Tip-y+6-1) 1
Cif-y) -1

 2mi
C(5=1)!

(44)

Note that we used the identity I'(z)I"(1 — z) = x/ sin(xz), along with the properties of y and &, in the last line. The sum in
the above equation converges for ¢>” < 1 which is true for negative f3. This corresponds to AE < 0, i.e. decays. In order to
evaluate the sum we may assume f to be negative to yield the closed form expression of the convergent sum. We can then
relax the condition for AE > 0 and we note that, in the zero acceleration limit, the transition rate appropriately diverges.
This merely illustrates the fact that inertially stable particles have an infinite lifetime. Utilizing the above derived formula,
we evaluate the integral in Eq. (43) to be

—iAEE/|al+n—1 27xi T[(iAE 1
/dww M i .(1 /la| + n) (45)
[w—1]*" (2n = 1)!T(iAE/|a| + 1 — n) e2AE/lal _ |
The transition rate is then given by
ia\*1 2zmi I'(iAE/|a| + n) 1
I'(AE,n)=G*|—| - 46
(AE.n) =G, (2::) a (20— 1) TGAE/|a] + 1 = n) 8E/Ml | (46)

We will take one final step in simplifying the above gamma functions using the Pochhammer symbol for rising factorials

(x)4 = r(rx&)“) = ”‘ ~o(x+j). This serves to better present the resultant polynomials of multiplicity. Applying the

Pochhammer identlty to the above expression, along with the identifications x = iAE/|a|+1—n and a =2n -1,
yields
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T(iAE/|a| +n) 25 .
, = || GAE/|a| + 1 —=n+))
L(iAE/|a| + 1 —n) j=H0

n—1

II GaE/|al+k)

k=—(n-1)

- |a‘ H iAE/|a| + k)(iAE/|a| — k)

-1y al 1 H [(AE/a)? + 2]

- (%) T

(47)
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Utilizing the above expression, along with the double
factorial identity (2x)!! = 2*(x)!, we finalize the compu-
tation of the acceleration-induced transition rate. Thus

AE\ 2n-1 1 n—1
A
7 (4n—2)1! k[[o
1+ k2 T g
AE e27rAE/|a\ -1 :

The above transition rates are characterized by a bosonic
distribution along with the integer indexed polynomial of
multiplicity. Normalizing the rates to the multiplicity-
dependent coupling via I' = I'/G2, we explicitly compute
the normalized rates for the first five multiplicities. Hence

I'(AE,n)

3 AE 1
TWAE.a) = b1
) AE® 1+ (&%)’
Fz(AEv a) - 4877:3 eZﬂAE/‘al —_ l
T3(AE.a) = AE 1+5(55)° +4(5)°
3840” eZﬂAE/\a\ -1
Py (AE. AET 1+ 14(5) +49(4)* +36(25)°
A a) = SI512057 e27AE/|a] _

~ 1857945607°

The n = 1 case is the standard result for computing the
transition rate of an Unruh-DeWitt detector. We should
also mention that the acceleration-dependent lifetime is
easily computed via z = 1/I". We plot (see Figs. 2 and 3)
the transition rates for acceleration-induced decay and
excitation respectively. The fact that the excitation rate
rapidly goes to zero, in the inertial limit, reflects the
infinite lifetime for such processes. Moreover, it should
be noted that there is an acceleration-dependent crossover
scale where one multiplicity dominates the transition
process. The next section deals specifically with these
CrOSSOVers.

VI. MULTIPLICITY

In this section we compute the dominant multiplicity as a
function of acceleration. Specifically, for final states which
contain either n or m Minkowski particles, we ask when the
transition rate for an n-particle final state is greater than an
m-particle final state. This will enable us to characterize the
acceleration scale which selects a specific transition when
there are multiple decay pathways. Let us begin by

eZﬂAE/M -1 (49)

|

computing the inertial limit of the decay rates. This enables
us to fix the couplings G2 to that of the inertial decay rate
A,. For decays we have AE < 0 and taking the limit a — 0
of the transition rate, Eq. (48), yields

FIG. 2 (color online).

The normalized transition rates,
Eq. (49), with @ = |a|/AE and AE = —1.
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10772

FIG. 3 (color online).

