//Vertex Shader /** (w,h,1/w,1/h) */ uniform vec4 sourceSize; /** Pixel position of the first red pixel in the */ /** Bayer pattern. [{0,1}, {0, 1}]*/ uniform vec2 firstRed; /** .xy = Pixel being sampled in the fragment shader on the range [0, 1] .zw = ...on the range [0, sourceSize], offset by firstRed */ varying vec4 center; /** center.x + (-2/w, -1/w, 1/w, 2/w); These are the x-positions */ /** of the adjacent pixels.*/ varying vec4 xCoord; /** center.y + (-2/h, -1/h, 1/h, 2/h); These are the y-positions */ /** of the adjacent pixels.*/ varying vec4 yCoord; void main(void) { center.xy = gl_MultiTexCoord0.xy; center.zw = gl_MultiTexCoord0.xy * sourceSize.xy + firstRed; vec2 invSize = sourceSize.zw; xCoord = center.x + vec4(-2.0 * invSize.x, -invSize.x, invSize.x, 2.0 * invSize.x); yCoord = center.y + vec4(-2.0 * invSize.y, -invSize.y, invSize.y, 2.0 * invSize.y); gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } //Pixel Shader /** Monochrome RGBA or GL_LUMINANCE Bayer encoded texture.*/ uniform sampler2D source; varying vec4 center; varying vec4 yCoord; varying vec4 xCoord; void main(void) { #define fetch(x, y) texture2D(source, vec2(x, y)).r float C = texture2D(source, center.xy).r; // ( 0, 0) const vec4 kC = vec4( 4.0, 6.0, 5.0, 5.0) / 8.0; // Determine which of four types of pixels we are on. vec2 alternate = mod(floor(center.zw), 2.0); vec4 Dvec = vec4( fetch(xCoord[1], yCoord[1]), // (-1,-1) fetch(xCoord[1], yCoord[2]), // (-1, 1) fetch(xCoord[2], yCoord[1]), // ( 1,-1) fetch(xCoord[2], yCoord[2])); // ( 1, 1) vec4 PATTERN = (kC.xyz * C).xyzz; // Can also be a dot product with (1,1,1,1) on hardware where that is // specially optimized. // Equivalent to: D = Dvec[0] + Dvec[1] + Dvec[2] + Dvec[3]; Dvec.xy += Dvec.zw; Dvec.x += Dvec.y; vec4 value = vec4( fetch(center.x, yCoord[0]), // ( 0,-2) fetch(center.x, yCoord[1]), // ( 0,-1) fetch(xCoord[0], center.y), // (-1, 0) fetch(xCoord[1], center.y)); // (-2, 0) vec4 temp = vec4( fetch(center.x, yCoord[3]), // ( 0, 2) fetch(center.x, yCoord[2]), // ( 0, 1) fetch(xCoord[3], center.y), // ( 2, 0) fetch(xCoord[2], center.y)); // ( 1, 0) // Even the simplest compilers should be able to constant-fold these to // avoid the division. // Note that on scalar processors these constants force computation of some // identical products twice. const vec4 kA = vec4(-1.0, -1.5, 0.5, -1.0) / 8.0; const vec4 kB = vec4( 2.0, 0.0, 0.0, 4.0) / 8.0; const vec4 kD = vec4( 0.0, 2.0, -1.0, -1.0) / 8.0; // Conserve constant registers and take advantage of free swizzle on load #define kE (kA.xywz) #define kF (kB.xywz) value += temp; // There are five filter patterns (identity, cross, checker, // theta, phi). Precompute the terms from all of them and then // use swizzles to assign to color channels. // // Channel Matches // x cross (e.g., EE G) // y checker (e.g., EE B) // z theta (e.g., EO R) // w phi (e.g., EO R) #define A (value[0]) #define B (value[1]) #define D (Dvec.x) #define E (value[2]) #define F (value[3]) // Avoid zero elements. On a scalar processor this saves two MADDs // and it has no effect on a vector processor. PATTERN.yzw += (kD.yz * D).xyy; PATTERN += (kA.xyz * A).xyzx + (kE.xyw * E).xyxz; PATTERN.xw += kB.xw * B; PATTERN.xz += kF.xz * F; gl_FragColor.rgb = (alternate.y == 0.0) ? ((alternate.x == 0.0) ? vec3(C, PATTERN.xy) : vec3(PATTERN.z, C, PATTERN.w)) : ((alternate.x == 0.0) ? vec3(PATTERN.w, C, PATTERN.z) : vec3(PATTERN.yx, C)); }