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The old and much-debated question, whether a charge in uniform accelera- 
tion radiates, is discussed in detail and its implications are pointed out. Many 
contradictory statements in the literature are analyzed and those answers 
which can be given on the basis of the standard classical Maxwell-Lorentz 
equations are presented. Although the questions that remain open are diffi- 
cult and fundamental, some simple results can be proved: Contrary to claims 
in some standard sources (Pauli, von Laue), a charge in uniform acceleration 
does radiate. The radiation rate is finite? invariant, and constant in time in 
the instantaneous rest system. There is no contradiction of this fact with 
either the principle of conservation of energy or the principle of equivalence. 
Finally, the group of conformal transformations is found to be not physically 
meaningful. 

1. WHAT IS THE PROBLEM? 

Just fifty years ago, in 1909, Born published a paper (1) on the relativistic 
motion of a uniformly accelerated charge’ (hyperbolic motion). In particular, 
he derived the electromagnetic fields associated with this motion. On the basis 
of these solutions of the Maxwell-Lorentz equations, Pauli then gave a simple 
argument (2)) according to which such a charge does not produce a wave field 
and correspondingly cannot radiate. Van Laue too mentions that there is no 
radiation (3). This conclusion seems to have been confirmed by the discovery 
that the Maxwell equations are invariant under the group of conformal trans- 
formations (4)) of which the Lorentz transformations are a subgroup. Since the 
conformal group contains in particular the transformation from rest to uniformly 
accelerated motion, it is concluded that such a motion cannot be associated with 
the (irreversible) emission of radiation. The defining equation for a conformal 
transformation yields the immediate result that the conventional form of the 
radiation reaction vanishes identically, and since it vanishes, it seems that the 
radiation must vanish as well. 

Apparently, quite independent of Born’s work, Schott also derived t,he fields 
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of a charge in hyperbolic motion (5) and concluded from his solutions that there 
is radiation (6). His work was discussed in further detail by Milner (7). Neither 
Schott nor Milner ever refers to Born’s paper. Nor does Pauli mention Schott’s 
conclusion that there is radiation. 

More recently, Drukey (8) published a short note, presenting arguments in 
favor of radiation and apparently disproving previous arguments to the con- 
trary. Finally, Bondi and Gold (9) have asserted that the Born solution did not 
treat the singularity of the potentials on the light cone correctly. They eliminated 
this difficulty by adding a d-function to Born’s solution, and they claimed that 
this b-function provides proof for the radiation from a uniformly accelerated 
charge. They also point out that the fact that there is radiation leads to a con- 
tradiction with the principle of equivalence, because the emission of radiation 
would permit an observer to distinguish between the free fall of a charge in a 
gravitational field and its motion in field free surroundings. They resolve this 
contradiction by arguing that hyperbolic motion requires an infinite homoge- 
neous gravitational field and that such a field does not exist in nature. 

As the above brief sketch indicates, the problem of radiation from a uniformly 
accelerated charge is a very controversial one. Clearly, the difficulties do not lie 
in the computations involved, which are elementary, but rather in the under- 
standing of the physical meaning implied in the equations, their solutions, and 
the conditions imposed on these solutions. Nor have many of the basic questions 
been satisfactorily answered, since the literature of the subject contains many 
discursive and qualitative, rather than rigorous and detailed arguments. Some 
of the unsettled questions are: Is Pauli’s proof in error? If it is correct and if 
therefore uniformly accelerated charges do not radiate, where does the proof of 
the well-known radiation formula, found in the standard textbooks, break down? 
The standard formula implies that a charge will radiate whenever its acceleration 
does not vanish. On the other hand, if Pauli’s proof is incorrect, where do the ar- 
guments based on conformal invariance break down? Can radiation be emitted 
when the radiation reaction vanishes? How can energy be conserved if the radia- 
tion reaction is zero, and the work done by the external field equals the change 
of the kinetic energy of the particle? In connection with gravitation such ques- 
tions arise as: “Do charged and neutral particles fall equally fast in a uniform 
gravitational field? ” “Is there a contradiction between classical electromagnetic 
theory and the principle of equivalence in this case?” 

We see that this problem involves basic concepts and principles both of classi- 
cal relativistic electrodynamics and of general relativity. 

The purpose of the present paper is to answer the questions raised above 
within the framework of generally accepted theory. Thus, we plan to prove such 
statements as the following: 

“If the Maxwell-Lorentz equations are taken to be valid, and we consider re- 
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tarded potentials only, and if radiation is defined in the usual Lorentz invariant 
manner, a uniformly accelerated charge radiates at a constant nonvanishing 
rate.” 

Or: “If one accepts the equations of motion based on the Abraham four-vector 
or on Dirac’s classical electrodynamics, the radiation reaction vanishes, but en- 
ergy is still conserved.” 