The normalized transition rates, Eq. (49),
with @ = |a|/AE and AE = 1.

4 _G2 ﬁ 2n—1 1
A (4n =2)!!

= G2=1, (A”E> " an =), (50)

In terms of the dimensionless acceleration a = |a|/AE,
the crossover scale, i.e. when I', =T, can then be
computed in terms of the inertial rates. Hence

A [0+ R =4, [ 1 + & (51)

k=0 =0

The ratio of the inertial decay rates 4,,/4,, is equivalent to
the ratio of the branching fractions Br,,/Br, = g of each
decay pathway [17]. Assuming n > m we find

|
—_

n m—1

A [T+ K@) =2, [ 11+ 2a)
j=0

[+ K@) =g + @)
j=0

: =
- o

—

T
- o

3
|

[+ K] = g. (52)

=m

>~

The above equation defines the acceleration scale at
which an n-particle multiplicity final state will dominate
the m-particle multiplicity final state. We now examine in
more detail the cases when ak> 1, ak <1, n=m+ 1,
and n = m + 2. For the case of large acceleration, i.e.
ak > 1, we find

PHYSICAL REVIEW D 92, 024019 (2015)

g= 101 +Ka
i
g = a*n=m) ,E 2
g = &20=m) [((:1%11))"} 2
= a; = {g {%} 2} ar-m) -

In the case of small acceleration, i.e. ak < 1, we make
use of the properties of logarithms to simplify the compu-
tation. Hence

g= || 11+ k*a*
k=m
n—1
=In <H + k?a?) >
k=m
n—1
In(g) = ¥ In[1 + %)
k=m
n—1
In(g) = Y k&
k=m
n—1
g=1+a> K. (54)
k=m

The last line followed from Taylor expanding the
resultant exponential. The sum of squares evaluates to
12 _ 1(,2 2y o 1
ik =i(n—m)=1(n*—m?) +1(n*=m?). Thus
the acceleration scale for multiplicity transitions at low
acceleration is given by

_ g—1
i_\/%(n—m)—%(nz—m2)+%(n3—m3)' (55)

It should be noted that the above formula is most
applicable for two decay pathways with nearly identical
branching fractions, i.e. g~ 1. The case when n —m =1
can be used to characterize the emission of an extra photon
in the decay process. We can trivially solve for the
acceleration in this case. Hence

(56)

The case when n — m = 2 can characterize the emission
of an additional particle-antiparticle pair during the decay
process. This case can also be solved exactly. Hence
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n

g= [] It + &

k=n-2
g=1[1+n-12@]1+ (n-2)*a

=5 =2 8= 10— TP =2 = = 1P+ (=27
2(n—1)*(n—2)? '

:>gl2:

(57)

The above acceleration scales can be used to fine-tune a system to select a preferred decay pathway and also, if the
acceleration of the system is known, predict the relevant branching fractions of the system under study. In the next section
we shall analyze the power radiated away by an accelerated particle.

VII. POWER RADIATED

In order to compute the power emitted by the ith particle S; we use the energy weighted Wightman function G* for that
particle in the generalized transition rate from Eq. (16). Thus

1 : -
r=aG;-— / dge~ibEe/a Hl Gilx'.x],

1 ' n—1
=8 =G / deesElagELY ], T] GEW. A, (58)
m#i

Note that we separated out the energy weighted Wightman function of the ith particle. Recalling the explicit forms of the
appropriate Wightman functions, Egs. (34) and (36), the power radiated away by the ith particle simplifies to

1 ) n—1
S; = G%;/d&e"AE‘E/“Q?E ¥, x], H Gul¥', x],
m#i

3 2 n—1
_ 2t —iaEEfa|__ G 1 __ 4 !
G a / dge™2 [ i(4r)?*sinh3[¢/2 — sgn(a)ie]] [ (47)? sinh?[£/2 — sgn(a)ie]

G24 ia\2n+1 1 i e—lAEdf/a 5
o ﬂ(ﬂ) 5/ ésinhz”“[é/Z —sgn(a)ie| (59)

Again, with the same rescaling & — sgn(a )¢, the integral is invariant under the change of sign of the acceleration. Thus
we let sgn(a) = 1 as before. Hence

S — —Gan ilal\>+1 1 i o—iAEE/|dl o
4r |a| sinh®*1[£/2 — ie]”

