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Calculating Center of Mass in an
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Abstract. We study the behavior of simple, 2D, self-organizing primitives that

interact and move in an unbounded environment to create aggregated shapes. Each

primitive is represented by a disk and a unit point mass. In order to compare the

aggregated shape produced by the primitives to other shapes, the centers of mass of

the two shapes must be aligned. We present an algorithm for calculating the center

of mass (COM) for a set of point masses that are distributed in an unbounded 2D

environment. The algorithm calculates the centroid for each coordinate component

separately by forming two “orthogonal” tubes, calculating a center of mass in 3D

for each tube and then projecting the 3D COM back onto the tubes, in order to

produce the 2D COM of the points.

1. Introduction

We are studying automated shape composition based on self-organizing prim-
itives. We have developed a method for discovering local interactions that
direct the primitives to aggregate into a user-defined shape [Bai et al. 08a].
The primitives are randomly placed in an unbounded 2D environment and
allowed to assemble by following local field gradients. The primitives’ envi-
ronment has toroidal topology, since the top edge of the computational arena
is connected to the bottom edge, and the left edge is connected to the right
edge. This allows the primitives to move and interact with other primitives
across arena boundaries. This type of computational configuration is also
described as having periodic boundary conditions. A central component of
our self-organization method is a genetic programming process [Koza 1992]
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that requires that we quantify the similarity of the aggregated shape with the
user-specified shape [Bai et al. 08b]. In order to compute the similarity met-
ric, the shapes must first be placed in overlapping areas of the computational
environment. Therefore, we make the center of mass (COM) of the aggregate
coincident with the COM of the user-defined shape in the center of the shape’s
2D Cartesian (image) space. In this paper, we present an algorithm for cal-
culating the COM for a set of point masses in an unbounded 2D (toroidal)
environment.

In general, the center of mass C of a set of point masses is calculated by
the weighted average of all the points as in the equation

C =
∑

miXi∑
mi

, (1)

where mi is the mass of point i and Xi is its location. Since our point masses
exist in an unbounded environment, the problem is complicated by the lack of
a proper origin for the environment’s coordinate system. The specific problem
we are solving involves finding the center of mass for n unit point masses in
a rectangle with toroidal topology, where the origin of the finite rectangle
is in the lower-left corner. The COM is needed in the coordinate system of
the rectangle. Equation (1) cannot be used to provide a solution, since the
collection of points may be aggregated across the environment’s boundaries.
For example in Figure 1 (left), the points on the top-left edge are close to
points near the top-right corner and bottom-right edge, because of the toroidal
connectivity. Similarly, in Figure 2 (left) the points along the top edge of the
image are close to the points along the bottom edge of the image. Simply
applying Equation (1), using the 2D Cartesian coordinates of the points in

Figure 1. Example 1. Left: original image. Right: incorrect centered result.
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Figure 2. Example 2. Left: original image. Right: incorrect centered result.

the images, produces incorrect solutions, as seen in Figures 1 (right) and 2
(right). In these images, a green dot is placed at the center of mass produced
by the above method. The COM calculated by our new method is represented
by a red dot, which can be found in the upper-left portion of the images. When
we compare aggregation results, the computed COM (green dot) is translated
to the center of the image, with the pixels being rolled across edge boundaries.
The desired result should place the aggregate in the center of the image. Using
the 2D Cartesian coordinates of the points along with Equation (1) does not
produce the desired outcome.

One existing method, based on SLERP, computes a weighted spherical av-
erage [Buss et al. 01]. The weighted average is expressed similar to Equa-
tion (1) but on the surface of a torus. The COM of the point masses is the
point that minimizes the sum of the weighted distance between the COM and
each point mass. However, the calculation of distance on a toroidal surface
is complex, and the outcome of the minimization may have multiple local
solutions. Therefore, we propose a new, simpler algorithm to solve the COM
problem in an unbounded 2D environment.

2. Algorithm Description

In order to properly calculate the COM of 2D point masses distributed in an
environment with periodic boundary conditions, the masses are first mapped
onto 3D tubes. A COM calculation is performed in three dimensions and then
projected back into two dimensions. The algorithm calculates the centroid for
each coordinate component separately by forming two tubes and calculating
a center of mass in 3D for the points on each tube. The 3D COM is then
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projected back onto the tubes. The location of the projected COM in the
coordinate system of the tube surface is the 2D COM of the points.