We furthermore point out the theoretical framework necessary in order to 
answer the various questions raised in the literature, and we show that within 
one of the possible known theories a consistent treatment of the problem can 
always be given and all apparent contradictions can be removed. Thereby we do 
not necessarily mean to advocate any single one of the theories of the classical 
electron. At the same time we do not of course question the validity of Maxwell’s 
equations in the classical domain. 

Our emphasis will be on rigorous calculations based on standard classical 
electrodynamics and Lorentz invariance, rather than on discursive arguments. 
In the following sections we consider first the consequences of the Maxwell- 
Lorentz equations (Sections 2 and 3)) then the relativistic equations of motion 
for a charge (Section 4)) and finally the problems raised by the theory of gravi- 
tation (Section 5). In the last section we summarize our conclusions and suggest 
directions for future work. 

2. POTENTIALS AND FIELD STRENGTHS 

A particle is said to be in uniformly accelerated motion when it experiences 
constant acceleration [a” = (0,a’) , a’ = const.] in its instantaneous rest system 
S$)‘P = ( 1,0,0,0)].2 Such motion can be produced by a constant, homogeneous 
gravitational field or, when the part)icle is charged, by a constant, homogeneous 
electric field. (See Eq. (4.4) below.) 

The assumption that such a motion is possible for a finite period of time implies 
that the field equations (i. e., the Maxwell-Lorentz equations) and the equation 
of motion of the charged particle, when solved simultaneously, have this motion 
as a solution. Since the simultaneous solution of these equations is difficult, we 
assume the motion in question to be a possible solution and verify this assumption 
by studying the field equations and the equations of motion separately. 

Let S be an inertial system in which the motion of a particle is described by 
r(t) and v(t) = dr/dt = i. If this particle is to be uniformly accelerated according 
to the above definition, then 

(1 - V2)V + 3+(+-v) = 0 (2.1) 

2 We use the metric g”’ = (--l,l,l,l) for p = Y = 0,1,2,3; and g’” = 0 for fi # P. We put 
c = 1 but otherwise use Gaussian units, since we shall be concerned primarily with fields, 
not with field equations. 
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is equivalent to this definition (4). As was shown by Hill, the solution of this 
equation is exactly the four-dimensional group of conformal transformations in 
space-time. Let a’ be in the direction of the z-axis, i, and choose S such that 
+v or -v will always be in the direction i. Then the only nontrivial case of 
uniform acceleration (a’ # 0) is that of hyperbolic motion, Without loss of 
generality we can assume that at t = 0 the particle is at z = Q: > 0. Then 

(2.2) 

and one easily verifies that 1 a’ ( = l/a. (See Eq. (4.4) below.) 
Given the motion (2.2) of a charge e, the electromagnetic fields produced by 

it are determined by the Maxwell-Lorentz equations. Their formal solutions are 
the Lienard-Wiechert potentials 

ApP = e&; R” = (t - tQ,r - rQ), 
Y 

(2.3) 

where P: (t,r) refers to the observation event (field point), Q: (to , rQ) to the 
emission event (source point), and Y,’ ’ is the “retarded” four velocity. The ob- 
servation time is related to the emission time by the causality condition 

t- tp = R = 1 r - rQ 1 > 0, (2.4) 

which is implied in (2.3) and which assures that (2.3) refers to the retarded 
potentials. 

Because of the equation of motion for the particle, rQ is a function of t4 , and 
because of the causality condition (2.4), to is an implicit function of P. One can 
therefore express AfiP explicitly as a function of T and t only. (In the following 
we shall omit the superscript P.) The motion (2.2) then gives 

Shz,t> = e 
z<p” + 2” + a2 - t”) - ,g 

,$(z” - P) ’ 
(2.5) 

A,B=A+B=O; A=B(~,~,~) = et(p2 + 2” + a2 - t”) - &, 

‘gz” - P) 

,$ = +[(a2 + t2 - p2 - 2”)” + 4a2p2ji’2, 

where we have used cylindrical coordinates p, c$, z. The field strengths follow by 
differentiation : 

E,B = 0, 

EzB = -e.4a2(a2 + t” + p2 - z”)/p, 

EpB = e .8a2pz/E3, 

HpB = HzB = 0, 

HdB = e.8Cr2pt/t3. 

(2.6) 
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FIG. 1. Forward light cone from a source point & during hyperbolic motion 

The causality condition (2.4) is always appended to the Lienard-Wiechert 
potentials (2.3). However, it is lost in the Eqs. (2.5). The reason for this is that 
R has the form: 

R = s[.@ - t(cx’ + t” + ; - z2)]/(z2 - t”), 

and there is no restriction on z, p, t which would prevent R from becoming nega- 
tive. Since R > 0 (R < 0) is equivalent to z + t > 0 (z + t < 0) , we must 
add to the solutions (2.5) and (2.6) the causality condition that these solutions 
are restricted to z + t > 0. That the causality condition is equivalent to the 
statement .z + t > 0 can be seen from Fig. 1. We have plotted the geodesic of 
the particle in this diagram. The intersection of a typical future light cone with 
the z-l plane is also illustrated. It is clear from Fig. 1 that the family of all future 
light cones must lie in the region x + t > 0. 