Note that we find a pole structure similar to the transition rate in the absence of the regulator, this time with poles of order
2n + 1 at £ = 2zic with integer ¢ > 0. Using the same computational machinery as before, we employ the change of
variables as the previous section, w = . Thus

S ) al\ 2nt1 ] —lAEZj/\a\
— _Gg (1
! " ﬂ<47z> |/ sinh?"*1[£/2 — ie]

Gl <l|a|>2n+l 1 ot o~ iAEE/|al

2 |a| [65/2 _ 6—5/2]2n+1
1|a| 2n+1 ] W—iAE/\alJrn—l/Z
=-G%4zx dw————. 61
wn(5e) ) o (1)

Examining the above integral in a similar manner as in the last section we note that it is still of the form [’fv__ﬂﬁg but with odd

integer 6 and with y being an odd integer multiple of 1/2. Let us also note that y — & will also be an odd integer multiple of
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1/2. The effect of this will be an alternating sign in the sum over the residues leading to a different thermal distribution.

Hence
wibtr 2w = ! wibtr
d - —1p
/ Yw—1p (5—1)!;dw5‘1 [[W ] [w—l]é]wz .

_ 2mi (1 B iﬂ+]/ io: —if+y— 6+1 Jiteo
(6= DIT(=if+7y—56+2)

_ 27i (1 - lﬁ—’_y i 2rof+i2no(y—5)
(6—I)T(=ifp+y—-5+2)
2z T(1—if+y) !

(—IT(=ip+y—-56+2) > +1
2@ T(ip-y+6-1) 1
S (6=-1)!  T(ip-y) e 4+1’

(62)

Again we used the properties of 6 and y to manipulate the gamma functions in the last line. Then, utilizing the above
formula, the integral in Eq. (61) yields

/d woiAE/laltn=1/2 2pi T(IAE/|a| +n+ 1/2) 1
W _

= . 63
b 1P (2n) I TGAE/|a| + 1/2 — n) 28l § | (63)
The expression for the power radiated by the ith particle is then given by
S, = —Glax ila\?*+! 1 2zi T(iAE/|a|+n+1/2) 1 . (64)
2n la| 2n)! T(iAE/|a| + 1/2 — n) 2*AE/lal 4|
We again use the Pochhammer identity F%J;)”) = j?;é(x + j) with the identifications x = iAE/|a| + 1/2 —n and

a = 2n. As such, the above gamma functions yield a cleaner expression. Thus

T(iAE/|a| +n+1/2) %

TGAE/|a[+1/2—n) ]1:[0 AE/|a] +1/2 —n + j)

1:[ (lAE/|a| +£/2)

od
2n—1

= [I GAE/lal + £/2)(iAE/|a| - £/2)

Coaa=1

N A, 2
=(— 14 (£/2
() IL [ ene()
odd—
IAE\ 2" 1 2k +1\2/ a \?
= 1 — == |- 65
() T () (o) &
Using the same double factorial identity (2x)!! = 2*(x)!, we find that the power radiated by the ith particle is given by

o) 1+ (7)) T €

We see that the above power radiated is characterized by a fermionic distribution as well as the half-integer indexed
polynomial of multiplicity. The root cause of this change in statistics is the fact that we had poles of odd integer order rather
than even integer order as in the transition rate. The first few normalized power functions, S = &/ Gﬁ, are then given by

i

~
Il
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e GE)' + % @R

2 AE/la] 1

. AE* 1 +3(5%) + 15 (3%)*
Sz(AE, a) _ R 2 EAAE; 16 (AE)
967 e?AE/lal 41
AEC 143
3,(AE, a) = TR
115207°
AES  1421(&
S4(AE.a) = 21
25804807

We note that the n =1 case, along with AE =0 as
determined in [18], reproduces the known a? dependence
for the power emitted by bremsstrahlung. The plots of the
power radiated for both transitions up and down in Rindler
energy can be found in Figs. 4 and 5 respectively. Note that
the power radiated diverges in the case of a positive energy

107 co b b b b b b b by g
0 2 4 6 8 10 12 14 16 18 20

a

FIG. 4 (color online). The normalized power radiated, Eq. (67),
with @ = a/AE and AE = —1.

