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Fast and Stable Conformal Mapping
Between a Disc and a Square

Michael M. Stark
Boise State University

Abstract. Mapping between a square or rectangle to a disc or hemisphere, and

vice versa, arises in many areas of computer graphics, including environment and

reflection mapping, sampling, and BRDFs to name a few. Different maps have

different properties: equal-area maps may be more applicable in sampling, while

low-distortion or continuity might be preferable in other applications. Conformal

mapping preserves angles and thereby locally preserves shape. Although it has been

used for over a century, conformal mapping between a disc and a square involves

extensive computation with complex numbers. This paper reviews the construction

of a conformal map between the unit disc and the unit square, which is formulated

as an elliptic integral, and reviews several computational methods. Efficient algo-

rithms are presented for mapping the disc to the square, and from the square to the

disc. An implementation is provided in compact C language source code that runs

at speeds comparable to simple trigonometric maps.

1. Introduction

The local behavior of a bijective planar map F : R2 → R2, with F (x, y) =
(f1(x, y), f2(x, y)), is determined by the Jacobian derivative matrix

J =

⎡
⎣ ∂f1

∂x
∂f1
∂y

∂f2

∂x
∂f2
∂y

⎤
⎦ .

© A K Peters, Ltd.

1 1086-7651/09 $0.50 per page



�

�

“jgt” — 2009/11/10 — 10:21 — page 2 — #2
�

�

�

�

�

�

2 journal of graphics, gpu, and game tools

Figure 1. A conformal map preserves angles at the expense of distorting size.

The map is said to be equal area if the determinant |J | is 1, and conformal if
J is a scaled rotation matrix. Informally, a conformal map is said to “preserve
angles.” That is, two curves in the domain of the map that meet at a conformal
point get mapped, locally, to curves in the range that meet at the same angle.
Conformal maps tend to preserve the basic shape of objects at the expense
of distorting size. Figure 1 illustrates a simple conformal map from a square
to another region. The Mercator projection, one of the most popular world
map projections, is conformal: the basic shape of small regions is preserved
but size is increasingly exaggerated toward the poles.

1.1. Complex Functions as Conformal Maps

Expressed in rectangular coordinates, a complex number z = x + iy has real
part x, denoted by �(z), and imaginary part y, denoted by �(z). The complex
numbers C can thus be visualized as a plane: each complex number z = x+ iy
corresponds to a unique point (x, y) in the Cartesian plane [Spiegel 64].
The x-axis corresponds to the real line, so it is often called the real axis.
The y-axis is the imaginary axis. For the purposes of this work, the unit
disc D and the unit square S are defined as subsets of the complex
plane:

D = {z ∈ C : |z| ≤ 1},
S = {z ∈ C : |�(z)|, |�(z)| ≤ 1}, (1)

where |z| = |x+ iy| =
√
x2 + y2. The unit disc and unit square are illustrated

in Figure 2, where grid lines are shown colored according to a standard color-
ing. A complex function f : C → C has the geometric interpretation of a map
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Figure 2. The unit disc and the unit square, drawn with grid lines in a standard
coloring.

Figure 3. The unit disc transformed by Shirley’s “warp” map (left) and the confor-
mal map described in this paper (right). Shirley’s map is not analytic as a complex
function.

between two planes. One visualization of such a map is to display a collection
of points or coordinate lines transformed by f . Figure 3 illustrates how the
unit disc grid is transformed by Shirley’s “warp” map [Shirley and Chiu 97]
and the conformal map that is the subject of this paper.

Any complex function f : C → C analytic (infinitely differentiable) at a
point z0 with f ′(z0) �= 0 is a conformal map in a neighborhood of z0 [Spiegel 64].
Finding a conformal map from the disc to the square thus reduces to find-
ing an appropriate complex analytic function. This problem is hardly new;
in fact, it was considered a significant accomplishment when a hemisphere-
to-square conformal map was developed through complex analysis
[Grattan-Guinness 03].

This paper develops a conformal map from the unit disc D to the unit
square S, along with the inverse map, as complex functions. The map is de-
rived in Section 2 and general evaluation techniques are discussed in Section 3.
A reader primarily interested in implementing the maps might wish to skip
these sections, or refer directly to Section 8.3 for the pseudocode.
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Figure 4. An example of the Schwarz-Christoffel map. Points ak on the real axis
(in this case, 0, 1, 2, 3, 4 and ∞) map to vertices of a polygon. The interior angle of
the polygon at vertex s(ak) is αk/π. The point at infinity also maps to a vertex in
this example.

