
�

�

“jgt” — 2009/11/10 — 11:27 — page 61 — #1
�

�

�

�

�

�

Vol. 14, No. 2: 61–76

Removing Polar Rendering Artifacts in
Subdivision Surfaces

Ursula H. Augsdörfer and Neil A. Dodgson
University of Cambridge

Malcolm A. Sabin
Numerical Geometry Ltd.

Abstract. A polar artifact occurs in subdivision surfaces around high valency

vertices. It manifests as large polygons in an otherwise finely subdivided mesh. It

is particularly noticeable in subdivision schemes that have been tuned to improve

the appearance and behaviors of the limit surface. Using the bounded curvature

Catmull-Clark scheme as an example, we describe three practical methods by which

this rendering artifact can be removed, thereby allowing us to benefit from the im-

proved character of such tuned schemes.

1. Problem Statement

A subdivision surface is obtained by iteratively refining a coarse polygon mesh
referred to as a control mesh. Most control meshes include extraordinary
vertices, at which either more or fewer than the regular number of edges meet,
referred to as valency. A number of subdivision schemes are available with
Catmull-Clark [Catmull and Clark 78] and the Loop algorithm [Loop 87] being
the most commonly used schemes for quadrilateral and triangular meshes,
respectively. A typical subdivision process is linear and can be expressed as
a matrix multiplication with existing vertices to obtain a new, denser set of
vertices. The refinement matrix is referred to as the subdivision matrix. The
local subdivision matrix varies, depending on the valency and the subdivision
algorithm used.
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Eigenanalysis of the subdivision matrix provides us with information about
the subdivision surface in the limit. In regular regions, all good binary subdi-
visions schemes have a subdivision matrix that has a subdominant eigenvalue
λ = 1/2, which implies that edges in these regions reduce by half with every
subdivision step. At extraordinary points with larger than regular valency,
tuning of the scheme may require a λ that is very different than 1/2. Such
tuning should ideally be done with respect to the mathematical properties
of the limit surface, not in relation to any polygonal approximation. Indeed,
certain desirable properties, particularly bounded curvature, are only possi-
ble with λ greater than 1/2 [Augsdörfer et al. 06]. The practical outcome
of having λ greater than 1/2 is that the polygons around an extraordinary
point do not shrink in size as quickly as those in regular regions of the mesh,
and that the extraordinary vertex and its neighbors take longer to reach their
limit position [Sabin and Barthe 03].

A typical application will want to subdivide until every polygon is roughly
the size of a pixel on screen, but no further. For an initial mesh of 100 polygons
displayed on a 1000 × 1000-pixel screen, roughly seven subdivision steps are
needed. If there is an extraordinary vertex around which λ = 0.9 then, after
seven subdivision steps, while the majority of polygons will have edge lengths
on the order of a pixel, the edges radiating from the extraordinary vertex will
be of the order of (0.9/0.5)7 ≈ 60 pixels long. As a result the majority of the
surface will appear smooth while the region around the extraordinary vertex
appears faceted. An example can be seen in Figure 1.

Due to the polar artifact, there is a belief that subdivision schemes require
the subdominant eigenvalue λ to be the same around extraordinary vertices as
in the regular regions of the mesh [Barthe and Kobbelt 04, Zulti et al. 06, Ni
and Nasri 06]. By constraining the tuning of subdivision schemes to solutions
that fulfill this condition, we may prevent ourselves from finding the optimal
limit surface [Zorin and Schröder 00, pp. 95–97].

We show that the polar artifact is purely a rendering artifact caused by the
particular polygonal approximation and that it does not reflect the quality
of the underlying limit surface, which itself is smooth. Simply rendering
the polyhedron after k subdivision steps (Figure 1(d)) does not provide a
sufficiently good approximation to the limit surface for reasonable values of
k. Smoothing the subdivided surface and using Phong shading may improve
the appearance (see Figure 1(e)), but this does not solve the problem as can
be clearly seen when applying certain textures or shaders to the smoothed
surface (see Figure 1(f)).

