
i
i

“jgt” — 2009/11/10 — 11:07 — page 45 — #1 i
i

i
i

i
i

Vol. 14, No. 2: 45–59

A Hierarchical Hashing Scheme
for Nearest Neighbor Search and
Broad-Phase Collision Detection

Mickael Pouchol, Alexandre Ahmad, Benoit Crespin and Olivier Terraz
XLIM Research Institute, University of Limoges

Abstract. Increasing computational power allows computer graphics researchers

to model spectacular phenomena such as fluids and their interactions with de-

formable objects and structures. Particle-based (or Lagrangian) fluid and solid

simulations are commonly managed separately and mixed together for the collision-

detection phase. We present a unified dynamic acceleration model to be used for

particle neighborhood queries and broad-phase collision detection, based on a hi-

erarchical hash table data structure. Our method is able to significantly reduce

computations in large, empty areas, and thus gives better results than existing

acceleration techniques, such as multilevel hashing schemes or KD-trees, in most

situations.

1. Introduction

Fluid simulation has been a major focus in the computer graphics commu-
nity for the last two decades. The difficulty of capturing the complex motion
of a fluid encouraged researchers to focus on physically-based simulations.
Particle-based (or Lagrangian) simulations are widely used, mainly because
particle systems are easy to implement. This type of simulation has proved
to give excellent results, such as the well-known smoothed particle hydrody-
namics (SPH) method described in [Müller et al. 03] for water simulation.

© A K Peters, Ltd.

45 1086-7651/09 $0.50 per page

i
i

“jgt” — 2009/11/10 — 11:07 — page 46 — #2 i
i

i
i

i
i

46 journal of graphics, gpu, and game tools

When considering interactions between a set of objects and a fluid modeled
by a set of particles, we rely on neighborhood computations which can be
divided into in two main cases:

1. For each particle, we must determine a set of neighboring particles when
computing the fluid dynamics (a fluid particle acts upon the surround-
ing fluid particles). This problem is known as nearest neighbor search
(NNS).

2. We must also check if a particle collides with objects in the scene in order
to compute correct fluid–object coupling. This collision detection is a
two-phase process: the broad phase consists of finding a set of candidate
objects; these candidate objects are checked in the narrow phase for
collision using exact arithmetic computations. It is therefore critical that
the broad phase is implemented efficiently to get the smallest possible
set of candidates, and that all the situations where the particle has no
chance of colliding with an object can be quickly discarded.

Since particles and objects are in motion, neighborhood information must
be updated at every integration step, which is the most computationally ex-
pensive part of the whole simulation process. Therefore, we must provide
an acceleration method in order to efficiently determine the neighborhood.
Particle-based fluid simulations usually rely either on space-partitioning data
structures such as KD-trees [Adabala and Manohar 00, Adams et al. 07] or
hash tables [Teschner et al. 03, Mirtich 96, Eitz and Lixu 07] that store par-
ticles and objects and are dynamically updated at each time step. As stated
in [Keiser 06], KD-trees supposedly show better computational performance
when dealing with a large number of particles, however hash tables have other
advantages— they represent an unbounded, implicit grid which does not limit
the spatial extent of the simulation, and they are also very easy to implement.

Our method extends the multilevel hashing scheme described in [Eitz and
Lixu 07] in order to accelerate broad-phase collision detections and NNS
queries by storing explicit relationships between hash cells and subcells us-
ing a hierarchical hashing. Since it is capable of efficiently pruning large,
empty areas in the scene, our approach combines both the benefits of hash
tables and hierarchical structures such as KD-trees. Test results show signifi-
cant improvements over existing methods, especially for broad-phase collision
detection.

2. Background

2.1. Spatially Uniform Hashing for NNS

In particle-based simulations, spatially uniform hash tables are well-adapted
for the NNS problem. Since fluid particles usually interact with all particles

i
i

“jgt” — 2009/11/10 — 11:07 — page 47 — #3 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 47

lying in a sphere of radius r [Müller et al. 03], this value can be used to
efficiently store the particles in a hash table. One of the most efficient hash
functions is based on the XOR operation, denoted as ⊕:

h(p) = h(px, py, pz) =
(((

α
⌊px

r

⌋)
⊕ β

⌊py

r

⌋)
⊕ γ

⌊pz

r

⌋)
mod n, (1)

where α, β, and γ are big prime numbers, n is the hash table’s length, and
px, py, and pz are the x-, y−, and z-axis components of point p [Eitz and
Lixu 07].