2. Construction of the Disc-to-Square Conformal Map

The Schwarz-Christoffel transformation [Spiegel 64] provides an analytic func-
tion mapping the upper complex half-plane to a simply-connected polygon
(i.e., one with no holes or self-intersections). Suppose α1, α2, . . . , αn are
the interior angles of the polygon. Then for some constant C and points
a1 < a2 < · · · < an on the real axis, the function defined by the contour
integral

s(z) =
∫ z

0

C

(w − a1)1−α1/π(w − a2)1−α2/π · · · (w − an)1−αn/π
dw (2)

is an analytic function that maps the upper half-plane conformally onto a
polygon having the specified interior angles. Figure 4 shows an example.
Each point ak on the real axis maps to a unique vertex, which has an interior
angle of αk/π. The real axis is continuously mapped to the boundary of the
polygon. The point at infinity maps to one remaining vertex of interior angle
2π − α1/π − α2/π − · · · − αn/π, which is the angle needed to complete the
polygon.

It is not difficult to see what makes the transformation work. Near ak,
(w − ak) is small and therefore the 1/(w − ak) term dominates the integral:

s(z) ≈
∫ z

0

C′

(w − ak)1−αk/π
=

C′

αk/π
(z − ak)αk/π.

The function (z−ak)αk/π has the effect of “bending” the real line to an angle
of αk/π at z = ak, i.e., to a polygon vertex (Figure 5).

Although it has an elegant formulation, the Schwarz-Christoffel transfor-
mation is not easy to use in practice. The formula of (2) does not apply
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Figure 5. The function zα/π has the effect of bending the upper half-plane to angle
α at the origin. (a) When α = π, it reduces to the identity function. Otherwise
the bend produces a convex (b) or concave (c) vertex. (d) If α = π/2, zα/π =

√
z,

which suggests how the half-plane can be bent into a square.

directly to an arbitrary predefined polygon: it only assures a map to some
polygon having the supplied vertex angles. The points ak, the constant C,
and the integration constant have to be judiciously chosen in order to map to
a particular polygon. Furthermore, the integral defining the map has to be
evaluated at each point on which the transformation is applied. Only in the
simplest cases can an anti-derivative be found. In most cases, including the
transformation to a square, numerical methods are required for evaluation.

2.1. Schwarz-Christoffel Mapping to the Square

Constructing a Schwarz-Christoffel map from the upper half-plane to a square
(Figure 6) is a common example or exercise in complex analysis texts

−1 0 1

s(z)

1 2

−2i

−i

s(−1)s(0)

s(1) s(∞)

Figure 6. The Schwarz-Christoffel map to the square upon which the disc-to-square
map is based. Note the symmetry that results from choosing vertex antecedents that
are symmetric about the origin.
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(e.g., [Churchill and Brown 90, Spiegel 64]). One way is to use the integral

s(z) =
∫ z

0

1√
w(w − 1)(w + 1)

dw. (3)

The singularities in the integrand, z = −1, 0, 1,∞, map to vertices of the
square. Complex analysis texts tend to leave it at that: the actual (square)
range of the map and how to evaluate it in practice are seldom considered.
The “unnormalized” square range of (3) needs to be translated and scaled to
match the unit square S as defined in (1). But first a conformal map from
the disc to the half-plane is needed to compose with (3) for a disc-to-square
map.

2.2. From the Disc to the Square

The Möbius transformation [Needham 99]

w(z) = i
1 − z

1 + z
(4)

maps the unit disc to the upper half-plane, and therefore the composite map
s(w(z)) maps the unit disc to a square (Figure 7). Applying a change of
variable in (4) results in a map from the disc to an unnormalized square:

s(w(z)) =
∫ z

1

√−2i√
(1 − ζ2)(1 + ζ2)

dζ. (5)

The constant
√

2i has the effect of scaling and rotating the square, and the
lower integration limit only changes the position; therefore, the integral

I(z) ≡
∫ z

0

1√
(1 − ζ2)(1 + ζ2)

dζ (6)

−1 1

−i

i

w(z)

−1 1

s(w)

1 2
√

2K

−2i

i

−√
2Ki

Figure 7. The function w(z) maps the unit disc to the upper half-plane; the
composition s(w(z)) maps the unit disc to a square.
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also provides a map from the disc to a (different) square, illustrated in Fig-
ure 8(a). The map is confirmal since I ′(z) �= 0 inside the disc. Because its
formulation is simpler than (5), I(z) is regarded as the basic disc-to-square
integral in this work. Much of the rest of this paper is concerned with its
efficient evaluation.

2.3. Transforming the Square

The final step in the construction is to transform the unnormalized square
I(D) to the unit square S. The process is illustrated in Figure 8. The an-
tecedents of the vertices of the square are necessarily the singular points of
the integrand of I, which lie at z = ±1,±i. Since I is an odd function
(I(−z) = −I(z)), the vertices are −I(1), I(1), −I(i), I(i). Vertices −I(1)
and I(1) lie on the real axis, as the integrand of I is real for −1 ≤ ζ ≤ 1.
The square I(D) thus has its main diagonals on the coordinate axes and is
inscribed in a circle of radius I(1). Multiplying by

√
2/I(1) scales the square

to the proper size; multiplying by
√−i rotates by −45◦ (Figure 8(b)).

