
i
i

“jgt” — 2009/11/9 — 14:34 — page 33 — #1 i
i

i
i

i
i

Vol. 14, No. 2: 33–43

Coherent Path Tracing

Iman Sadeghi, Bin Chen, and Henrik Wann Jensen
University of California, San Diego

Abstract. Packet tracing is a popular and efficient method for accelerating ray

tracing. However, packet traversal techniques become inefficient when they are ap-

plied to path tracing since the secondary rays are incoherent. In this paper, we

present a simple technique for improving the coherency of secondary rays. This

technique uses the same sequence of random numbers for generating secondary rays

for all the pixels in each sample. This improves the efficiency of the packet trac-

ing algorithm but creates structured noise patterns in the image. We propose an

interleaved sampling scheme that reduces the correlation in the noise and makes it

virtually imperceptible in the final image. Coherent path tracing is unbiased, sim-

ple to implement, and outperforms standard path tracing with packet tracing, while

producing images with similar RMS error values.

1. Introduction

Ray tracing is a widely used algorithm for realistic image synthesis. It has tra-
ditionally been used for offline rendering, but recent developments in hardware
and algorithms have enabled interactive ray tracing [Parker et al. 99, Wald
et al. 01, Lauterbach et al. 06, Wald et al. 07]. One important algorithmic
improvement to ray tracing is the use of ray packets [Wald et al. 01]. Ray
packets enable the use of SIMD hardware by tracing several rays with similar
origins and directions through the acceleration data structure at the same
time. In addition to allowing the use of SIMD instructions, the use of ray
packets also reduces the traversal cost and memory bandwidth.

© A K Peters, Ltd.

33 1086-7651/09 $0.50 per page

i
i

“jgt” — 2009/11/9 — 14:34 — page 34 — #2 i
i

i
i

i
i

34 journal of graphics, gpu, and game tools

Figure 1. Primary, first bounce, and second bounce rays are drawn red, green, and
blue, respectively. In standard path tracing (left), secondary bounces are generated
randomly and lack coherency. In coherent path tracing (right), secondary rays are
generated with the same sequence of random numbers and remain coherent, as long
as they intersect geometries with similar normal directions.

Ray packets require similar rays (coherent rays) to operate efficiently. They
work well for nearby primary rays, since these rays often traverse similar parts
of the acceleration data structure. It is also possible to generate coherent
packets of shadow rays, and combined with instant radiosity [Keller 97], it
is even possible to simulate global illumination at interactive rates [Wald
et al. 02].

Unfortunately, it is not yet possible to use ray packets effectively with gen-
eral Monte Carlo ray tracing algorithms such as path tracing [Kajiya 86]. The
primary reason is that the rays in path tracing become randomized (incoher-
ent) after the first few diffuse or glossy reflections [Reshetov 06].

In this paper we present a simple technique for improving the performance
of ray packets in the context of path tracing. We force secondary rays to
become coherent by using the same sequence of random numbers for all rays
in a packet. This causes the reflected rays to use similar sample directions even
if they originate at a diffuse surface (see Figure 1). The naive implementation
of this approach suffers from coherent noise patterns, which can be undesirable
if the goal is to visualize intermediate results. To alleviate this problem we
propose the use of an interleaved sampling pattern that effectively scrambles
the coherent random sequences across the image plane. This reduces the
correlation in the noise patterns at the cost of a small loss in coherence in the
traced ray packets.

2. Algorithm

2.1. Standard Path Tracing (SPT)

In path tracing, ray paths are traced through each pixel. Rays going through
pixels are called primary rays, while rays resulting from the intersection of

i
i

“jgt” — 2009/11/9 — 14:34 — page 35 — #3 i
i

i
i

i
i

Sadeghi et al.: Coherent Path Tracing 35

a ray with an object are called secondary rays. The directions of secondary
rays are determined by the BRDF at the intersection point and are generated
through random sampling. We can think of random sampling as using a se-
quence of random numbers ~u = (u1, . . . , un) per path. Path tracing computes
the radiance, L(x), of each pixel using the following integral of a multidimen-
sional function f :

L(x) =
∫

. . .