If a particle p is hashed to a given cell h(p), then neighboring particles
lying within radius r are found in the same cell and its 26 neighbors (or eight
neighbors in 2D); the hashkeys of these neighboring cells are obtained by
h(px + r, py + r, pz + r), h(px − r, py + r, pz + r),

2.2. Multilevel Hashing for Broad-Phase Collision Detection

Unfortunately, the use of a unique hash size r is computationally expensive if
used simultaneously for NNS and broad-phase collision detection, since fluid
particles may collide with objects of size b� r. Consequently, the computa-
tional complexity of a uniform hashing scheme is proportional to

(
b
r

)3
, and

very large objects may cover thousands of cells as shown in Figure 1 (left).
Depending on the configuration of the 3D scene, this is the bottleneck for
simulations that involve fluid–solid interactions.

An efficient and elegant solution presented in [Eitz and Lixu 07] consists
of defining multiple hash sizes, so that no object can cover more than eight
cells. Each object is hashed using the most appropriate size, as shown in
Figure 1 (right); thus the number of hash cells is significantly reduced. Hash
sizes are defined as powers of 2, and a cell may contain eight subcells like
in a recursive octree structure. Only cells of defined sizes need to be stored,

Figure 1. A scene “rasterized” with a unique cell size (left) and using a multilevel
model (right).

i
i

“jgt” — 2009/11/10 — 11:07 — page 48 — #4 i
i

i
i

i
i

48 journal of graphics, gpu, and game tools

which reduces memory consumption, especially when there are big differences
in object size (e.g., 2−2, 24, 215).

The hash size corresponding to an object must be at least the size of the
longest edge l of its axis-aligned bounding box (AABB). This size s is com-
puted by converting l into the nearest but greater power of 2:

s = 2dlog2(l)e. (2)

This computation is performed for each object during a preprocessing step at
the beginning of the simulation, yielding a set of different classes associated
with different sizes. We consider in the following that a given class can be
identified either by its number c or its size s = 2c.

This hashing scheme can handle deformable objects, i.e., those whose size
can change through time. At each integration step, if the class c corresponding
to an object was not computed in the preprocessing step, then c is given by
the nearest greater class. The object is thus hashed in the smallest possible
class by considering the eight endpoints of its AABB: for each point p, the
object’s ID is added to the hash table at the position given by hc(p), defined
by extending Equation (1):

hc(p) = hc(px, py, pz) =
(((

α
⌊px

s

⌋)
⊕ β

⌊py

s

⌋)
⊕ γ

⌊pz

s

⌋)
mod n. (3)

An example of the hash structure obtained with this method is presented
in Figure 2 (left). For the sake of clarity, we use left-bottom coordinates to
identify cells, and hashkeys are computed without modulo operations (i.e.,
n = +∞). A unique hashtable, or alternatively one hashtable per class c, is
sufficient to hash objects with minimal hash collisions (which should not be
confused with collision detection), i.e., distant objects will unlikely have the
same hashkey, although this also depends on the hashtable’s length n.

Using this multilevel hashing scheme, the broad-phase collision detection
between a given object and the objects stored in the hash structure consists
of considering each class and checking whether one of its cells overlaps the
object’s AABB; if positive, IDs stored in this cell are retrieved for the narrow
phase. Since a reduced number of cells has to be checked, this process is far
more efficient than if a unique cell size is used.

As noted in [Eitz and Lixu 07], another advantage to this method is the
ease of implementation, since the multilevel hashing scheme adapts itself to
any scene setup, including moving and deforming objects over time as shown
in Figure 3. However, if there are no constraints on the deformations of the
objects, an AABB can be larger than the largest class: in that case, it must
be subdivided and hashed to several cells.

i
i

“jgt” — 2009/11/10 — 11:07 — page 49 — #5 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 49

Multilevel Hashing

Hashkey Objects

h2(0, 0) A

h1(2, 0) C

h2(4, 0) A

h2(0, 4) A

h1(4, 0) C

h2(4, 4) A

h0(3, 3) B

h0(5, 0) D

h0(6, 0) D

Hierarchical Hashing

Hashkey Objects hasChildren

h̃2(0, 0) A true

h̃1(2, 0) C false

h̃2(4, 0) A true

h̃2(0, 4) A false

h̃1(2, 2) true

h̃2(4, 4) A false

h̃1(4, 0) C true

h̃1(6, 0) true

h̃0(3, 3) B

h̃0(5, 0) D

h̃0(6, 0) D

Figure 2. Top: A 2D example where objects with different sizes are hashed to
corresponding classes 0, 1, or 2 (with sizes 1, 2, and 4, respectively). Bounding boxes
are not represented. Bottom left: Non-empty hash cells obtained with multilevel
hashing [Eitz and Lixu 07], using Equation (3); Bottom right: Non-empty hash cells
obtained with our method using Equation (4).