Although it is not strictly necessary, it seems reasonable to require f(z) ≈ z
near z = 0, so that the map is minimally deforming at the center of the disc.
Rotating z by 45◦, which can be effected by multiplying by

√
i, accomplishes

this (Figure 8(c)). The final disc-to-square map is thus s(w(
√
i z)) scaled by

the semi-side length:

f(z) ≡
√−2i
I(1)

I
(√

i z
)

=
2
√−i
K

I
(√

i z
)

;

I(1) = K/
√

2; the value of K is given in (8). It follows from the Riemann
mapping theorem, an important result in complex analysis [Churchill and

I(z)

I(1)I(−1)

I(i)

I(−i)

(a)

√−2i
I(1) I(z)

−1 1

−i

i

(b)

√−2i
I(1) I(

√
i z)

−1 1

−i

i

(c)

Figure 8. (a) The function I(z) maps the unit disc to a square centered at the
origin. (b) Multiplying by

√−2i/I(1) scales and rotates to the unit square. (c) Mul-
tiplying z by

√
i pre-rotates to provide a unit derivative at the origin.
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Brown 90], that the disc-to-square conformal map is unique once the angle at
0 is chosen.

2.4. The Transformation as an Elliptic Integral

The integral I(z) of (6) cannot be evaluated in closed form. Nevertheless,
it is an elliptic integral, a class of well studied integrals for which there are
effective numerical evaluation techniques [Abramowitz and Stegun 64]. The
first step in applying these techniques is to reduce the integral to one of three
canonical forms. By a stroke of luck, I(z) is already in canonical form: the
incomplete elliptic integral of the first kind is defined as

F (φ|m) =
∫ z

0

1√
(1 − t2)(1 −mt2)

dt,

where φ, known as the amplitude, satisfies sinφ = z. In I(z), m = −1:

I(z) = F (φ| − 1).

Standard numerical methods require that m, known as the parameter1 of
the elliptic integral, satisfies 0 < m ≤ 1. A formula to reduce a negative
parameter [Abramowitz and Stegun 64] produces

F (φ| − 1) =
1√
2
F

(
π

2

∣∣∣∣12
)
− 1√

2
F

(
π

2
− φ

∣∣∣∣12
)

and thereby yields the final form of the disc-to-square conformal map

f(z) =
√−i K

2
−√−i F

(
π

2
− arcsin

√
i z

∣∣∣∣12
)
. (7)

The value K is known as the complete elliptic integral ;

K = F

(
π

2

∣∣∣∣12
)

≈ 1.854074677301372, (8)

and
√
i = 1√

2
(1 + i),

√−i = 1√
2
(1 − i).

1The quantity supplied by the parameter m can also be expressed in terms of the modulus
k, with k2 = m, or the modular angle α, with sinα = k. Traditional notation for elliptic in-
tegrals uses the delimiters “|”, “,”, and “\” to indicate the second argument is, respectively,
the parameter, modulus, or modular angle; i.e., F (φ|m) ≡ F (φ,

√
m) ≡ F (φ\ arcsin

√
m).
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3. Evaluation of Elliptic Integrals

Evaluation of the formula given in (7) hinges on the computation of the in-
complete elliptic integral function F . Elliptic integrals show up often enough
that code for computing F is available in many existing numerical software
libraries. For example, the GNU Scientific Library provides functions for eval-
uating F , but only for real values. Computing F for complex values, as is
needed for (7), is significantly more complicated. On the other hand, evalua-
tion of (7) is restricted to a fixed parameter m = 1/2 and known bounds on
φ, which makes the evaluation somewhat simpler. Using a general evaluator
for F is not only overkill, it is potentially wasteful.

3.1. Landen Transformations

Landen’s ascending transformation can be used to compute F by replacing φ
and m with values φ′ and m′ so that F (φ|m) = F (φ′|m′) and m < m′. When
m is sufficiently close to 1, a special-case formula can be applied. To compute
F (φ|m), start with

ζ0 = 1, k0 =
√
m, φ0 = φ,

then compute

φj+1 =
arcsin(kj sinφj) + φj

2
, kj+1 =

√
1 −

(
1 − kj

1 + kj

)2

, ζj+1 = kj+1ζj .

As n increases,

F (φ|m) →
√

ζn√
m

ln
(

tan
(
π

4
+
φn

2

))
.

The convergence is quadratic: for double-precision values in (7), at most six
iterations are needed; for single-precision values, four iterations suffice.

Landen’s descending transformation works similarly, but is not as well
suited to this particular evaluation, despite having a slightly simpler formu-
lation. Landen transformations work for complex arguments as well as real
arguments, but in the complex case appropriate branches of the multi-valued
inverse trigonometric functions have to be tracked. Both Landen transforma-
tions seem stable in quadrant IV for evaluation of (7). This is sufficient, as
the map is symmetric and the other quadrants can be transformed to and
from this quadrant.