We need to make clear that we are interested in values of λ that are closer
to 1.0 than to 0.5, for high valency extraordinary vertices. Augsdörfer’s tuned
Catmull-Clark scheme [Augsdörfer et al. 06] and Cashman’s NURBS with ex-
traordinary points [Cashman et al. 09] both use high λ values to get high
quality limit surfaces around extraordinary vertices. For the tuned Catmull-
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(a) (b) (c)

(d) (e) (f)

Figure 1. Bounded curvature Catmull-Clark subdivision: (a) The control poly-
gon with a vertex of valency 8 at its center has edges of approximately the same
length everywhere. (b) The control polygon has been subdivided three times using
a tuned algorithm. The polar artifact appears: long edges arise around extraor-
dinary vertices with a higher than regular valency. (c) The control polygon has
been subdivided seven times. While in the regular region the edges are the size of
a pixel, edges emanating from the extraordinary vertex are about 60 pixels long.
(d) The polar artifact is clearly visible if the subdivided mesh is rendered näıvely.
(e) Smoothing the surfaces in a post-process and using Phong shading on the smooth
surface reduces the effect of the polar artifact. (f) Using reflection lines or textures
on the surface still show up the artifact, even if applied to the smoothed surface:
another solution is needed (see Section 2).

Clark scheme, λ = 0.89 around a vertex of valency 8 [Augsdörfer et al. 06].
This makes it impractical to continue subdividing until the polygons around
the extraordinary vertex are small enough. For λ = 0.9, this constraint would
require 50 subdivision steps in the example given above, by which point there
would be around 1036 polygons, most with edges of length 10−15 pixel (com-
pared with the 106 polygons and the unit edge length generated by seven
steps). This is clearly untenable. Even if we make the assumption that we
can tolerate longer edges, say 1/9 of the length of the longest edge after seven
steps, we still need �logλ 1/9� steps. When λ = 0.9, 21 further steps are re-
quired. Therefore, approximations need to be made that are computationally
efficient and produce a close approximation to the true limit surface.

In the next section we discuss ways to improve the appearance around
high valency extraordinary vertices. Figures 8 and 9 (b)–(e) show four better
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approximations to the limit surface, of these (c) and (e) are visually accept-
able. We discuss solutions (b) and (d) also, because solution (e) builds on
both of them.

2. Solutions

Although triangles are the only surface primitives supported by common
graphics hardware, the solutions presented here are applicable for any mesh
type. We demonstrate the solutions using a tuned Catmull-Clark subdivision
scheme, which works on quadrilateral meshes. Quadrilaterals are rendered
as a pair of triangles after splitting them along either diagonal. The scheme
has been tuned to achieve bounded curvature at and around extraordinary
vertices. Unbounded curvature, a problem present in surfaces subdivided us-
ing the original Catmull-Clark scheme [Peters and Reif 04], should not be
confused with the effect caused by the polar artifact.

2.1. Pushing Vertices to the Limit Surface

If, after a number of subdivision steps, the polygons in the regular region of the
subdivided mesh are sufficiently small to be considered a good approximation
to the limit surface, then the vertices of those polygons are sufficiently close to
the limit surface to be considered approximately on it. This follows from the
convex hull property of the box splines on which the standard subdivision
methods are based. However, the extraordinary vertex itself is not in this
category, and the vertices in the one-ring around it may not be in this category.

The limit points on a subdivision surface can be obtained from the row
eigenvector corresponding to the dominant eigenvalue [Halstead et al. 93].
We can form stencils from these to determine the limit points at regular
and extraordinary vertices. The row eigenvector differs for each subdivision
scheme used and for each valency. For example, the stencil derived from the
dominant row eigenvector for the Catmull-Clark scheme for a regular vertex
is given by

⎡
⎣

γ β γ
β α β
γ β γ

⎤
⎦ , (1)

where α = 16, β = 4, and γ = 1. The stencil is normalized such that its
entries sum to unity by dividing it by 36. For the bounded-curvature variant
of the Catmull-Clark scheme [Augsdörfer et al. 06], we apply stencil (1) with
the above coefficients in regular regions, but, e.g., for valency n = 8 the stencil
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has the entries α = 0.3742, and eight entries for β = 0.0610 and γ = 0.0172 to
cover all vertices around the extraordinary vertex. To push the extraordinary
vertex to the limit surface, we apply this stencil. Table 1 gives α, β, and
γ values for valencies up to 10 for the tuned Catmull-Clark method. To
determine the limit positions for vertices in the one-ring, we simply apply one
extra subdivision step, which allows us to determine their limit position using
the standard regular limit stencil (1).