3. Hierarchical Hashing

3.1. Top-Down Hashing

We extend the hash function defined in Equation (3) with a hierarchical
scheme: an element (object or particle) calls this hash function from the

i
i

“jgt” — 2009/11/10 — 11:07 — page 50 — #6 i
i

i
i

i
i

50 journal of graphics, gpu, and game tools

largest class k to the class c corresponding to its size (top-down), i.e., from
[k . . . c], where c ∈ [0, k]:

h̃c(p) =
(
hk(p) + hk−1(p) + · · ·+ hc(p)

)
mod n. (4)

Then, the element may be inserted in the cell given by the key h̃c. A Boolean
flag is also stored in the hash table to indicate whether the cell has at least
one child, i.e., if a cell exists in a smaller class that overlaps h̃c and contains
at least one element. Figure 2 (right) shows the hash structure obtained with
our method compared to the multilevel hashing scheme of [Eitz and Lixu 07].

Our hash structure is built upon two main data structures:

• a hashmap hm: for each hash key, it stores overlapping objects’ IDs and
a Boolean hasChildren

• a set classSizes, initialized in a preprocessing step as in Section 2.2
and sorted in decreasing order. The minimal size stored in classSizes
should be the value r of the interaction radius for fluid particles. Since
fluid simulations usually require that this value is the smallest possible,
it is safe to assume that no object in the scene will be smaller than r.

Although multiple calls to the hash function h are necessary, the additive
hash function described by Equation (4) helps to prevent useless future and
expensive computations by reducing hash collisions. Consider two 3D points
p1,p2 that are not in the same (c + 1)-class spatial cell, i.e., hc+1(p1) 6=
hc+1(p2). Then suppose that a hash collision occurs when hashing these
points into class c, i.e., hc(p1) = hc(p2). This hash collision is avoided using
Equation (4), since hc(p1)+hc+1(p1) 6= hc(p2)+hc+1(p2). The offset must be
the same for all the points coming from the same parent class, which is true in
our case because we make use of hierarchical coherence. Hash collisions may
still happen because nothing guarantees that the new cell is free; nonetheless,
this hashing scheme will obviously give better results than a unique hashing.
We point out that increasing the hash table size also reduces the probability
of hash collisions.

3.2. Particles and Objects Insertions

We consider in Listing 1 the insertion of a single point p in the structure,
which belongs to an element referenced by its id, into a given class size. The
hash function h is implemented as in Equation (3).

i
i

“jgt” — 2009/11/10 — 11:07 — page 51 — #7 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 51

void i n s e r t (po int p , int id , int s i z e) {
int hashKey = 0 ;
for each (int c u r r S i z e in c l a s s S i z e s) {

hashKey += h(p , c u r r S i z e) ;
i f (s i z e == c u r r S i z e) {
hm[hashKey] . i n s e r t (id) ; break ;
}
else i f (! hm[hashKey] . hasChi ldren)
hm[hashKey] . hasChi ldren = true ;

}
}

Listing 1. Top-down point hashing.

The insertion of a particle is straightforward: we simply use its position and
ID as input values and the interaction radius r as the hash size (see Listing 1).
Since r is also the minimal size in classSizes, each of its elements will be
considered. The insertion of a larger object is also rather simple. First,
we compute its AABB and determine the hash size s in which it should be
hashed as in Section 2.2. Then, top-down hashing is achieved for each of
the eight endpoints of the AABB, with the object’s id and size s as input
values.

This approach can be used to insert either static or moving elements. As-
suming linear motion during one integration step, we simply consider the
AABB of its entire path—e.g., the path of a moving triangle is a prism, as
shown in Figure 3—and insert the object as shown in Listing 1. In this case,
the top-down hashing stops as soon as the size corresponding to the AABB
is met; since we assume in Listing 1 that size belongs to the precomputed
classSizes set, it may be necessary to choose the nearest greater size as in
Section 2.2. Unlike some other approaches [Kondoh et al. 04], this method is
capable of inserting moving elements independently of the distance covered
during a time step.