�

�

“jgt” — 2009/11/10 — 10:21 — page 10 — #10
�

�

�

�

�

�

10 journal of graphics, gpu, and game tools

3.2. The Arithmetic–Geometric Mean

Given two initial values a0 and b0, the arithmetic–geometric mean (AGM) is
the double sequence aj , bj computed inductively, as the name implies, from

aj+1 =
aj + bj

2
, bj+1 =

√
ajbj .

The sequences converge quadratically to a common value. To compute F (φ|m)
using the AGM, start with

a0 = 1, b0 =
√

1 −m, φ0 = φ

and for each j = 0, 1, 2, . . ., compute aj+1, bj+1 from (3.2), along with

φj+1 = φj + arctan
(
bj+1

aj+1
tanφj

)
. (9)

Then as n increases,

F (φ|m) → φn + qnπ

2nan
(10)

for an appropriate integer qn. As (10) suggests, the value of qn has to chosen
so that the difference φj+1 − φj stays near 2n. The problem of computing qn
is examined in Section 4.2.

3.3. Carlson’s Formulation

Elliptic integrals here follow the “classical” treatment. A reformulation of
elliptic integrals due to Carlson [Press et al. 92] has the advantage of unifying
all three kinds in one form and provides a single numerical method for all
three. While this is a significant accomplishment for general computation,
Carlson’s approach does not seem to be particularly beneficial to the map
discussed in this paper.

3.4. Reduction to Real Arguments

The computation of F for a complex argument can be reduced to F evaluated
on two real arguments [Abramowitz and Stegun 64]:

F
(
φ+ iψ|12

)
= F

(
λ| 12

)
+ i F

(
μ| 12

)
(11)

where, if b = 2 cot2 φ+ sinh2 ψ csc2 φ− 1,

cot2 λ =
b+

√
b2 + 8 cot2 φ

4
, (12)

tan2 μ = 2(tan2 φ cot2 λ− 1). (13)
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To apply this to (7) the real and complex parts of π/2−arcsin
√
i z are needed

explicitly. If
√
i z = x + iy, then with the appropriate branch of the inverse

sine
φ+ iψ =

π

2
− arcsin(x+ iy) = arccosβ − i ln γ,

where

α =
A+B

2
, β =

A−B

2
, γ = α+

√
α2 − 1,

with A =
√

(x+ 1)2 + y2 and B =
√

(x− 1)2 + y2. Some simplification gives

tan2 φ =
1 − β2

β2
, csc2 φ =

1
1 − β2

, sinh2 ψ =
1
4

(
γ − 1

γ

)2

,

which can be substituted directly into (12) and (13) to obtain λ and μ.
Then (11) can be applied, with F computed using the method of choice.

4. Practical Evaluation and Stability Considerations

Computing F on real and imaginary parts separately via the real reduction
of Section (3.4) is typically faster than using Landen transformations or the
AGM with complex arithmetic. But, as with the other methods of computing
F , the reduction is more complicated than it might appear. Getting the right
signs of cotλ and tanμ in (12) requires a maze of conditional statements,
and choosing the proper branches of the inverse trigonometric functions can
be tricky. Furthermore, the real argument reduction is fraught with insta-
bilities, primarily due to the radicals. It is particularly troublesome when y
is small compared with x, or vice versa. This section is concerned with the
development of a stable, practical algorithm for the disc-to-square conformal
map. Most of the stability issues can be resolved by splitting the disc into
separate regions, in which appropriate computational methods can be applied
(Figure 9).

The square symmetry of the map offers some flexibility in the computation:
an algorithm (or choice of signs) that is stable in one octant suffices for the
entire disc. Away from the real axis, the real reduction of (11) and the AGM
algorithm behave well in the octant with 0 ≤ x, −x < y ≤ 0 if positive roots
and principal branches of the inverse functions are taken. A power series
expansion is developed in the next subsection that can be used to cover the
real axis, thereby avoiding most of the trouble spots of the real reduction and
AGM. Unless otherwise stated, the expressions in this section assume “z” is
actually

√
i z in the context of (7), i.e., z has already been rotated. Attention

is given to the restriction of the (rotated) disc to Quadrant IV, illustrated in
Figure 9(b).



�

�

“jgt” — 2009/11/10 — 10:21 — page 12 — #12
�

�

�

�

�

�

12 journal of graphics, gpu, and game tools

r0
+

ε

III

III IV

Region 1
power series

1

i

(a)

1

√
i z

(Region 1)

Region 2(b)
ξ(z) series

Region 2(a)
ξ(z) series

Region 3(b)
AGM

Region 3(a)
AGM

1−
r0

r0 + ε

(b)

Figure 9. The best method for computing F (
√

i z) depends on where z lies in
the domain. (a) The power series works best for z near the center (Region 1),
but requires too many terms as |z| → 1. (b) All other regions can be reduced to
Quadrant IV, which, when rotated by

√
i, is symmetric about the real axis. Near

z = 1 (Region 2), the series can be applied to ξ(z). Elsewhere the AGM algorithm
is used (Regions 3(a) and 3(b)). The minimal radius r0 of Region 1 is expanded by
ε so that Region 1 and Region 2 overlap, keeping Regions 3 away from the real axis.