This restriction to z + t > 0 was apparently overlooked by Born, or at least 
was explicitly stated first by Schott. The results (2.5) and (2.6) without the 
restriction are thus referred to as the Born solution and have been labeled accord- 
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ingly. The Schott solution is identical with the Born solution except for the re- 
striction to the space-time region .z + t > 0. 

The Born solution therefore does not describe the fields of our problem. Rather, 
it describes the retarded fields of a particle of charge e performing the motion 
z = 4~~2 + t2 (as in our problem) for x + t > 0, together with the advanced 
fields of a particle of charge -e performing the motion z = - 1/$ + t2 for 
z + t < 0. This point was discussed by Milner (7). 

It should be noted that the causality condition restricts our solutions to the 
open region x + t > 0 rather than the closed region z + t 2 0. (Note that fields 
on z + t = 0 would have to have been emitted at a time t = - 00 when the 
charge was moving on the light cone at z = + ~0. A particle of finite mass can 
only approach the light cone but cannot reach it. Another way of seeing this 
exclusion of z + t = 0 is to note that, although the Maxwell-Lorentz equations 
for F”’ as given by (2.6) are satisfied in the open region z + t > 0, they are not 
satisfied for z + t = 0 if (2.6) is assumed to be valid in the closed region z + t >_ 
0 (with F”’ = 0 in z + t < 0). 

Bondi and Gold (9) required that the field equations be satisfied everywhere, 
and modified the Born solutions by using a limiting process. Their resu1t.s can 
be obtained much more easily by adding an undetermined function to the Born 
solution such that (2.6) holds for z + t > 0; F” = 0 for z + t < 0, and the mod- 
ified solution satisfies Maxwell’s equations also for x + t = 0. One then finds that 
such a modification is unique and yields 

E++, = 0, H, = H, = 0, 

E, = EpBe(z + t> + s2 Hz + t>, (2.7) 

E, = EzB 0(x + t), 

H+ = HdB e(z + t) - -?k- S(x + t). 
P” + ff2 

The function 0(z) is defined by 

1 for 2’ > 0 

e(z) = s for 2’ = 0 

0 for X0 < 0, 

and 6 is the Dirac delta-function. The result (2.7) agrees with that of Bondi 
and Gold, except for a sign in E, (which seems to be a misprint) and the ab- 
sence of the e-function in their work (which modifies the fields at z + t = 0.) 
The fields (2.7) satisfy the Maxwell-Lorentz equations everywhere and contain 
the causality condition (2.4) implicitly. 

The Bond&Gold field strengths (2.7) can be derived from potentials which 
are suitable modifications of (2.5)) viz., 
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$J = &9(z + t) - e ln 
(2.8) 

A, = A, = 0, A, = A,Be(z + 6(z + t> , 

and which differ from the LiBnard-Wiechert potentials. The Libnard-Wiechert 
potentials are not valid in our case at x + t = 0, because their derivation as- 
sumes that the source is not at infinity. On the other hand, as mentioned above, 
the fields 1t2.7) and potentials (2.8) for x + t = 0 arise from the time t = - 00 
when the charge was at x = + m (see Fig. 1). 

Actually, a hyperbolic motion should be regarded as asymptotic in the sense 
that the times tQ = f 00 can only be approached but never reached. This corre- 
sponds to restricting the domain of validity of the fields (2.6) to the region 
x $ t > 0. In this way, one avoids the unphysical event, zQ = f CQ, tQ = - 00, 

where a particle of finite mass has exactly the velocity of light, and is being de- 
celerated. Admittedly, this is possible within the framework of Maxwell’s equa- 
tions, but in view of the fact that eventually the motion is also to satisfy certain 
relativistic equations of motion, this event must be excluded. In any case, we 
shall see that the question of whether there is radiation during the hyperbolic 
motion has nothing to do with whether (2.6) or (2.7) is adopted. For these rea- 
sons we feel that the modification suggested by Bondi and Gold is not physically 
meaningful, and any conclusions drawn from it do not necessarily apply to 
emission times t # - 00. 