3.3. Hash Structure Queries

Any query in the hash structure will take advantage of the top-down hashing of
static or moving objects as previously described. As shown in Figure 3 (right),
finding possible candidates that may collide or interact with a single point
consists of iteratively hashing the point for each class, starting from the largest
class, and retrieving the IDs stored in the corresponding cell as candidates.
The process ends if the cell has no child or if the smallest class is reached.
Unfortunately, the problem is more challenging for both broad-phase collision
detection and NNS. This simple method is thus extended below to handle
more complex queries.

i
i

“jgt” — 2009/11/10 — 11:07 — page 52 — #8 i
i

i
i

i
i

52 journal of graphics, gpu, and game tools

Hashkey Objects hasChildren

h̃2(0, 0) A false

h̃2(4, 0) A true

h̃2(0, 4) A false

h̃2(4, 4) A false

h̃1(4, 0) true

h̃1(6, 0) true

h̃0(5, 1) B

h̃0(5, 0) B

h̃0(6, 1) B

h̃0(6, 0) B

Point P

↓
h̃2(4, 0): retrieve object A

↓
h̃1(4, 0)

↓
h̃0(5, O): retrieve object B

Point Q

↓
h̃2(0, 4): retrieve object A

Figure 3. Top: Hashing moving objects. Bottom left: Corresponding, non-empty
hash cells obtained with our method; Bottom right: Top-down broad-phase collision
detection for points P and Q (marked as colored circles)

3.3.1. Broad-Phase Collision Detection

We are interested in checking if a given AABB overlaps any cell in the hash
structure that may contain possible candidates for the narrow-phase collision
detection. The broad-phase algorithm is described in Listing 2. In the context
of fluid–solid interactions, the AABB encloses the path of a particle. In a more
general context, it corresponds to a static or moving object that may collide
with other objects in the scene as in Figure 3.

The main advantage of our method is the use of the Boolean hasChildren,
which quickly ends the process if negative by emptying the points set. Since
we deal with an AABB a of arbitrary size, we may have to call a.subdivide(t)

i
i

“jgt” — 2009/11/10 — 11:07 — page 53 — #9 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 53

set<int> broadPhase (AABB a) {
set<int> candidateObjects ;
// Bui ld a s e t wi th the 8 endpo in t s
// (the i n i t i a l hash key f o r t h e s e po in t s i s s e t to 0)
vector<point> po in t s = a . getEndPoints () ;

for each (int c u r r S i z e in c l a s s S i z e s) {
int d e l t a = a . s i z e () − c u r r S i z e ;
// Subd iv ide AABB i f necessary
i f (d e l t a > 0) po in t s . i n s e r t (a . subd iv ide (d e l t a)) ;
// Find p o s s i b l e cand ida t e s in corresponding c e l l s
for each (po int p in po in t s) {
p . hashKey += h(p , c u r r S i z e) ;
cand idateObjects . i n s e r t (hm[p . hashKey] . r e t r i e v e I d s ()) ;
// Remove t h i s po in t i f the c e l l has no c h i l d
i f (! hm[p . hashKey] . hasChi ldren) po in t s . remove (p) ;
}
}
return candidateObjects ;
}

Listing 2. Get all the objects that may collide with a given AABB.

to subdivide the box t times as in an octree decomposition, in order to en-
sure that we do not miss hash cells smaller than a.size(). A more complex
implementation (not presented here) could also optimize the process by en-
suring that a value p.hashKey is not processed multiple times, which happens
if a.size() is very small since several endpoints can be hashed in the same
cell.