4.1. A Series Expansion

The integrand of I(z), from (6), can be expanded as a binomial series

1√
(1 − ζ2)(1 + ζ2)

= (1 − ζ4)−1/2 =
∞∑

n=0

(2n− 1)!!
2nn!

ζ4n,

which converges absolutely for |ζ| < 1. Term-by-term integration gives

I(z) =
∫ z

0

1√
(1 − ζ2)(1 + ζ2)

dζ = z

∞∑
n=0

(2n− 1)!!
(4n+ 1)2nn!

z4n, (14)

which converges for |z| < 1. The convergence is rapid for fairly small z, but
requires prohibitively many terms for |z| near 1. The region in which the
power series is useful is a disc and is described hereafter as Region 1. The
SumSeries function given in Section 8.3 shows how (14) can be summed to
a specific number of terms by incrementally computing the series coefficients.
The implementation in the source code provided uses Horner’s scheme ([Press
et al. 92]) with precomputed coefficient values to evaluate the summation.
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A property of the disc-to-square integral allows the series expansion to be
applied at z = 1, which eliminates another stability problem. If

ξ(z) =

√
1 − z2

1 + z2

a change of variables in (6) results in the formula

I(z) =
K√
2
− I(ξ(z)).

The geometry of the transformation is illustrated in Figure 10. Because ξ(1) =
0, the computation at 1 can thus be “flipped” to 0 by applying the power series
of (14) to ξ(z). In fact, the positive real axis inside the disc can be covered
by combining the use of the series of z and ξ(z). The point of overlap occurs
when ξ(r0) = r0, which is

r0 =
√√

2 − 1 ≈ 0.6436.

The ξ(z) transformation makes the power series applicable in the inverse
image of Region 1, which is described as Region 2. Points z in Region 2 must
satisfy |ξ(z)| < r0 in order to cover the real axis. The minimal radius r0 of
Region 1 must be expanded slightly to r0 + ε so that Regions 1 and 2 overlap,
in order to assure the inclusion of values of z near the real axis; ε = 0.02
is a reasonable choice. The maximum number of series terms needed for
|z| < r0 +0.02 is 18 for double-precision arithmetic, and 8 for single-precision
arithmetic.

0 1

−i

i

ξ(z)

0
1

−i

i

(a)

0 1

r0

1−
r0

ξ−1

ξ

(b)

Figure 10. (a) The effect of the “flip” function ξ(z) on the right semidisc: the
bounding circle is transformed to straight lines meeting at a right angle, with ξ(1) =
0 at the vertex. (b) The point r0 is the fixed-point ξ(r0) = r0. The sector of the
circle of radius r0 is transformed by ξ−1 to a region roughly the shape of a disc of
radius 1− r0 centered at 1 (and clipped against the unit disc).
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Figure 10(b) shows that the disc of radius 1 − r0 = r1 centered at 1 is
transformed by ξ to a region approximately bounded by r0. (It is not visible
in the figure, but the transformed region “bulges out” slightly, so it is not quite
bounded by r0.) Region 2 is thus well approximated by this disc. Equating
Region 2 with this disc simplifies the containment test, as it eliminates the
evaluation of ξ(z).

4.2. An Optimized AGM Algorithm

The regions of (rotated) Quadrant IV not included in Regions 1 and 2 are
described as Region 3(a) and 3(b) (Figure 9(b)). The real reduction and AGM
algorithm work well in Region 3(a) below the real axis. The AGM algorithm
can be optimized by operating on the tangents of the φj rather than on the
angles φj . The crux of the algorithm, given in (9), can be reformulated using
the tangent-sum identity:

tanφj+1 =
(bj + aj) tanφj

aj − bj tan2 φj
,

In the real reduction given by (11), the values of μ and λ are computed
from their tangents. Passing tanμ and tanλ directly to the AGM algorithm
eliminates all trigonometric function evaluations until the evaluation of (10),
which becomes

F
(
φ|12

)
=

arctan(tanφn) + qnπ

2nan
. (15)

For double-precision arithmetic, four iterations (n = 4) suffice; for single-
precision, n = 3 is enough. The values of the AGM sequence aj and bj do
not depend on φ and can be precomputed. Values up to n = 4 are given in
Table 1. On contemporary hardware, though, just computing aj and bj along
with tanφj might be preferable to a table lookup.