What are the fields seen by an observer in the inertial frame which is the 
instantaneous rest frame of the charge? We note that at time t = 0, v = 0 in 
S so that S is the rest system of the charge at a particular instant. The fields 
present at that instant, however, are the fields produced before the charge reached 
the position z = (Y and are therefore much more complicated than a pure Cou- 
lomb field. Let S’ be another inertial system which moves along the z-axis with 
velocity v (v < 1) relative to S. Since hyperbolic motion involves all velocities 
v (v < 1)) there will be an instant t in S for which S’ is the rest system. A Lorentz 
transformation to that system shows that this instant occurs at t' = 0 and that 
then the charge is at z’ = LY. One easily verifies that the complete hyperbolic 
motion remains invariant. In particular, the fields in the frame S’ satisfy the rela- 
tion 

F;“( pt 4’ 2 t’) = FPY( p’ $fJ’ 2’ 2’) ) (2.9) 

i.e., they are form invariant in any inertial frame. 
Now the Born solution is obtained from the Maxwell-Lorentz equations with- 

out the restriction of the causality condition. Therefore, since these equations 
are invariant under conformal transformations, the Born solution must also be 
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so invariant. The form invariance of F” could therefore have been anticipated. 
However, the Born solution is a sum of retarded (for z + t > 0) and advanced 
(for x + t < 0) solutions for two charges, as explained above, and only this par- 

ticular combination remains invariant under conformal transformations. The re- 
tarded fields alone (Schott solution) remain invariant only under Lorentz trans- 
formations. The causality condition therefore restricts the symmetry of the 
fields to this proper subgroup of the conformal transformations. This fact seems 
to indicate that-at least within the framework of special relativity-conformal 
transformations do not play a fundamental role in physics. (A more detailed 
discussion of this point is given in the Appendix.) 

3. DOES A UNIFORMLY ACCELERATED CHARGE RADIATE? 

In order to answer this question it is necessary first to define what we mean 
by radiation. If one thinks in terms of quantum mechanics, a photon, when 
emitted, can be registered by a counter which is located at a large distance from 
the source. Clearly, such an effect can be seen by every observer. For this reason 
it is natural to try to define radiation in classical mechanics in a way that is in- 
variant at least for all inertial observers. Furthermore, this definition must be 
such that it reduces to the conventional definition in terms of the Poynting vec- 
tor in the rest system of the source. 

Let 

4?rT” = -F”XFvx + ~g”‘FX”Fx~ 

be the energy-momentum tensor of the radiation field, such that Tko = --Sk 
where S = ( S1 , SZ , Sg) is the Poynting vector.3 Let vs’ as before be the velocity 
four-vector of the source of radiation at the instant when radiation is emitted 
(retarded velocity). Let n’ be a space-like unit vector (orthogonal to vqp) . Then 
we adopt the following definition (10) for the energy flux density emitted at the 
event Q in a direction determined by n’: 

I = T”‘v,,~ n, . (3.1) 

In the inertial system So where n” = (0,ii) and vgc = (l,O,O,O) (i.e., iSo is the 
rest system at the instant of emission), 

I = s-ii. (3.2) 

At each instant, the space part of the light cone is a light-sphere whose radius R 
will be large for large times and on whose two-dimensional surface element d2a 
(with normal fi) I is given by (3.2). 

3 Poynting’s theorem, i. e., the fourth component of the conservation law a/f”“ = 0 holds 
not only for the Schott solution, but-at least formally-also for the Bondi-Gold modifi- 
cation (2.7), although its verification involves squares of b-functions. Poynting’s theorem 
therefore does not provide an argument against the Bondi-Gold fields. 
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The tota. rate of radiation energy emitted at time tQ is found by integrating 
invariantly over the surface of the light sphere in the limit of infinite R = t - tQ 
for a fixed emission time tQ 

CR= 
s 

T”Yv,Q nV c12a (limitR-+ w,fixedtQ). 

From (3.2)) we have in the inertial frame SQ 

(3.3) 

CR= J S.fiR’dQ (limitR+ oo,fixedtQ). (3.4) 

If this limit is finite we say that there is radiation. Otherwise, i. e., when CB --, 0 
as R + CO, no radiation is emitted. 

Two remarks should be made in connection with (3.4). One remark refers to 
the interesting fact that (3.4) is valid also in any other inertial system, provided 
that a factor dt/dtQ is inserted in the integral. This factor is to be computed from 
the causality condition (2.4) and has the physical meaning of making (R an 
energy rate, dW/dtQ , relative to the source time tQ . It is not obvious that 
dW/dtQ is a constant equal to CR for hyperbolic motion, since dW is the time- 
component of a four-vector. However, the calculation below will prove this fact. 

The other remark concerns the important point that R is defined as a limit for 
fixed tQ , i. e., both R and t  must approach 00 so that the causality condition 
(2.4) continues to hold. With this end in mind, t  is first eliminated by the use 
of (2.4) and then the limit R 4 00 is taken. 

It is worth emphasizing that a in (3.3) is an invariant despite the fact that 
the integration extends over a two-dimensional spherical surface. The reason is 
that this spherical surface is the light sphere, which is an invariant. Note, how- 
ever, that (R is not necessarily a constant, but a function of the source point Q, 
i.e., of the proper time, 7Q . As we shall see presently, in hyperbolic motion & 
actually is a constant. 

The radiation rate C% can be computed quite generally for any given source 
point Q of given v”(r), using the corresponding Lienard-Wiechert potentials. 
One finds (10) 

CR = S$e”a,a”, (3.5) 

where aQp = dv,‘/dr is the (retarded) acceleration four-vector of the source. 
Equation (3.5) is clearly an invariant. 