3.3.2. Nearest Neighbor Search

As stated in Section 2.1, if a particle p is hashed to a given cell, then neigh-
boring particles lying within radius r are simply found in the same cell and
its 26 neighbors. The hash keys of these neighboring cells are simply given by
h̃r(px + r, py + r, pz + r), h̃r(px − r, py + r, pz + r),

Unfortunately, since r is the smallest class, this simple approach does not
perform well with our method because computing neighboring hash keys re-
quires us to consider all classes stored in classSizes. We thus propose to
determine neighboring particles directly when a particle is inserted. We add a
new attribute to the hash structure called neighbors that stores, for a given
particle, the references of its neighbors. Then each particle is processed using
the modified insertion procedure, which makes use of the interaction radius r

i
i

“jgt” — 2009/11/10 — 11:07 — page 54 — #10 i
i

i
i

i
i

54 journal of graphics, gpu, and game tools

void i n s e r t (p a r t i c l e P) {
set<int> c a n d i d a t e P a r t i c l e s ;
// Bui ld a s e t wi th P and 26 ne i ghbor ing po in t s
// (the i n i t i a l hash key f o r t h e s e po in t s i s s e t to 0)
vector<point> po in t s = get27Points (P. p o s i t i o n) ;

for each (int c u r r S i z e in c l a s s S i z e s)
// Re t r i eve p o s s i b l e cand ida t e s i f s i z e r i s reached
for each (po int p in po in t s) {
p . hashKey += h(p , c u r r S i z e) ;
i f (c u r r S i z e == r)

c a n d i d a t e P a r t i c l e s . i n s e r t (hm[p . hashKey] . r e t r i e v e I d s ()) ;
i f (! hm[p . hashKey] . hasChi ldren) po in t s . remove (p) ;
}

// Update the ’ ne i ghbor s ’ a t t r i b u t e i f the d i s t ance
// between p a r t i c l e s i s lower than r
for each (int id in c a n d i d a t e P a r t i c l e s)
i f (d i s t ance (P. id , id) <= r) {
ne ighbors [P . id] . i n s e r t (id) ;
ne ighbors [id] . i n s e r t (P. id) ;
}

// In s e r t the p a r t i c l e (f i n a l l y !)
i n s e r t (P. po s i t i on , P. id , r) ;
}
}

Listing 3. Particle insertion and NNS computation.

and of a method get27Points(p) that produces the set p, (px+r, py+r, pz+r),
(px − r, py + r, pz + r), . . . (see Listing 3).

This on-the-fly NNS computation gives better results than the uniform hash
scheme described in Section 2.1, again thanks to the Boolean flag hasChildren
that discards empty areas. When the whole set of particles has been processed,
neighbors[id] stores the neighbors of a particle id which can be retrieved
for fluid dynamics computations.

4. Results and Comparisons

The results presented below are performance comparisons of our method with
several other acceleration structures on random distributions, conducted on a
single i686 processor running at 2.66 GHz, in order to validate our model on
typical particle-based simulations.

i
i

“jgt” — 2009/11/10 — 11:07 — page 55 — #11 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 55

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 4 7 13 25 40

T
im

e
(i

n
m

s)

% of collisions

Our method
Eitz’07

KDTree

 0

 50

 100

 150

 200

 250

 300

 350

1 4 7 13 25 40

M
em

or
y

co
st

 (
in

 K
b)

% of collisions

Our method
Eitz’07

KDTree

Figure 4. Left: Timing comparisons for broad-phase collision detection. Right:
Memory consumption comparisons.

4.1. Comparisons on 2D Random Distributions

Figure 4 shows the result of broad-phase collision detection tests, using a KD-
tree, the multilevel hashing scheme of [Eitz and Lixu 07], and our method.
A distribution of N objects is generated randomly in a 2D square of size 213

and inserted in the acceleration structure using each object’s AABB. Then, a
distribution of 1M segments is computed, which accounts for moving particles
in the scene; for each segment we query the structure to determine which
objects it may intersect. The objects’ size distribution is implemented in a
way that approximately 10% of the objects have an average size of 210, 25%
have an average size of 26, and the remaining objects have an average size of
23, whereas the length of each particle’s motion vector does not exceed 24.
The computation times are depicted as a function of the ratio of particles that
collide with at least one of N objects; this ratio increases according to N . Our
method improves the timings obtained by Eitz and Lixu’s method by at least
a factor of two in all situations, whereas the memory overhead induced by our
hierarchical structure does not exceed 10%. Moreover, our tests indicate that
hash-based methods, in general, seem a better choice for broad-phase collision
detection over KD-trees, although more memory-consuming.