The value of qn, which represents the branch of the inverse tangent, is
more difficult to track when tangents are used in place of angles. However,
because qn is an integer, the error induced by an incorrect value of qn is a

j aj bj

0 1.0000000000000000 0.7071067811865475

1 0.8535533905932737 0.8408964152537145

2 0.8472249029234942 0.8472012667468914

3 0.8472130848351929 0.8472130847527654

4 0.8472130847939792 0.8472130847939792

Table 1. Values of the AGM. Note the rapid convergence.
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multiple of π/(2nan). The value of qn can be computed from a sufficiently
accurate approximation to F by rounding. The following formula is developed
in Section 8.1:

qn =

⌊
1
2

+
2nanF̃ (tanφ0) − φn

π

⌋
,

where
F̃ (tanφ0) = tanφ0 − 0.193 (tanφ0)3 + 0.026 (tanφ0)5

is an approximation to F
(
φ0|12

)
.

4.3. Evaluation Algorithm

The complete disc-to-square conformal map algorithm is collected in Algo-
rithm 3 (Section 8.3). The basic process is to apply the central series summa-
tion of (14) for |z| < r0 + ε, otherwise rotate to Quadrant IV, and either use
the series on ξ(z) if |ξ(z)| < r0, or the optimized AGM algorithm with the
real-argument reduction.

The source code provided contains an optimized implementation of this
algorithm. Most notably, speedup is obtained by minimizing the number of
summed terms in the power series. As noted previously, 18 terms suffice for
|z| < r0 (in double-precision arithmetic), but far fewer terms are needed for
smaller z. Figure 11(a) contains a plot of the number of terms required as a
function of |z|. An empirical upper bound on the number of terms required
is

⌊
(3.48 + 6.65|z| − 3.19|z|2)/(1 − |z|)⌋, but �6.5/(1 − |z|) − 2
 works fine in

practice.

|z|

n

0 0.25 0.50 0.75
0

10

20

30

40

50

r0 0.86

(a) Required Terms of the I(z) Series

|z|

n

0 0.5 1.0
0

5

10

K/
√

2

(b) Required Terms of the Inverse Series

Figure 11. Number of terms required for the series expansions as functions of |z|,
for single- and double-precision arithmetic (light and dark green, respectively).
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The power series is computationally superior to the AGM algorithm for
several reasons: it is faster, more stable, and does not require a real-argument
reduction. However, the speed decreases as the number of terms summed
increases. For sufficiently large |z|, the AGM algorithm is a better choice.
Experiments have shown that the series implementation runs faster than the
AGM implementation when up to about 50 terms are included (although this
is highly dependent on the CPU), which corresponds to a radius of about r0 =
0.86. Region 2 is also implicitly expanded when r0 is increased. An empirically
determined formula for the radius r1 of a disc to approximate Region 2, to
match the number of terms in Region 1, is r21 = 0.46 − 1.67r0 + 1.79r20.

5. Inversion: A Conformal Map from the Square to the Disc

The inverse of the conformal map from the disc to the square is a conformal
map from the square to the disc. The inverse of the disc-to-square function
f(z) can be expressed in terms of the inverse of I(z). Setting w = f(z) and
solving for z in (7) produces a formula in terms of the inverse of I(z):

f−1(w) =
1√
i
I−1

(
Kw

2
√−i

)
.

Inverses of elliptic integrals are Jacobi elliptic functions, which are studied
and applied at least as much as elliptic integrals. Modifications of Landen’s
transformations or the AGM algorithm can be used for efficient computation.

As it happens, inversion of I(z) can be expressed as a rational function and
a rapidly converging power series. The series expansion of (14) can be inverted
directly to provide a series for I−1(w). (Numeric values for the coefficients are
included in the source code.) Unlike the series expansion for I(z), the entire
unit square is well inside the radius of convergence of the inverse series. In
fact, 30 or so terms (at most) are sufficient to compute the inverse map.

A trick can be employed to accelerate the convergence. Examination of the
inverse series coefficients shows that for large j the jth term is approximately

(−1)jC0K
−4(j+1), C0 ≈ 13.750371636040937

(the meaning of the empirically determined constant C0 is unclear). Tails of
the series thus approximate a geometric series; subtracting the sum of this
series results in a different series expansion:

I−1(w) ≈ C0w

K4 + w4
+ w

(
c1 + c5w

4 + c9w
8 + · · · ) .

The coefficients cj , which are given in Table 2, drop to zero much faster than
those of the ordinary inverse series. At most 10 terms are needed for the entire
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k ck k ck

1 −1.6360491363469976×10−01 21 −1.4786423004927015×10−13

5 −1.5316508620083077×10−03 25 −6.1034023099548599×10−16

9 +5.9455890307966153×10−07 29 +5.3527850055041484×10−19

13 +1.7520282395125552×10−08 33 +7.9773298274614004×10−21

17 +2.8997255626121623×10−11 37 +1.1683926152311516×10−23

Table 2. Coefficients for the inverse (square-to-disc) series.

square, including the boundary. Figure 11(b) contains a plot of the required
number of terms.