In our particular case it is of some interest to carry out this calculation explic- 
itly. The fields (2.6) yield 

S = & (E X H) = -& &(E,,i - E,fi), 
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n 2. 
____- 

R’ 
R = pb + (z - & + t$) i; 

dt -=l++=l-vQ.icose=1-vQ*~; 
& 

case = i*fi.. 
Q 

After substitution, one finds 

sin” e/R2 
41 ’ (z/a2 + to2 - tQ cos e)“’ 

Integration gives 

(R = ; e2+*2 1 
[l - (vq’;)2]3* 

(3.6) 

Equations (3.6) and (3.7) are just the formulas which appear in standard text- 
books on electrodynamics ( 1 I ) . 

Using (2.2)) 
2 

vQ = (*2 +* to”)“‘“’ VQ’i = &2tr, @’ 

one finds 

@,28 
3 cY2’ 

(3.8) 

which, of course, is (3.5) for our special case. Thus, C% is independent of & and 
always has the same value as in the rest system. 

We learn from this discussion that a charge in uniformly accelerated motion 
emits radiation at a constant rate (3.8) (in terms of retarded time) and with a 
radiation pattern given by (3.6). 

Several questions can now be answered. First, it is clear that, according to 
our definition of radiation, every inertial observer will see exactly the same radia- 
tion intensity and same radiation rate. Radiation cannot be transformed away 
by a Lorentz transformation. 

Secondly, it is clear that the radiation rate (R can be computed for any arbitrary 
event on the hyperbolic world line. Consequently, the fields on z + I = 0 never 
enter this consideration. This means, in particular, that the result (3.8)) (R # 0 
follows from the Born solution in the region z -I- t > 0 irrespective of the value 
of this solution in the region z + t 5 0. According to Bondi and Gold (9)) radia- 
tion is emitted at t = - m (producing the fields on z -I- t = 0) ; but nothing is 
proven concerning radiation emission at any other time. Our results prove that 
radiation fields are produced at every instant throughout the motion. Further, 
as we have already discussed, there is no physical meaning in the fields on 
z -I- t = 0 or in hyperbolic motion at t = - m . 
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Thirdly, it has now been shown by explicit calculation that Pauli’s argument 
cannot be valid. Indeed, Pauli argues that since H = 0 at t = 0, “hyperbolic 
motion constitutes a special case, for which there is no formation of a wave zone 
nor any corresponding radiation (2) .” We note, however, that in this statement 
a limit to large distances (R -+ ~0 ) is implied at a fixed time (t = 0). This limit 
is not in accordance with the definition of radiation. Following this definition, 
Eq. (3.3)) the limit R -+ 00 is to be taken for a fixed source point ( tQ fixed), 
implying a limit t -+ 00 as well. It can easily be seen that the two limiting proce- 
dures do not give the same result. Pauli’s limit of SR2 vanishes for any fixed time 
t; for the time t = 0, where S = 0, it is simply a special case where this limit 
vanishes trivially. On the other hand, the limit of SR2 does not vanish when to 
is held fixed. We conclude that the fact, that H = 0 at t = 0, is unusual for ac- 
celerated motion and of some interest, but it has nothing to do with the presence 
or absence of radiation. 

4. HOW CAN ENERGY BE CONSERVED? 

The question of energy conservation involves the kinetic energy of the radiat- 
ing charge. It is therefore linked in an essential way to the equation of motion 
of this charge. Everything said so far was independent of the particular equation 
of motion which an accelerated relativistic charged particle satisfies. 

At this point, however, we are looking in vain for a generally accepted equation 
which, like Maxwell’s equations, has been confirmed over and over again. In 
fact, only two different approaches to the ‘problem have been studied in detail, 
both of which lead to the same equation of motion. Neither approach is very 
satisfactory. One is the expansion method of a finite sized electron in which the 
first two terms lead to the electromagnetic self-energy and the Abraham radiation 
reaction four vector. The other follows from Dirac’s classical electrodynamics 
(12). Both lead to the equation of motion: 

(4.1) 

(4.2) 

If the externally applied force is electromagnetic, then 

FL = eF”“v, 
is the Lorentz force. 

(4.3) 

The important point about Eq. (4.1) is that we do not need to accept it. But 
if we do not accept it we cannot answer any question concerning energy conser- 
vation. On the other hand, if we do accept it, we are also forced to accept all the 
immediate consequences of this equation. 

Let us therefore assume for the moment that (4.1) describes correctly the 
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motion of a moving charge. Then we notice first that for uniformly accelerated 
motion I+ = 0 

[Proof: The four-vector v’ = dx”/dr = (y,O,O,yv.) = [( 4012 + t2/~1),O,O,t/cu)] 
upon differentiation leads to a” = dv’/dr = -ydv”/dt = [t/~“,O,O,(l/$ + t2/a2)]. 
Thus, 

One more differentiation yields d2v”/dT2 = V”/CY’ = v’axa’, which establishes 
I’” = 0 in the inertial system S. Therefore I” = 0 in any system.] 