The location of a point mass in the 2D rectangle is represented by the 2D
Cartesian coordinate (i, j), with values ranging from (0, 0) to (imax, jmax).
The algorithm constructs two “orthogonal” tubes from the 2D rectangle. We
use the term orthogonal because one tube is formed by connecting the left
edge of the rectangle with the right edge, and the other tube is formed by
connecting the top edge with the bottom, conceptually creating two tubes
rotated 90 ◦ from each other. The first tube (Ti) is created by connecting the
i = 0 edge of the rectangle with the i = imax edge. The second tube (Tj) is
created by connecting the j = 0 edge of the rectangle with the j = jmax edge.
The process of forming the tubes transforms the primitives’ locations from
2D to 3D. The 3D Cartesian coordinate Xk ≡ (x, y, z) denotes the location
of the kth point mass in three dimensions during these interim calculations.
The 2D-to-3D transformation for points on tube Ti is defined by

x = ri cos(θi), y = j, z = ri sin(θi),

ri =
imax

2π
, θi =

i

imax
2π. (2)

The 2D-to-3D transformation for points on tube Tj is defined by

x = i, y = rj cos(θj), z = rj sin(θj),

rj =
jmax

2π
, θj =

j

jmax
2π. (3)

Two different tubes are needed in order to calculate each coordinate of the
COM. Tube Ti is used to calculate the i-coordinate, because once transformed
to cylindrical coordinates, i becomes the boundless θi-coordinate. Tube Tj is
used to calculate the j-coordinate, because j is then mapped to θj .

Once the unit point masses have been mapped onto one of the tubes, the
3D center of mass of these transformed points is calculated:

X̄ =
1
n

n∑
k=1

Xk.

The 3D COM X̄ is then projected back onto each tube. We calculate just one
of the COM coordinates from each tube. The coordinate ī is calculated from
X̄ for tube Ti:

θi = atan2(−z̄,−x̄) + π, ī =
imax

2π
θi. (4)

The coordinate j̄ is calculated from X̄ for tube Tj :

θj = atan2(−z̄,−ȳ) + π, j̄ =
jmax

2π
θj . (5)
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(a)

(b) (c)

(d)

Figure 3. Applying the COM algorithm in 1D.

After this calculation, point (̄i, j̄) is the center of mass of the original 2D
point masses in the 2D Cartesian coordinate system of the rectangle. The
function atan2(y, x) is a Unix math function that computes the principal value
of the arc tangent of y/x, using the signs of both arguments to determine the
quadrant of the return value. It returns a value between −π and π. The
inputs to atan2 are negated, and the output is incremented by π in order to
map the output of atan2 to the ranges of θ ([0, 2π]), defined in Equations (2)
and (3).

A degenerate case occurs when the 3D center of mass lies on the central axis
of a tube. In this case, the projection of the 3D point onto the surface of the
tube is not well-defined. In Equations (4) and (5), the degenerate case occurs
for atan2(0, 0). This (unlikely) situation can be detected, and the output θ
value can simply be defined as 0. The 3D point is then projected to one of the
edges of the 2D rectangle. However, after rolling the 2D rectangular image,
the projected 2D point will always be at the center of the rolled image.

A 1D example of the algorithm is presented in Figure 3. Point masses
are given along a line representing a connected circular environment (Figure
3(a)). The ends of the line are conceptually connected and marked by a star.
In order to calculate the COM of the masses, the line is formed into a circle.
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The COM is calculated using the new 2D positions and marked by a small
red “x” (Figure 3(b)). The intermediate 2D COM is projected back onto
the circle and marked by a red disk (Figure 3(c)), providing the 1D COM in
the coordinates of the line (Figure 3(d)). The degenerate case of 1D COM
calculation occurs when the 2D COM (the red “x” in Figure 3(b)) overlaps
with the center of the circle. The 2D COM can then be projected to either
end of the 1D line.

Figure 4. Example 1. Left: original image. Right: desired centered result.

Figure 5. Example 2. Left: original image. Right: desired centered result.
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Figure 6. Example 3. Left: original image. Right: desired centered result.

Figure 7. Example 4. Left: original image. Right: desired centered result.

3. Examples

We present four examples from our self-organization simulations that use the
COM algorithm to shift aggregates, formed in an unbounded 2D environment,
to the center of an image. We roll the COM (̄i, j̄) to the center of the image
(imax/2, jmax/2) as seen in Figure 4 through Figure 7. In all of these examples,
the main aggregated object crosses several boundaries of the image rectangle.
In the left images, the COM of the point set is displayed with a red dot. In
the right images, the COM (red dot) is shifted to the center of the image
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rectangle, with the same shift applied to all of the points. If the shift makes
an individual point cross an image edge, the point is placed on the opposite
side of the image, i.e., the image is rolled.

We have found the COM algorithm to be effective and robust. It has been
employed to calculate the center of mass for approximately 100,000 diverse
test cases and has always produced satisfactory results in practice.
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