∫
f(x, u1, . . . , un) du1 . . . dun =

∫
f(x, ~u) d~u, (1)

where f(x, u1, . . . , un) = f(x, ~u) is the contribution of each sample to L(x)
using ~u as the random numbers. Path tracing integrates f by using Monte
Carlo sampling to compute L(xi) for each pixel xi:

L(xi) =
1
N

N∑
k=1

f(xi, ~uik), (2)

where ~uik is a vector of random numbers for the ith pixel and the kth sample
from a total of N samples.

Path tracing can utilize packet tracing by placing a number of neighboring
rays into a ray packet and tracing ray packets into the scene. We refer to this
method as standard path tracing (SPT).

2.2. Coherent Path Tracing (CPT)

The coherent path tracing (CPT) algorithm uses the same vector ~uk of random
numbers for each pixel xi and each sample k:

L(xi) =
1
N

N∑
k=1

f(xi, ~uk), (3)

Since the shared random number sequence ~uk has a uniform random distri-
bution, CPT will produce the correct and unbiased result for any single pixel
similar to the SPT method. It uses the method of dependent tests to evaluate
the per-pixel integrals, which increases the coherency of secondary rays and
thereby the efficiency of packet tracing.

This efficiency gain, however, comes at the cost of structured noise (see first
row of Figure 2). This type of noise is more noticeable than the random noise
of SPT (third row of Figure 2). It is not an issue in terms of the quality of the
final converged image, but if intermediate results are used for visualization
then this structured noise is undesirable.

i
i

“jgt” — 2009/11/9 — 14:34 — page 36 — #4 i
i

i
i

i
i

36 journal of graphics, gpu, and game tools

2.3. Interleaved Coherent Path Tracing (ICPT)

To improve the visual quality of the rendered results, we propose a randomized
interleaved sampling scheme similar to [Keller and Heidrich 01], which we call
interleaved coherent path tracing (ICPT) (see second row of Figure 2).

If the interleaving patterns are not randomized (like the one presented
in [Keller and Heidrich 01]) then the rendered results will suffer from struc-
tured noise patterns. To address this, we divide the image into blocks of 4×4
pixels and partition each block into 4 subsets. For each subset, we use the
same sequence of random numbers. This results in four different random se-
quences per 8× 8 blocks of pixels, and therefore four coherent ray packets of
4× 4 pixels (see Figure 3).

For partitioning, we use Latin Hypercube sampling [McKay et al. 79], also
known as N-rooks sampling [Shirley 91], which places a unique sample se-
quence in each row and column as shown in Figure 3. We randomize the
partitioning patterns for every sample and for every block of 4 × 4 pixels.

36 samples 256 samples 1K samples

C
P

T
IC

P
T

S
P

T

36 samples close-up 1K samples close-up

17.9249 5.6362 2.4202

13.6115 5.4002 2.0414

15.4902 6.6606 1.8878

Figure 2. Diffuse Cornell box scene rendered with different number of samples
using CPT (top row), ICPT (middle row), and SPT (bottom row). The numbers
below each image indicate the RMS error values (the reference image was rendered
using SPT with 16K samples/pixel). The far-right and far-left columns are close-ups
of the rendered images and show the different noise patterns generated with each
method.

i
i

“jgt” — 2009/11/9 — 14:34 — page 37 — #5 i
i

i
i

i
i

Sadeghi et al.: Coherent Path Tracing 37

4 ray packets in SPT/CPT 4 ray packets in ICPTa Latin hypercube pattern

Figure 3. Each color represents the pixels contained in a packet that will use
the same sequence of random numbers. The left image illustrates the standard
way of grouping primary rays into ray packets of size 4 × 4, and the right image
demonstrates our randomized interleaved ray packets, which consist of 4 randomized
Latin hypercube patterns. Notice that both cases need 4 sequences of random
numbers for an 8× 8 block of pixels.

This way we can eliminate the correlated noise in the CPT method. Further-
more, as shown in Figure 2, we obtain similar RMS error values using both
CPT and ICPT compared to the SPT method.

3. Results

In this section, we present our rendered images and measurements for five
different scenes with different geometric complexities. Our implementation
is based on the packet-tracing method with bounding volume hierarchies
(BVH) [Wald et al. 07]. For SIMD instructions, we use SSE intrinsics. The
traversal algorithm is a standard masked traversal with early hit tests (but
without inactive ray filtering) [Wald et al. 07]. All results are measured on
a single core of a Desktop PC with Intel 2.83 GHz Core 2 Quad Processors
and 3.25 GB of RAM. Table 1 shows the performance of our packet-tracing
implementation using eye rays without shading for the scenes we have tested.
Figures 2, 4 and 5 show the rendered images for our test scenes.