102 1 b b b b b e L
2 4 6 8 10 12 14 16 18 20

a

FIG. 5 (color online). The normalized power radiated, Eq. (67),
with @ = a/AFE and AE = 1.

)2+9g7( ) +3229( E)6+l;(5)§5(ALE)8

27 AE/|a] 1 (67)

|
transition. This reflects that inertially stable particles do not
transition up in energy and radiate energy away.

VIII. ENERGY SPECTRA

Utilizing the same prescription, we now endeavor to
compute the energy spectrum of the ith Minkowski particle
emitted in the transition process. The transition rate from
Eq. (16) characterizes the probability per unit time that a
transition will occur. The differential transition per unit
energy then characterizes how the probability of emission
changes with energy, i.e. the spectra. Therefore we begin by
taking the derivative with respect to the ith particle’s proper
energy. Hence

n

xanG xx

m#i

ar _d ., —iAEg/an 1,/
i~ o, G2 /dge [1 Gzl «]

m=1
— G2 l/dé: —lAE/:/a
"a

(68)

Again, we have separated out the relevant variant of the
Wightman function for the observable we are calculating.
Referring to Egs. (34) and (38) for the Wightman function
and its derivative respectively, the above energy spectra
reduce to a more convenient form. Hence

£, x] HGixx

m#i

dr
da,

— G2 l/df —zAEé/a
"a

@ e—i(baf
(27)?

:GZE/dée—iAEf/a
"a

a2 1 n—1
- {‘ (4x)? sinh?[¢/2 — sgn(a)i J
0 w

—¢ <2;r>2 (477) ; |a|/ @

e~ ((AE+®)E/|al

X .
sinh?("=1[E/2 — ie]

(69)
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Note in the last line that we enforced the invariance of the
above integral under a change in sign of the acceleration.
We have encountered similar integrals for both the tran-
sition rate and the power radiated. It is worth noting that the
difference is that the frequency variable which we are
Fourier transforming with respect to has shifted via
AE — AE + @. We can evaluate the n =1 case quite
easily at this point. Hence

dl’ o 1 . .
S) =Gt [ dgeierse
(dw) 7 2|a|/ e

- 226(AE +@). (70)

The above expression is merely a statement analogous to
Fermi’s golden rule. Note that the presence of the delta
function serves to enforce conservation of energy in the
case of one particle emission. This implies that when there
is only one Minkowski particle emitted that the radiated
particle, as measured in an inertial frame instantaneously at
rest with the accelerated particle, carries away the total

change in the Rindler space energy. For the higher
|

ar_
doo

T

G2 (AE+a\>3 1
(27)? (4n —6)11
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multiplicity cases we rid ourselves of the regulator and
note the similar pole structure of order 2(n — 1) when
& = 2ric with integer ¢ > 1. Finally, we make the same
change of variables w = e to obtain

dar 2 @ n—1) —i(AE+®)&/|al
dio " (2n)? < ) la| / smh2 n=1[E/2 — ie]

_ G2 @ ia) 2(n=1) / —i(AE+®)E/ |al
"(27)? \2n la| e§/2 ¢E/2)2(n=1)

i(AE+@)/|a|4+n-2
(" 1)

=G5 "
()

The above integral can be evaluated using the integration
formula from Eq. (44) provided we make the relevant
identification of the indices S, y, and 6. Moreover, since the
y is an integer and ¢ is an even integer, the Pochhammer
identity holds as well. Thus, by making the identification of
n — n — 1 from the transition rate, we may merely quote
the final form of the spectra. Hence

n—=2

(2 !
kH + AE + @ eZﬂ(AE+(Z))/\a| -1

=0

(72)

Here we find a bosonic thermal distribution at finite chemical potential and a polynomial of multiplicity characterized by
an integer index. It is interesting to note that the total change in Rindler space energy is identified as the chemical potential
of the thermal bath. Recalling the above spectra gives the probability of emission per unit energy per unit time, we note that

it needs to be normalized via £ 4L =

averaging. Below we write out the first few spectra normalized to the coupling via

sections. Hence

T = N This serves to scale the overall spectra and remove the effective differential time

1

e 4 = A as in the previous

N(AE.a,&) = %6(AE + @)