We also evaluate the computational cost of our model for NNS, compared to
a KD-tree, and to a uniform hashing scheme.1 A distribution of 1M points is
generated randomly in a 2D square of size 220 and inserted in the acceleration
structure; then, for each point we query its neighbors located in a circle of
radius r. The computation times are depicted in Figure 5 (left) as a function of
the maximal number of neighbors lying within an increasing radius r. We note
that our model is competitive over uniform hashing when particles are far from
each other, i.e., when the maximal neighbor count is below five. However, the

1In that case, a uniform hashing scheme [Teschner et al. 03] can be considered as a
restriction of Eitz and Lixu’s hashing scheme with only one level.

i
i

“jgt” — 2009/11/10 — 11:07 — page 56 — #12 i
i

i
i

i
i

56 journal of graphics, gpu, and game tools

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 1 2 3 4 5 7 8 13 14

T
im

e
(i

n
se

c)

Max. neighbours

Hierarchical hash
Uniform hash

KDTree

0 %

5 %

10 %

15 %

20 %

25 %

30 %

0 1 2 3 4 5 7 8 13 14

Max. neighbours

Memory overhead

Figure 5. Left: Timing comparisons for nearest neighbor search. Right: Memory
overhead induced by our method.

memory overhead in that case ranges from 10% to 25%. For more dense points
distributions, the KD-tree exhibits the best performances, partly because the
objects to be inserted all have the same size in the NNS case. Implementations
of particle-based simulations that involve high neighbor count should thus use
KD-tree acceleration instead of hash tables for NNS.

4.2. Comparisons on a 3D Fluid Simulation

Our 3D test scene is presented in Figure 6 (left). A particle-based fluid (in
blue) falls and bounces over a set of 2000 static, solid spheres (in red), and

 0

 2000

 4000

 6000

 8000

 10000

25000 50000 100000 150000 200000

T
im

e
(i

n
m

s)

Particle number

Our method
Eitz’07

Figure 6. Left: Our 3D test scene. Right: Performance comparisons for collision
detection (in millisecond per simulation frame)

i
i

“jgt” — 2009/11/10 — 11:07 — page 57 — #13 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 57

eventually stabilizes around its equilibrium position at the bottom of the
simulation box. We have chosen a particle-based model with simple collision
response for the fluid simulation, which was conducted over 1000 successive
iterations, but other Lagrangian models such as SPH could be used [Müller
et al. 03]. Dynamic particles and static spheres are initially located randomly
in the box; static spheres’ sizes range from 2−4 to 2−2, whereas particles are
2−6 in size.

Timings are given as the time required to compute the whole collision de-
tection process per frame: hashing objects (although spheres and walls are
static in this example), hashing moving particles, retrieving possible candi-
dates for each particle, and finally computing exact collisions. A uniform
hashing scheme was used for nearest neighbor search. As shown in Figure
6 (right), our method outperforms Eitz and Lixu’s by approximately 25%;
memory measurements (not presented here) showed that memory overhead
needed to store hierarchical relationships never exceeds 20%, as in the 2D
case. One can note that, due to the progressive aggregation of particles at
the bottom of the box, the number of isolated particles tends to decrease over
time. This explains why the acceleration achieved by our method is not as
spectacular as in the 2D case, but remains significant nonetheless.

4.3. Discussion and Improvements

The 2D tests presented in this paper were implemented using the STL’s
hash_multimap container [Musser et al. 01]. This simple implementation
avoids using a fixed length for our hash structure, which means we can dis-
card the modulo operation from Equations (1) and (4) and consider n = +∞.
Although this comes at the price of logarithmic time complexity to find objects
associated with a given key, it also demonstrates that, without optimizations,
our data structure already provides nice results even for 1M particles.

A more optimized implementation was used for our 3D experiments, based
on a fixed-length vector. Again, satisfying results were obtained compared to
Eitz and Lixu’s approach, but in that case a specific value for n must be cho-
sen. This problem has a significant impact on memory consumption if n is too
high; on the other hand, a lower value may imply more hash collisions, which
in turn increase the number of candidate objects obtained after the broad
phase. Our experiments showed that the overhead computations induced by
these “false” candidates is negligible if n is set to the approximate number of
polygons in the scene multiplied by 100.

In the specific case of dynamic simulations, we could make use of a times-
tamp, i.e., a parameter that distinguishes two time steps [Teschner et al. 03].
If a new object is to be inserted in a hash cell and the timestamps of the
cell and the object differ, then the object does not necessarily need a new

i
i

“jgt” — 2009/11/10 — 11:07 — page 58 — #14 i
i

i
i

i
i

58 journal of graphics, gpu, and game tools

memory allocation to be stored, since it can reuse the memory allocated for
another object at the previous time step. The timestamp is thus used to
reduce overall memory allocation when hash-list insertions are achieved. By
using this scheme, the hash table is never entirely swept between successive
time steps. In STL-based implementations this approach is readily obtained
since the clear operation does not necessarily free its memory when called at
each time step. Performances also depend on simulation parameters such as
the time step: the larger the time step is, the bigger the distance an element
will cover and consequently a longer distance will have to be hashed.