Scene Triangles Rays/Sec

Diffuse Cornell Box 36 4.56 M

Diffuse Sponza 76148 1.21 M

Glossy Bunnies 208996 1.14 M

Diffuse Conference Room 282759 1.28 M

Glossy Buddha 1087416 0.86 M

Table 1. Geometric complexity of the five different scenes used in our measure-
ments and the performance of our packet-tracing implementation for tracing eye
rays without shading for a packet size of 8× 8 pixels and 1 sample per pixel.

i
i

“jgt” — 2009/11/9 — 14:34 — page 38 — #6 i
i

i
i

i
i

38 journal of graphics, gpu, and game tools

Figure 4. Test scenes rendered using ICPT: a glossy Buddha in a glossy Cornell box
(left), a diffuse conference room scene (middle), and glossy bunnies with different
glossiness with 1K samples per pixel (right).

We use a linear congruential random number generator for all of our results.
We also tested an XOR random number generator, and it produced similar
results in terms of both quality and performance. Since many pixels will
use the same sequence of random numbers, we pre-generate and tabulate the
random numbers.

3.1. Relative Performance

Figure 6 compares the relative performance of SPT, CPT and ICPT for up
to 4 bounces (the effect of each bounce is shown in Figure 5). It can be
seen that CPT and ICPT outperform SPT for all test scenes even after a
few bounces. Furthermore, CPT outperforms ICPT since the rays in each
packet are closely grouped and therefore more coherent. For primary rays (i.e.,
bounce 0), CPT slightly outperforms SPT because shadow rays are coherent
and we have to generate fewer random numbers. In contrast, ICPT performs
slightly worse than SPT, since the primary rays in each ray packet are less
coherent. Also, there is a small overhead for interleaving the samples. As the
number of bounces increases, the relative performance of CPT/ICPT over
SPT decreases. The reason is that secondary rays lose a bit of coherency
after each bounce and the difference between the coherent methods and SPT
becomes smaller after several bounces.

Figure 5. ICPT used for rendering our diffuse Sponza scene with 0, 1, 2, 3, and 4
bounces of indirect illumination with 4K samples per pixels. Indirect illumination
is essential for rendering this scene.

i
i

“jgt” — 2009/11/9 — 14:34 — page 39 — #7 i
i

i
i

i
i

Sadeghi et al.: Coherent Path Tracing 39

R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Bounces

1

2

3

4

1 2 3 40

CPT / SPT

R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Bounces

1

2

3

4

1 2 3 40

ICPT / SPT

1 2 3 40
Number of Bounces

CPT / ICPT

 Sponza
 Cornell Box

Conference
 Bunnies
 Buddha

R
el

at
iv

e
P

er
fo

rm
an

ce

1

2

3

4

Figure 6. Relative performance of CPT over SPT (left), ICPT over SPT (middle),
and CPT over ICPT (right) for fixed packet size of 4× 4 pixels and 64 samples per
pixel. CPT outperforms ICPT, and ICPT outperforms SPT.

We have used a packet size of 4 × 4 pixels for all measurements. Larger
packet sizes result in more performance gains for CPT and ICPT compared to
SPT. For example, when using 16× 16 ray packets, CPT performs 6.2 times
faster than the SPT method for the Sponza scene with 3 bounces of indirect
light.

As noted in Figure 6, the Sponza scene results in the largest performance
gain for the coherent methods. We investigated the case of the Sponza scene
and found out that it has the highest number of BVH traversal steps per ray.
The high traversal-step count makes ray tracing the Sponza scene more cache
and memory intensive. Table 2 shows a measurement of the cache perfor-
mance for Sponza. It can be seen that CPT has a higher cache utilization
than the SPT method, and bus utilization measurements indicate that SPT
require more memory accesses than CPT. Similar results can be expected
from complex scenes in general.

Bounces L1 Miss L2 Miss Bus Util.