6. Stability Analysis

One empirical approach to checking the numerical stability of the disc-to-
square and square-to-disc algorithms is to map a point z from the disc to
the square, then map it back to the disc. The difference, i.e., |z − f−1(f(z))|
is a reasonable test of numerical accuracy (the two algorithms are suffi-
ciently different in operation that precision errors in the forward algorithm
are not likely to be canceled by corresponding errors in the inverse algorithm).
Table 3 lists computed values of max |zk − f−1(f(zk))| by domain
region. The values were computed using the implementation provided,
on some 1010 points zk distributed across the disc. The error exhibited
in Regions 1 and 3 is within a factor of 10 of the floating-point
epsilon.

The only notable stability problem occurs in Region 2 and is a result of
loss of precision in ξ when

√
i z = x + iδ for small δ, i.e., near one of the

main diagonals of the square. This problem can be eliminated by using series
expansions given in Section 8.2. Implementing them is not likely to be worth
the trouble though, because the error is not significant in practice. For exam-
ple, if the algorithms were employed to create a poster-sized image, the error
in the single-precision case would be less than the dot pitch of a 2400 DPI
printer; in the double-precision case, the error would be at the atomic scale.

Max Error (single-prec.) Max Error (double-prec.)

Region 1 2.8×10−7 8.7×10−16

Region 2 8.3×10−5 5.3×10−11

Region 2∗
δ 8.8×10−7 1.7×10−15

Region 3 9.3×10−7 1.3×10−15

(floating-point ε) 1 .2×10−7 2 .2×10−16

∗Region 2 excluding a strip of width δ = 10−3 along the real axis.

Table 3. Empirical Error Bounds
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7. Applications

Figures 12–14 show the result of some applications of the methods discussed.
As noted in the introduction, conformal mapping from the disc to the square
is not new and applications abound. The primary contribution of this work is
the fast algorithms developed for computing the map and its inverse. Table 4
summarizes the running times for the various methods of computation. Note

(a) (b) (c)

Figure 12. (a) Some text in a circle (homage to Knuth [Knuth 84]) transformed
with (b) Shirley’s map (note how obvious the discontinuties are) and the (c) con-
formal map. Note the extreme distortion in the corners.

(a) (b) (c)

Figure 13. (a) Some text in a square transformed with (b) the inverse of Shirley’s
map and (c) the inverse conformal map. The distorion in the corners is noticeable,
but most the text seems hardly affected.
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Figure 14. On some images, such as this famous portrait, the corner distortions
of the conformal square-to-disc map are hardly noticable.

that the disc-to-square implementation runs only about 20% more slowly than
Shirley’s simple trigonometric map. The inverse map implementation is ac-
tually faster than that of Shirley’s map. (The timings were performed on an
Intel Xeon processor running at 3.2 GHz; the code was complied using GCC
4.1 under Linux kernel version 2.6.23.)

Map Version Forward (ms) Inverse (ms)

Shirley’s “Warp” Map 258 299
Complex Landen Ascending 4259 —
Complex AGM 6709 —
Real Landen Ascending 5982 —
Real Carlson 2760 —
Real Optimized AGM 1010 —
Series/Real Optimized AGM 568 —
Best Series/Real Optimized AGM 303 214

Table 4. Time required for one million map function evaluations

8. Appendix

8.1. Computation of qn

The optimized AGM algorithm works with the tangents of angles rather than
the angles directly. This complicates the determination of qn, which tracks
the branch of the inverse tangent. But because qn is an integer, incorrect
values of qn cause errors in discrete steps: integer multiples of π/(2na). If
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F̃ (φ) is a (separately computed) approximation to F
(
φ| 12

)
, then (15) implies

qn ≈ 2nanF̃ (φ) − arctan(tanφn)
π

. (16)

Therefore, if F̃ (φ) is within 1
2 π/(2

nan) of F
(
φ| 12

)
, then qn can be computed

by rounding the right-hand side of (16) to the nearest integer.

For n = 4 the allowable error, which is about 0.116 (for |φ| ≤ π/2) is
large enough that even a rough linear approximation F

(
φ| 12

) ≈ 1.14φ suffices;
in fact, F

(
φ|12

) ≈ φ suffices for |φ| < 1.1. A problem, though, is that the
modified AGM algorithm starts with tanφ0 rather than φ0—using the linear
approximation requires an extra arctangent call to determine φ0. An approx-
imation to the arctangent, combined with the linear approximation of F , can
be used instead. For |φ| ≤ 1.1 (this is the largest value of φ that appears
outside of Regions 1 and 2) either of the following approximations work:

F
(
φ| 12

) ≈ tanφ− 0.193 tan3 φ+ 0.026 tan5 φ,

≈ tanφ
1 + 0.172 tan2 φ

.