One can point out that the complexity of our hash function h̃c is pro-
portional to the number of different classes, whereas the multilevel hashing
scheme requires a single call to the hash function hc. Nevertheless, it is not
necessary to check all different classes to find candidate objects, thanks to
the Boolean flag hasChildren that indicates whether smaller objects could
be found in a given area; this explains the good performances of our method,
especially for collision detection.

Acknowledgments. The authors thank C. Rousselle for her corrections and the
reviewers who suggested numerous improvements.

References

[Adabala and Manohar 00] Neeharika Adabala and Swami Manohar. “Modeling
and Rendering of Gaseous Phenomena using Particle Maps.” Journal of Visu-
alization and Computer Animation 11:5 (2000), 279–293.

[Adams et al. 07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J.
Guibas. “Adaptively Sampled Particle Fluids.” In Transactions on Graphics:
Proc. SIGGRAPH 2007 26:3 (2007), 26:3, (2007), Article 48.

[Eitz and Lixu 07] Mathias Eitz and Gu Lixu. “Hierarchical Spatial Hashing for
Real-Time Collision Detection.” In SMI ’07: Proceedings of the IEEE In-
ternational Conference on Shape Modeling and Applications 2007, pp. 61–70.
Washington, DC: IEEE Computer Society, 2007.

[Keiser 06] Richard Keiser. “Meshless Lagrangian Methods for Physics-Based Ani-
mations of Solids and Fluids.” Ph.D. thesis, ETH Zurich, 2006.

[Kondoh et al. 04] Nobuhiro Kondoh, Shuuji Sasagawa, and Atsushi Kunimatsu.
“Creating Animations of Fluids and Cloth with Moving Characters.” In SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Sketches, p. 136. New York: ACM Press,
2004.

[Mirtich 96] Brian Vincent Mirtich. “Impulse-Based Dynamic Simulation of Rigid
Body Systems.” Ph.D. thesis, University of California, Berkeley, 1996.

i
i

“jgt” — 2009/11/10 — 11:07 — page 59 — #15 i
i

i
i

i
i

Pouchol et al.: A Hierarchical Hashing Scheme for Nearest Neighbor Search . . . 59

[Müller et al. 03] Matthias Müller, David Charypar, and Markus Gross. “Particle-
Based Fluid Simulation for Interactive Applications.” In SCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pp. 154–159. Aire-la-Ville, Switzerland: Eurographics Association, 2003.

[Musser et al. 01] David R. Musser, Gilmer J. Derge, and Atul Saini. STL Tutorial
and Reference Guide: C++ Programming with the Standard Template Library,
second edition. Reading, MA: Addison-Wesley Longman Publishing Co., Inc.,
2001.

[Teschner et al. 03] Matthias Teschner, Bruno Heidelberger, Matthias Müller,
Danat Pomerantes, and Markus H. Gross. “Optimized Spatial Hashing for Col-
lision Detection of Deformable Objects.” In Proceedings of the Vision, Mod-
eling, and Visualization Conference 2003, pp. 47–54. Heidelberg, Germany:
Akademische VerlagsgesellschaftAKA GmbH, 2003.

Web Information:

http://jgt.akpeters.com/papers/Poucholetal09/

Mickael Pouchol, Laboratoire XLIM (UMR CNRS 6172), University of Limoges,
83 rue d’Isle, 87000 Limoges, France (mickael.pouchol@xlim.fr)

Alexandre Ahmad, Laboratoire XLIM (UMR CNRS 6172), University of Limoges,
83 rue d’Isle, 87000 Limoges, France (alexandreahmad@free.fr)

Benoit Crespin, Laboratoire XLIM (UMR CNRS 6172), University of Limoges,
83 rue d’Isle, 87000 Limoges, France (benoit.crespin@xlim.fr)

Olivier Terraz, Laboratoire XLIM (UMR CNRS 6172), University of Limoges,
83 rue d’Isle, 87000 Limoges, France (olivier.terraz@xlim.fr)

Received May 25, 2008; accepted in revised form October 2, 2009.