N(AE, a,&) = @(Aé; @) 62,,<AE+;))/\L¢\ 1

b - SOEL Lt

N 5(AE. a. i) = DAE+ @) 1+ 14(55)” + 490as)* +36(55)" )

25804807°

In Figs. 6 and 7 we show the spectra normalized by the
transition rate, i.e. \V;, of the ith particle emitted for both
transitions down and up in Rindler energy respectively. It is
interesting to note that regardless of the sign of the
transition energy, we find Planck-like spectra for all
multiplicities greater than 1.

e2n(AE+&))/\a\ -1

IX. DISPLACEMENT LAW

To better characterize the spectra, we can also look at the
peak energy of the emitted Minkowski particle for each
multiplicity greater than 1. In the interest of determining the
maximum of each peak via setting the derivative equal to
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FIG. 6 (color online). The normalized spectra, N'; = %ﬂ with

a=1and AE = —1.

zero, we can drop all prefactors and focus only on the
energy dependence. Labeling the spectra polynomial of
multiplicity M,, = []}=5 [ + k*(57%z)*] we have

G @(AE + @) 3 M,,
T 2(BE+a) /4, _ |

(74)

Then, by taking the derivative with respect to @ and
setting it equal to zero, we find

{(AE%—&)) +o(2n—3)+d(AE+ @) /\Aﬂ

« (2HOED)/0] _ 1) = (A + i) 2= 2B ] —

|al
xe* [ 1 L@ 3)_’_|a|x/\/l'n] 0
n— _— =
X _ _%ﬂE :
=1 |1 ol 27 M,
(75)
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FIG. 7 (color online). The normalized spectra, \/; = %jﬁr with

a=1and AE = 1.
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Note in the last line that we defined the dimensionless
parameter x = 27”‘(AE + @). Now we must evaluate the
logarithmic derivative of the polynomial of multiplicity.
Hence

M d
T=—InM
M, do "

d n—2 2
2
T da nH [1+k <AE+w> ]

k=0

n=2 2
d ln{l—l-kz( a H
d = AE + @

B 2a? ”zf K2
(AE+0) &= 1 + K (555)°

LAEPEE

|a| =1+ k(%)

Then, combining the logarithmic derivative with
Eq. (75), we obtain our numerically solvable displacement
law which allows us to determine the peak energy of the
emitted Minkowski particles. Hence

xe* 1
- L_M—I—(Zn—ﬁ

e —1 ol
27\ 2172 K2
2= =0 77
() ;Hk%a—”)z] )

Then, in terms of the numerically solved x, we find that
the peak energy is given by

= xM — AE. (78)
2r

Thus we have shown that the emitted particle’s energy, in
the limit of high acceleration or zero change in the Rindler
space energy, is directly proportional to the accelerated
temperature, i.e. @ = xt,. This is in agreement with Wien’s
displacement law but now with a more general transcen-
dental equation to determine the displacement constant.
Moreover, this implies that acceleration may have an
energy associated with it that is quantum mechanical in
nature. By reinserting all relevant physical constants, we

find the energy of acceleration E, is given by

_ van (79)

¢ 2xc

The acceleration dependence of the energy of the emitted
particles would have a clear signature at sufficiently high
accelerations. Advanced experimental systems could be
coming online in the coming years that may be able to
verify these effects [13].
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X. CONCLUSIONS

In this paper we have established a computational
framework capable of computing various observables of
acceleration-induced particle physics processes. To better
analyze physically realistic settings, a time-dependent
formalism was developed to compute the spacetime quan-
tities that go into the Wightman functions and its variants.
These were then used to compute the transition rate,
multiplicity, power radiated, energy spectra, and displace-
ment law for accelerated decays and excitations of arbitrary
final state multiplicity. We found the transition rate, power,
and spectra are characterized by integer and half-integer
indexed polynomials and thermal distributions of both
bosonic and fermionic statistics. For the spectra, we found
the total change in Rindler space energy plays the role of a

PHYSICAL REVIEW D 92, 024019 (2015)

chemical potential of the thermal bath. The displacement
law for the spectra predicts the peak energy of the emitted
Minkowski particles have a proper energy proportional to
the accelerated temperature. This implies that there may
exist an energy, of quantum mechanical origin, associated
with acceleration.
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