The physical meaning of I’” = 0 is that the force of radiation reaction vanishes, 
Thus, the equation of motion (4.1) simply becomes 

mF=p 
dr 

ext. 

The covariant force Fp is related to the (Newtonian) three vector force F by 

F” = r(F.v,F), 

since F’v,, = 0. Therefore (4.1)’ yields 

md(rv) = Fext, 
dt 

and with (2.2) 

which proves that the (Newtonian) force which produces uniform acceleration 
is a constant force. The acceleration it produces is 

d(q) 1 * I a~-=-~=a. 
dt CY 

Thus, the three-vector acceleration in S is constant and equal to the space-part 
of the acceleration four-vector in the instantaneous rest system S’, since a”’ = 

@,a’). 
This result permits us to dejine uniform acceleration in the inertial system S 

as that motion which is characterized by a constant Newtonian force Fext = 
md(yv)/dt. This definition is completely equivalent to the previously given defi- 
nition (see the beginning of Section 2) only for one-dimensional motion. 

We now turn to the discussion of energy conservation which is based on the 
zero-component of Eq. (4.1)’ and which will establish that a vanishing radiation 
reaction does not necessarily imply “no radiation.” 
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Let T = m(-r - 1) be the kinetic energy of the particle. Then the zero-com- 
ponent of (4.1)’ is 

dT FO,,t = !I!!!&. -r 

dr dr (4.5) 

Therefore, the rate of work done by the external force is exactly equal to the 
increase in kinetic energy of the particle, as we know it to be the case, for exam- 
ple, for a neutral particle in a static gravitational field. 

This conclusion seems to make the original question even more demanding: 
What supplies the energy which the particle radiates? Does (4.5) not prove that 
there cannot be radiation and that the usual notion is valid, viz., that no radia- 
tion reaction means no radiation? 

I” is the rate of work done by the radiation reaction. Consider I” in detail. 
In general (i.e., when one does not assume that the acceleration is uniform), 

da0 
- - ya,d 
dr 

; 

2 2 da0 
r0=3ez-yCR. 

(4.6) 

(R is the radiation rate (3.5) and is positive since a” is a space-like vector. We 
divide (4.1) by y (note that dt = yd7) and find 

(4.7) 

where 

Q = S$e”a”. (4.8) 

Thus, the equation of motion (4.1) leads to the energy conservation equation 
(4.7) for any motion. This equation has the following physical meaning: The 
rate of work done by the external force equals the rate of increase in kinetic en- 
ergy minus the rate of work done by the radiation reaction. The latter consists 
of two parts, a reversible rate dQ/dt which can be positive or negative, and an 
irreversible rate -a which is never positive. The sum dQ/dt - @ in general does 
not vanish. Since (R is exactly the radiation rate, one sees that the energy lost 
in the form of radiation is entirely accounted for by part of the work done by 
the radiation reaction. On the other hand, the remaining part of this work also 
supplies an additional energy Q which may be positive or negative. Apparently, 
Q is to be interpreted as part of the internal energy of the charged particle. Like 
its kinetic energy it can be increased or decreased. Q has been named acceleration 
energy by Schott (5)) since Q increases (decreases) when the velocity increases 
(decreases). 
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When the motion is periodic or bounded and one averages over sufficiently 
large times, the term dQ/dt vanishes. Thus, under these conditions, Q represents 
a fluctuating term and over long time intervals all the work of the radiation reac- 
tion goes into radiation. The same is true if one considers the energy balance be- 
tween an initial and a final state of motion which are equal. It is from these cases 
that the idea: “no radiation reaction means no radiation” arose. Most problems 
of interest are of this type, like classical charged harmonic oscillators or betatron 
orbits. Hyperbolic motion is not of this type. In general, however, there is always 
an instantaneous acceleration energy as a consequence of the equations of mo- 
tion (4.1). 

In the case of uniform acceleration, I” is zero, i.e., the total work done by the 
radiation reaction force vanishes. Therefore 

(4.9) 

Eq. (4.9) can easily be verified directly. The internal energy of the electron, 
m - Q, therefore decreases while energy is being radiated. 

This result seems to lead to a very unphysical picture : The accelerated electron 
decreases its “internal energy,” transforming it into radiation. Does this mean 
that the rest mass of the electron decreases? An observer for whom the electron 
is momentarily at rest (V = 0) will also find a” = yv.8 = 0 and therefore Q = 0. 
Thus we obtain the comforting result that the change in internal energy of the 
particle does not affect its rest mass. Rather, the radiation energy is compensated 
by a decrease of that part of the field surrounding the charge, which does not 
escape to infinity (in the form of radiation) and which does not contribute to the 
(electromagnetic) mass of the particle (13). 