If we push all vertices at and around the extraordinary vertex onto the limit
surface by convolving the mesh with the limit stencils, we get some improve-
ment in the rendered result. But the artifact is still clearly visible due to the
long edges emanating from the extraordinary vertex (see Figure 2). Phong
shading across the large polygons, although useful, is not sufficient because
it preserves the coarse polygonal silhouette. What is required, instead, is
an appropriate polygonization that allows for a smooth variation of surface

(a) (b) (c)

(d) (e) (f)

Figure 2. Pushing vertices to the limit surface. (a) The näıvely rendered polygon
after three subdivision steps clearly shows the polar artifact, because the extraor-
dinary vertex approaches its limit position slower then the regular vertices. (b)
By pushing the points after subdivision (black mesh) onto the limit surfaces (red
mesh), the polar artifact effect improved, but it is still clearly visible after rendering
näıvely (c) because of the long edges emanating from the extraordinary vertex. (d)
The polygon is smoothed in a postprocess before rendering seven subdivision steps.
The long edges cause a visible ring around the extraordinary vertex, despite vertices
being pushed onto the limit surface. (e) Phong shading improves but does not solve
the problem. (f) Using reflection highlights the polar artifact effect.
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n α β γ

4 0.4444 0.1111 0.0278
5 0.4228 0.0915 0.0239
6 0.4020 0.0785 0.0212
7 0.3855 0.0687 0.0190
8 0.3742 0.0610 0.0172
9 0.3661 0.0548 0.0156
10 0.3602 0.0497 0.0143

Table 1. The normalized entries in the limit stencils for valencies n up to 10.

normal as we move across the one-ring. However, we will need to use the idea
of pushing to the limit surface in our solutions in Sections 2.4 and 2.5.

2.2. Adaptive Subdivision

Adaptive subdivision has been widely implemented (e.g., by [Müller and
Jaeschke 98]). The issues in the implementation are how to maintain a good
mesh with no cracks and how to identify when to switch between levels. In the
present situation, we switch between levels in rings around the extraordinary
vertex and change from lower to higher levels of refinement as we get closer
to the extraordinary vertex (see Figure 4). This means that the join between
levels of refinement, shown in detail in Figure 3, always occurs in the same

(a) (b) (c)

Figure 3. (a) The one-ring around the extraordinary vertex of the quadrilateral
mesh (black lines) is shown together with the mesh triangulated for rendering (grey
dashed lines). (b) The one-ring around the extraordinary vertex before adaptive
subdivision (black lines) is shown together with the one-ring after one step of sub-
division has been applied (red lines). The new triangulation is also shown (grey
dashed lines). (c) The triangulation after one step of subdivision has been applied.
More steps of adaptive subdivision are still necessary to obtain a more densely tri-
angulation around the extraordinary vertex.
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(a)

0 1 2

3 5 8

(b) 2 5 8

Figure 4. Adaptive subdivision. (a) The large polygons around an extraordinary
vertex of valency n = 8 are reduced using adaptive subdivision. The level of sub-
division within the one-ring around the extraordinary vertex increases from 0 to 7.
(b) Reflection lines on the smoothed surface show the improved appearance around
the extraordinary vertex with increasing number of adaptive subdivision steps (after
two, five, and eight additional subdivision steps within the one-ring).

way. These facts make it relatively easy to implement adaptive subdivision
to solve the rendering artifact problem compared to implementing general
adaptive subdivision.

As an example, assume that all edges in the base mesh are of roughly the
same length and that k subdivision steps are sufficient in the regular regions
of the mesh. The spoke edges (those emanating from the extraordinary vertex
to the one-ring) will be too long. The ratio of edge lengths between polygons
in the two-ring and polygons in the one-ring is approximately σ = (1 − λ)/λ.
Adaptive subdivision thus needs to ensure that the maximum edge length is
σ times the spoke-edge length; for λ = 0.9, σ = 1/9.
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Figure 4(a) shows an example of adaptive subdivision until spoke edges are
equal to or smaller than σ. Using reflection lines (Figure 4(b)) shows how
progressive adaptive subdivision improves the rendered surface.

Adaptive subdivision produces a rendered solution, which is a visually ac-
ceptable approximation to the limit surface, and thus solves the polar artifact
problem. It has the practical drawback that some of the polygons near the
extraordinary vertex are extremely small.

2.3. Exact Evaluation

Stam’s exact evaluation [Stam 98] is another method that is obviously
relevant. If we polygonize the region around the extraordinary vertex in a
uniform fashion, then we can evaluate the limit surface at every vertex of that
polygonization.

The uniform polygonization in the parameter space can be generated by
placing vertices at steps of length σ within the quadrilaterals around the
extraordinary vertex, as shown in Figures 5(a) and (b), and discarding existing
long spokes from the extraordinary vertex. Re-meshing the region around the
extraordinary vertex using the newly inserted points (see Figure 5(c)) leads
to a uniform limit mesh around the extraordinary vertex with edges no longer
than σ.