1 0.7/1.1 0.1/0.4 6.91/13.92
CPT/SPT 2 0.8/1.3 0.2/0.5 8.46/16.91

3 0.8/1.3 0.2/0.5 9.46/17.99

Table 2. Cache performance measured in percentages for the Sponza scene for
CPT and SPT. CPT has lower L1 and L2 cache miss rates and bus utilization. All
measurements are done for a packet size of 4 × 4 pixels and 64 samples per pixel

using Intel R© VTune
TM

for Performance Analyzer 9.0 evaluation edition.

3.2. SIMD Utilization

Figure 7 summarizes the SIMD utilization of SPT, CPT, and ICPT. SIMD
utilization is much higher in CPT and ICPT compared to SPT even after a few
bounces. For primary rays, CPT and SPT have the same SIMD utilization,
which is higher than the utilization of ICPT. As previously mentioned, this is

i
i

“jgt” — 2009/11/9 — 14:34 — page 40 — #8 i
i

i
i

i
i

40 journal of graphics, gpu, and game tools

Sponza

Cornell Box
Conference

Bunnies
Buddha

CPT ICPT SPT

Number of Bounces

1 2 3 40

S
IM

D
 U

til
iz

at
io

n

In
te

rs
ec

tio
n

T
ra

ve
rs

al

100%

80%

60%

40%

20%

0%
1 2 3 40

1 2 3 40

1 2 3 40 1 2 3 40

1 2 3 40

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

Figure 7. SIMD utilization plots for ray/triangle intersection computations (top
row) and BVH traversal computations (bottom row) for different scenes. The hori-
zontal axes are the number of bounces and the vertical axes are the SIMD utilization
values. All measurements are done for a packet size of 4× 4 pixels and 64 samples
per pixel. CPT and ICPT have higher utilizations compared to SPT.

due to the primary rays of ICPT being less coherent than CPT and SPT as a
result of interleaving. Additionally, SIMD utilization of CPT/ICPT is scene
dependent. In general, scenes with large flat surfaces will have higher SIMD
utilization. We get similar results for wider SIMD widths, which is important
for both GPUs and architectures like Larrabee [Seiler et al. 08].

3.3. Coherence Measurements

Figure 8 shows our measurements of traversal and intersection coherence
[Månsson et al. 07]. As expected, CPT has the highest coherency and SPT
has the lowest, while ICPT loses a bit of coherency due to interleaving. The
coherence of primary rays is roughly the same for all methods.

Sponza

Cornell Box
Confer nce

Bunnies
Buddha

e

CPT ICPT SPT

Number of Bounces

1 2 3 40

C
oh

er
an

ce
 In

te
rs

ec
tio

n
T

ra
ve

rs
al

1.0

0.8

0.6

0.4

0.2

0.0
1 2 3 40

1 2 3 40

1 2 3 40 1 2 3 40

1 2 3 40

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 8. Normalized coherence-measurement plots for different scenes for a packet
size of 4× 4 pixels and 64 samples per pixel. The horizontal axes are the number of
bounces. CPT and ICPT have higher coherency compared to SPT.

i
i

“jgt” — 2009/11/9 — 14:34 — page 41 — #9 i
i

i
i

i
i

Sadeghi et al.: Coherent Path Tracing 41

4. Discussion

Our results show that using the same sequence of random numbers for groups
of rays is an effective technique for increasing the coherence and thereby per-
formance of packet-based ray tracing. In most cases, CPT and ICPT can
generate coherent secondary rays and therefore outperform SPT. The use of
CPT and ICPT is most effective in scenes that contain smooth slowly chang-
ing geometry (e.g., the Cornell Box scene) since the secondary rays remain
coherent after a number of bounces. CPT and ICPT also perform well in com-
plex scenes with a high cache and memory bandwidth (e.g., the Sponza scene)
since the bandwidth requirement is reduced by the coherent access patterns.
Packet-based methods are not as efficient in scenes with pixel-sized geometry,
and CPT and ICPT do not improve the performance in those situations.

CPT is at least as fast as SPT; in fact, it always performs slightly better
than SPT, since all pixels will use the same sequence of random numbers
and it computes fewer random numbers. This, however, comes at the cost of
structured noise.

ICPT improves the quality of the rendered results by sacrificing some of the
coherency. The primary rays of ICPT are less coherent than SPT and CPT,
and this affects the performance negatively. However, for most scenes, ICPT
outperforms SPT due to the improved coherency for secondary rays.