The maximum absolute errors for |φ| < 1.1 are about 0.053 and 0.030, re-
spectively, which are well within the allowable error of 0.116; in fact, these
approximations actually suffice for n ≤ 5, which is good for about 42 deci-
mal digits. It is important to remember that the approximations may fail for
|φ| > 1.1.

8.2. Series Expansions Near the Diagonals

As noted in Section 6, the transformation by ξ given in (4.1) has a stability
problem for z near the real axis, i.e., when z = x + i δ for δ << x. A direct
series expansion mitigates that problem:

F

(
π

2
− arcsin(x + iδ)

∣∣∣∣12
)
≈

F

(
π

2
− arcsin x

∣∣∣∣12
)
− i

√
2 δ

(1− x4)1/2
+

√
2x3δ2

(1− x4)3/2
+ i

√
2 (1 + x4)x2δ3

(1− x4)5/2
.
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This approximation is only suitable if δ is small compared to 1−x. A different
series is needed for x near 1 (and y near 0): if 1 − z = x+ i y, then

F

(
π

2
− arcsin(x + i y)

∣∣∣∣12
)
≈

√
x + i y

(
1 + x+i y

4
+ 11(x2−y2+2i xy)

160
+ x3−3xy2+i(3x2y−y3)

128

)
.

(These formulas are applied after rotation by
√
i.)

8.3. Pseudocode

This section contains pseudocode for the algorithms developed in this paper.
Unless otherwise noted, all variables and values are complex.

Function SumSeries(z,n)
Compute I(z) via the central power series of (14)
input : z, with |z| < 1; n, the number of terms to include
output: I(z)

s← z; // initialize the running series sum
p← z; // initialize a running product
for k = 1 . . . n do

p← p z4 (2k − 1)/(2k); // p now contains (2k − 1)!!/(2kk!) z4k+1

s← s + p/(4k + 1); // add the term to the running sum
end
return s;

Function F(t)

Compute F
(
φ| 1

2

)
via the arithmetic-geometric mean.

input : t = tan φ, with 0 ≤ φ < 1.1 (0 ≤ tan φ < 1.96)
output: F

(
φ| 1

2

)
// All variables here are real
n← 4; // (use n← 3 for single-precision)
F0 ← t− 0.193t3 + 0.026t5; // F0 ≈ F

(
φ| 1

2

)
(a, b)← (1,

√
1/2); // initialize the AGM pair

for k = 1 . . . n do
t← (a + b)t/(a− bt2); // compute tan φk

(a, b)←
(
(a + b)/2,

√
ab

)
; // update the AGM pair

end
φn ← arctan(t);
return (φn + π 
0.5 + (2naF0 − φn) /π�) /(2na);
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Algorithm 1. (Conformal Disc to Square Map.)
input : polar coordinates [r, θ] of a point in the unit disc:

0 ≤ r ≤ 1, −π < θ ≤ π
output: rectangular coordinates (x, y) of the point mapped conformally to the

unit square: −1 ≤ x, y ≤ 1

if r < r0 then
// Region 1: use the central power series
z ← r cos(θ + π

4
) + i r sin

(
θ + π

4

)
;

w← 2
√−i/K SumSeries(z, 
6.5/(1 − r)− 2�);

else
// Transform to Quadrant IV
Q← 
θ/(π/2)�+ 1/2 // find the quadrant
z ← r cos

(
θ −Q π

2

)
+ i r sin

(
θ −Q π

2

)
; // rotate to Quadrant IV, and by

√
i

// “Flip” to apply the power series, if possible
ξ ←√

(1− z2)/(1 + z2);
if |ξ| < r0 then

// Region 2: use the power series on ξ
w← K/

√
2− SumSeries(ξ, 
6.5/(1 − |ξ|) − 2�);

else
// Region 3: use the AGM on real arguments as described in Section 3.4
// all values except z and w are real
(x, y)← (�(z),�(z));

(A,B)←
(√

(x + 1)2 + y2,
√

(x− 1)2 + y2
)
;

(α, β)← (
1
2
(A + B), 1

2
(A−B)

)
;

γ ← α +
√

α2 − 1;
Tφ ← (1− β2)/β2; // Tφ = tan2 φ
b← 2/Tφ + (γ − 1/γ)2/(4(1− β2))− 1;
Cλ ← (b +

√
b2 + 8/Tφ)/4; // Cλ = cot2 λ

Tμ ← 2(TφCλ − 1); // Tμ = tan2 μ
w← K − F

(√
1/Cλ

)− i F
(√

Tμ

)
;

// Adjust for the octant above the real axis
if y > 0 then w← conj(w); // conj(w) ≡ �(w)− i�(w)

end

// Rotate back to the original quadrant, and scale by 2
√−i/K

// (Q contains the rotation by
√−i)

w← 2w
(
cos(Q π

2
) + i sin(Q π

2
)
)
/K;

end
// w contains the rectangular coordinates of the mapped point
(x, y)← (�(w),�(w));
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