The issues here are that we need to handle Stam’s evaluation to high depths
for large λ (at least 21 steps for the λ = 0.9 example above), that we need
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Figure 5. (a) Points at equidistant intervals have been inserted replacing one
spoke emanating from the extraordinary vertex. (b) All points added at equidistant
intervals within the one ring around the extraordinary vertex are shown in blue.
The long spoke edges emanating from the extraordinary vertex (dotted lines) are
discarded. (c) The uniform triangulation around the extraordinary vertex using the
newly inserted points.
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to precalculate and store all of the necessary matrices, and that we should
ideally store a uniform mesh for each valency of extraordinary vertex. This is
time-consuming to implement.

For a sufficiently fine polygonization, this produces a surface that is indistin-
guishable from the limit surface and indistinguishable from the surface created
using adaptive subdivision described in the previous section. It improves on
adaptive subdivision by not generating a large number of tiny polygons.

However, we would prefer a solution that is easier to implement and faster
to evaluate than either of these methods.

2.4. Bézier Curve Approximation

An early idea was to approximate the edges emanating from the extraordinary
vertex by quadratic Bézier curves. The end points are the extraordinary vertex
P0 and the vertex in the one-ring P2, both pushed onto the limit surface. To
determine the third point P1 of the quadratic Bézier curve, we define tangent
planes for the extraordinary vertex and the vertex in the one-ring.

To determine the tangent plane, the normal vector N at the extraordinary
vertex and all vertices in the one-ring have to be computed. This can be
done by taking cross products of all edges meeting at the vertex, adding them
together, and then dividing them by the valency of that vertex. Because we
only need the tangent planes corresponding to the extraordinary vertex and
the vertices in the one-ring, we only need to define n + 1 normals, where n is
the valency of the extraordinary vertex.

The tangent plane of a vertex Px is spanned by the vectors v and w, where
vector v = (NP0 × NP2) is orthogonal to the normal vectors at the extraor-
dinary vertex NP0 and at the one-ring vertex NP2 and given by their cross
product; vector w = (v × N) is orthogonal to v and the normal vector N at
the vertex where the tangent plane is determined.

The line of intersection q of the tangent plane at the extraordinary vertex
and the tangent plane at a point in the one-ring can then be determined
according to

q = P0 + w
(NP2 .(P2 − P0))

(NP2 .w)
, (2)

where NP2 is the normal at a vertex in the one-ring. We defined the third
control point P1 to be the point on the intersection line of the two tangent
planes that lies closest to the straight line joining the end points P0 and P2.
To find this point, we employ

P1 = q + v
((q − P0).(P2 − P0))

(v.v)
v.(P2−P0) ((P2 − P0).(P2 − P0)) − (v.(P2 − P0))

. (3)
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(a) (b) (c)

(d) (e) (f)

Figure 6. Bézier curve approximation. (a) The intersection of the tangent planes
on the limit position of the extraordinary vertex and on a limit vertex on the one-
ring around the extraordinary vertex gives the third point necessary to define a
quadratic Bézier curve instead of the straight line connecting the two points after
subdivision. (b) We define equidistant points on the quadratic Beźier curve with
a spacing not exceeding the distance between the one- and two-ring. (c) After
defining the additional points on each of the edges around the extraordinary vertex,
the points are connected with straight lines to form smaller triangles around the
extraordinary vertex. (d) When rendering the surfaces näıvely, the long edges are
still visible. (e) The smoothed and Phong-shaded surface. (f) Reflection lines used
on the smoothed surface.

We now have the three points necessary to define a quadratic Bézier curve
instead of a straight line between the extraordinary vertex and the one-ring.

We replace each of the straight edges emanating from the extraordinary
vertex with a quadratic Bézier curve and determine points at intervals of
length σ along each curve as shown in Figure 6(b). We connect these newly
defined points to form a number of triangles around the extraordinary vertex
as shown in Figure 6(c).

However, for all but very high valency, the triangles created between the
spokes are still too large, causing rendering artifacts, clearly visible in Figures
6(d)-(f). We build on this idea to produce a workable solution using Bézier
triangles.

2.5. Bézier Triangle Approximation

Bézier triangle approximation produces an adequate approximation to the
limit surface without generating tiny polygons and without the need to



�

�

“jgt” — 2009/11/10 — 11:27 — page 71 — #11
�

�

�

�

�

�

Augsdörfer et al.: Removing Polar Rendering Artifacts in Subdivision Surfaces 71

(a) (b) (c)

(d) (e) (f)

Figure 7. Bezier triangle approximation (Section 2.5): (a) The equidistant points
along the three Bézier curves which form the edges of the Bézier triangle are shown
in red. They are defined in the same way as described in Figure 6. (b) Equidistant
points are defined on the Bézier triangle. All points used for re-meshing are shown
in blue. (c) The newly re-meshed two-ring region around the extraordinary vertex.
(d) The näıvely rendered surface after re-meshing. (e) The smoothed and Phong
shaded surface. (f) Reflection lines used on the rendered on the smoothed surface.

perform Stam’s exact evaluation. We approximate the limit surface around
the extraordinary vertex by Hermite interpolation, using a set of Bézier tri-
angles, and we sample from this approximation.