If the goal is to render noise-free images with a high number of samples, then
the best algorithm is CPT. The structured noise will vanish as the number of
samples increases, and the performance is better than ICPT. However, ICPT
is effective at hiding the structured noise and it can be used in interactive
applications when intermediate results are displayed.

Acknowledgments. We would like to thank Toshiya Hachisuka and the reviewers
for suggesting several improvements to the paper. Furthermore, we would like to
thank Wojciech Jarosz, Will Chang, and Krystle de Mesa for proofreading the paper.

References

[Kajiya 86] James T. Kajiya. “The Rendering Equation.” Computer Graphics
(Proc. SIGGRAPH ’86) 20:4 (1986), 143–150.

[Keller and Heidrich 01] Alexander Keller and Wolfgang Heidrich. “Interleaved
Sampling.” In Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, pp. 269–276. London: Springer-Verlag, 2001.

[Keller 97] Alexander Keller. “Instant Radiosity.” In SIGGRAPH ’97: Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Tech-
niques, pp. 49–56. New York: ACM Press/Addison-Wesley Publishing Co.,
1997.

i
i

“jgt” — 2009/11/9 — 14:34 — page 42 — #10 i
i

i
i

i
i

42 journal of graphics, gpu, and game tools

[Lauterbach et al. 06] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. “RT-
DEFORM: Interactive Ray Tracing of Dynamic Scenes using BVHs.” In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, pp. 39–46.
Los Alamitos, CA: IEEE Press, 2006.

[McKay et al. 79] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Compar-
ison of Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code.” Technometrics 21:2 (1979), 239–245.

[Månsson et al. 07] Erik Månsson, Jacob Munkberg, and Tomas Akenine-Möller.
“Deep Coherent Ray Tracing.” In Proceedings of the 2007 Eurographics/IEEE
Symposium on Interactive Ray Tracing, pp. 79–85. Los Alamitos, CA: IEEE
Press, 2007.

[Parker et al. 99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley,
Brian Smits, and Charles Hansen. “Interactive ray tracing.” In I3D ’99: Pro-
ceedings of the 1999 symposium on Interactive 3D Graphics, pp. 119–126. New
York: ACM Press, 1999.

[Reshetov 06] A. Reshetov. “Omnidirectional Ray Tracing Traversal Algorithm for
Kd-Trees.” In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, pp. 57–60. Los Alamitos, CA: IEEE Press, 2006.

[Seiler et al. 08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman,
Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
“Larrabee: A Many-Core x86 Architecture for Visual Computing.” In ACM
Transactions on Graphics (Proc. SIGGRAPH 2008) 27:3 (2008), 1–15.

[Shirley 91] Peter S. Shirley. “Physically Based Lighting Calculations for Computer
Graphics.” Ph.D. thesis, Champaign, IL, 1991.

[Wald et al. 01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp
Slusallek. “Interactive Rendering with Coherent Ray Tracing.” In Computer
Graphics Forum (Proceedings of EUROGRAPHICS 2001 20:3 (2001), 153–164.

[Wald et al. 02] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and
Philipp Slusallek. “Interactive Global Illumination Using Fast Ray Tracing.”
In EGRW ’02: Proceedings of the 13th Eurographics Workshop on Rendering,
pp. 15–24. Aire-la-Ville, Switzerland: Eurographics Association, 2002.

[Wald et al. 07] Ingo Wald, Solomon Boulos, and Peter Shirley. “Ray Tracing De-
formable Scenes Using Dynamic Bounding Volume Hierarchies.” ACM Trans-
actions on Graphics 26:1 (2007), Article 6.

Web Information:

http://jgt.akpeters.com/papers/Sadeghietal09/

http://graphics.ucsd.edu/∼iman/CPT

i
i

“jgt” — 2009/11/9 — 14:34 — page 43 — #11 i
i

i
i

i
i

Sadeghi et al.: Coherent Path Tracing 43

Iman Sadeghi, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093
(iman@graphics.ucsd.edu)

Bin Chen, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093
(b6chen@ucsd.edu)

Henrik Wann Jensen, UC San Diego, 9500 Gilman Dr., La Jolla, CA 92093
(henrik@cs.ucsd.edu)

Received May 5, 2009; accepted September 11, 2009.