No matter how one interprets the conclusions from (4.9)) there is no contra- 
diction with the principle of conservation of energy. If the emerging physical 
picture seems unsatisfactory, one can reject the equations of motion (4.1). This 
is a possible alternative, but then the question of energy conservation simply 
cannot be answered, because the equations of motion are unknown. It would be 
entirely inconsistent to accept the vanishing radiation reaction, but to reject the 
concept of acceleration energy, as long as both concepts derive from the same 
equation. 

A third alternative, in view of the generality of (4.7), is to exclude all cases 
where the average (dQ/dt),, # 0. This means that a motion which leads to 
(dQ/dt& # 0 is then a priori excluded as unphysical. In that case hyperbolic 
motion of a charged particle is not possible. Such a restriction seems rather arti- 
ficial and ud hoc, and one may prefer to discard Eq. (4.1). 
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5. DOES RADIATION IN HYPERBOLIC MOTION CONTRADICT 
THE PRINCIPLE OF EQUIVALENCE? 

From the last section we saw that if one accepts the equations of motion (4.1)) 
one concludes that there is no radiation reaction, i.e., I” = 0. The equation of 
motion for a charged particle in hyperbolic motion therefore differs in no way from 
that for a neutral particle, when both are accelerated by nonelectromagnetic 
forces. We conclude therefore that in a homogeneous constant gravitational 
field a neutral and a charged particle will follow the same trajectory with the 
same time dependence. In less precise but more picturesque language we could 
say, “If Galileo had dropped a neutron and a proton from the leaning tower of 
Pisa they would have fallen equally fast.” According to (4.1)) a charged and a 
neutral particle in a homogeneous gravitational field behave exactly alike, ex- 
cept for the emission of radiation from the charged particle. 

This, however, is just the point where the principle of equivalence enters. A 
particle which is falling freely in a homogeneous gravitational field should appear 
to an observer who is falling with it, like a particle at rest in an inertial frame 
(field free surroundings). If we consider a neulral particle falling in a homogene- 
ous gravitational field, this is indeed what happens. But when the particle is 
charged, the observer can establish the presence of a gravitational field by look- 
ing for radiation. If he observes radiation from the charge, he knows that he and 
the charge are falling in a gravitational field; if he observes no radiation, he knows 
that he and the particle are in a force free region of space. 

The solution to this apparent difficulty is to be found by considering an actual 
measurement of radiation, using our definition in Section 3. Radiation is defined 
by the behavior of the fields in the limit of large distance from the source. Cor- 
respondingly, an observer who wants to detect radiation cannot do so in the 
neighborhood of the particle’s geodesic. Rather, he must be at a large distance 
from it, where gravitational fields have different values. The principle of equiv- 
alence, however, is a locally valid principle, referring to the geodesic of the par- 
ticle, whereas the discussion above shows that any observation of radiation is not 
a local observation. This point is implied in the related argument given by 
Bondi and Gold (9) who first discussed this difficulty. 

Since all our considerations here refer to the framework of the special theory 
of relativity and, in particular, require the existence of inertial coordinate sys- 
tems, we are forced to consider the principle of equivalence from a similar point 
of view. Whatever gravitational field we introduce for the purpose of comparing 
it with an inertial field, we must be sure to have a distribution of distant stars 
which define our inertial systems. This means in particular that any homogeneous 
gravitational field is necessarily of finite extent, imbedded as is were, in an inertial 
coordinate system. We remark parenthetically that an infinite homogeneous 
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gravitational field does not exist within the framework of general relativity either. 
The nonexistence of infinite homogeneous gravitational fields assures that the 
observation of radiation (observer at large distance from the source) takes place 
outside the homogeneous part of the gravitational field.4 

To clarify the point concerning the principle of equivalence further, consider 
a particle in a gravitational field. Whether or not it will radiate depends solely 
on its acceleration relative to an inertial system S. If the gravitational field is at 
rest in 8, and if the particle is at rest in the gravitational field, there will be no 
radiation, because we have not only I’” = 0 but also a” = 0, so that a = 0 and 
& = 0. On the other hand, if the particle falls freely in the gravitational field 
(which is at rest relative to S) then there will be radiation. Such a consideration 
shows that these two cases are physically not equivalent. However, since radiation 
cannot be observed locally, they are equivalent locally. For gravitation theory 
only local equivalence is important. Once again, we could paraphrase the above 
discussion in less precise language by saying: ‘<An electron which falls freely in 
a uniform gravitational field embedded in an inertial frame will radiate, and one 
which sits at rest on a table in the same field will not radiate; and these two state- 
ments do not contradict the principle of equivalence.” 

6. WHAT REMAINS TO BE DONE? 

We can briefly summarize our conclusions as follows: First, within the frame- 
work of the Maxwell-Lorentz equations, a charge in uniformly accelerated mo- 
tion radiates at a constant and finite rate. Secondly, this radiation (like any 
radiation according to our definition) is Lorentz invariant but not conformally 
invariant. Thirdly, there is no radiation reaction, but there is energy conserva- 
tion, provided one accepts some equation of motion (Abraham-Dirac); one is 
then also forced to accept the physical picture emerging from this equation. 
Otherwise, i.e., without accepting an equation of motion no answer concerning 
energy conservation or radiation reaction can be given. Finally, there is no 
contradiction with the principle of equivalence. 