The three corners of the triangle are the extraordinary vertex and two adja-
cent vertices in the two-ring, all pushed onto the limit surface as explained in
Section 2.1. The three other control points of the quadratic Bézier triangles
are determined analogously to the Bézier curves as explained in Section 2.4.
We discard the limit points in the one-ring and use vertices in the two-ring
so that the Bézier triangles cover the entirety of the quadrilaterals surround-
ing the extraordinary vertex, as shown in Figure 7(a). This way we do not
encounter T-junctions when re-meshing around the extraordinary vertex. We
use the same uniform polygonization as in Stam’s exact evaluation (see Section
2.3), at lower computational cost, with the result shown in Figure 7(d)-(f).
This only has a guarantee of C0 continuity across the spoke edges, but the
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(a)

(b)

(c)

(d)

(e)

Figure 8. Bounded curvature Catmull-Clark [Augsdörfer et al. 06] applied to an
elliptic shape with an extraordinary vertex of valency 8 at its center. In each case,
the polygon edges are shown on the left and the center, respectively, and the näıvely
rendered surface is shown on the right. (a) Basic subdivision, where the polar
artifact is clearly visible and the solutions (b), vertices pushed to the limit surface.
(c) Adaptive subdivision. (d) Bézier curves on spoke edges. (e) Bézier patches
between spoke edges.
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(a)

(b)

(c)

(d)

(e)

Figure 9. Bounded curvature Catmull-Clark [Augsdörfer et al. 06] applied to a
hyperbolic shape with an extraordinary vertex of valency 8 at its center. In each
case, the polygon edges are shown on the left and the center, respectively, and the
näıvely rendered surface is shown on the right; (a)-(e) are as in Figure 8.
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angles between the tangent planes of adjacent Bézier triangles are significantly
less than between the facets that are actually being rendered. Figures 8 and
9(e) show that despite its simplicity, this approximation provides good results.

3. Discussion

Large values of λ are required to get highest quality limit surfaces with optimal
mathematical properties around extraordinary vertices of high valency. The
polar rendering artifacts, which occur around extraordinary vertices for large
λ, are artifacts caused by subdividing too few times to get a good polygonal
approximation to the limit surface. They can be removed by providing a
better approximation to the limit surface than is given by subdividing a small
number of times. Any of the solutions shown in Figures 8 and 9 improve the
polar artifact. However, adaptive subdivision, Stam’s exact evaluation, and
Bézier triangle evaluation all provide a good rendering of the limit surface and
achieve visual smoothness.

The comparative efficiency of the three algorithms can be measured using
the number of memory accesses required, the number of floating-point oper-
ations performed, and the number of triangles that need to be drawn. The
Bézier triangle method is the most efficient on all three measures (see below);
therefore, it will be competitive regardless of the location of the bottleneck in
any particular rendering pipeline.

For the Bézier triangle approach and adaptive subdivision, the cost in terms
of number of calculations is O(n), where n is the valency of the vertex, while
Stam’s exact evaluation is of complexity O(n2). For example, to fill the re-
gion around a valency n = 8-vertex for a Catmull-Clark subdivision surface
with λ = 0.9, one requires approximately 1900 multiplications in the Bézier
triangle approach, 2100 multiplications for adaptive subdivision, but 4750
multiplications when using exact evaluation.

The cost in terms of rendering is O(n) for the Bézier triangle approach
or Stam’s exact evaluation, while the numerous little triangles created using
adaptive subdivision lead to a complexity of O(n λ

1−λ). In the example above,
176 triangles are required using exact evaluation or Bézier triangles, but 512
triangles need to be rendered when the adaptive subdivision approach is used.

The cost in terms of memory look-up is O(n) for Bézier triangles or Stam’s
exact evaluation, but O(n λ

1−λ ) for adaptive subdivision. In the example
above, we require 24 memory look-ups to fit Bézier triangles, 96 memory
look-ups for Stam’s exact evaluation, and 720 memory look-ups for adaptive
subdivision.

Bézier triangle approximation, although less accurate, is the most efficient
rendering of the three, as it does not produce the tiny triangles of adaptive
subdivision, is considerably easier to implement than exact evaluation, and is
faster.
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