An experimental check of the validity of the equation of motion, or rather its 
consequences for the conservation of energy, is not feasible, since the ratio of 
radiated power to rate of gain of kinetic energy by a uniformly accelerated par- 
ticle is negligible unless energy increments of the order of the rest energy of the 
particle are imparted to it in distances of the order of its classical radius (14). 
The question of direct detection of the radiation from a uniformly accelerated 
beam of charged particles (say, by looking with a detector at the part of a 
bounded trajectory where uniform acceleration takes place) is a more difficult 
one to discuss and lies beyond the scope of this paper. 

The interesting questions at this point are the open questions. If one accepts 

4 Compare the discussion of similar ideas in Ref. 9 
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the equation of motion (4.1) as correct, what is the physical meaning of the 
acceleration energy and the apparently arbitrarily large depletion of the charge’s 
internal energy by radiation in the course of its motion? If one does not accept 
this equation of motion, what is the correct equation and the correct radiation 
reaction of a classical charged particle? 

The above questions are restricted to classical physics and to the framework 
of the special theory of relativity. One can extend the scope of the problem in two 
directions, toward quantum electrodynamics and toward general relativity. 

The coupled electromagnetic field and charged particle equations, though they 
lead by no means to a consistent theory in quantum electrodynamics, at least 
give correct answers in perturbation theory. It would therefore be interesting 
to study the problem of uniform acceleration in quantum electrodynamics, to 
see how the energy balance comes about. 

The extension to general relativity involves the difficult questions of the re- 
lationship of metric and electrodynamics. What does radiation mean within this 
framework? Does a finite curvature of space modify the above problems in an 
essential way? In particular, could it lead to an exclusion of all motions with 
d&/at # 0 in a natural way? What does energy conservation mean in this frame- 
work? 

Thus, we see that the questions that were answered all seem to have been very 
simple, but the questions that remain all seem very difficult. 

We gratefully acknowledge stimulating discussions with our colleagues at 
Johns Hopkins and elsewhere. 

APPENDIX6 

The conformal transformation of interest is 

2’ = X2(z’ - s2a”), 

x2 = [l - Zdz, + s2u”a,]-‘, (Al) 

where s2 =: x,,s?. This transformation satisfies s’~ = X”.s” and has the nonrelativis- 
tic limit (c -+ 00, /3 + 0, PC2 += g/2) 

t’ = t; r’ = r + $dgt2 , (A% 

where we defined a” = (O,@), 1 Q 1 = /3, ( g 1 = g. Thus, the space-part of d 
corresponds to one-half the nonrelativistic acceleration. 

Assume a“ = (0,0,0,1/a) and consider a point in the z-t plane. Its transfor- 
mation will be given by 

6 The following considerations originated in a discussion by one of the authors (F.R.) 
with Dr. F. Giirsey. It is a pleasure to thank Dr. Giirsey for his valuable comments. 
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2’ = + + ($ - (z - $1 
(2 - a)2 - t2 ’ (A31 
2 

t’ = 
(g - 1; - p’ 

This transformation obviously breaks down for t” = (z - a)“. Furthermore, t 
and t’ will have the same signs for t” < (z - cz)” and opposite signs for t” > 
(z - CX)“. A particle trajectory in S between t = - j z - CL 1 and t = + 1 z - a! 1 
will be mapped into an infinite trajectory in S’, between t’ = - ~0 and t’ = + CO. 

As an example, consider a particle at rest in S at a position z = ~$2. Its world- 
line is shown in Fig. 2(a). 

The transformation (A3) yields 

z’ = a 0 
; 2+t2 

a 
0 2 3 

-g -t2 

t’= a2t 
0 % 2 -t2 ) 

(A4) 

so that z12 - t12 = CY~. The world-line in S’ is therefore a hyperbola (Fig. 2b). 

(01 (bl 

FIG. 2. Transformation of a particle at rest (a) to uniformly accelerated motion (b) 
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Closer inspection shows that the world-line a-b-c-d-e in S is transformed into 
both branches of the hyperbola with jumps at b and d as indicated. In particular 
the whole right-hand branch b-c-d in S’ comes from the finite time interval 
b-c-d in S. 

One concludes that the transformation (Al) cannot be regarded as a physi- 
cally meaningful transformation of the world-line a-e into uniformly accelerated 
motion. Note, however, that in the nonrelativistic limit O( + 00, and the singular 
lines t” = (z - CX)” disappear. 

The example also explains why a conformal transformation always leads to 
fields of both branches of the hyperbolic motion. 

RECEIVED: November 9, 1959. 
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