
�

�

“jgt” — 2006/8/10 — 11:49 — page 17 — #1
�

�

�

�

�

�

Vol. 11, No. 3: 17–26

A Bidirectional Generating Algorithm for
Rational Parametric Curves

Zhong Li
Shanghai Jiao Tong University and Zhejiang Sci-Tech University

Lizhuang Ma
Shanghai Jiao Tong University

Abstract. A generating algorithm for rational quadratic Bézier curves is pro-

vided. In the algorithm, we find the recurrence relation to get every pixel along the

curve, using the bidirectional strategy for rendering and the forward and backward

difference method for computing. The algorithm has a fast generating speed, and

the curves keep a reasonable rendering accuracy. This algorithm can easily be gener-

alized to render higher-degree rational Bézier curves and other rational parametric

curves; it has broad applications. Source code is available online at the website

listed at the end of this paper.

1. Introduction

Generating algorithms for curves are important in computer graphics and
CAD/CAM. Many efforts have been made to develop efficient generating al-
gorithms. For some simple curves such as lines, circles, ellipses, etc., we have
rendering algorithms such as the DDA algorithm for lines, the Bresenham
algorithm and midpoint algorithm for circles, the Pitteway algorithm for el-
lipses, etc. [Bresenham 77, Van Aken 84, Pitteway 85, Foley et al. 90, Yao and
Rokne 98].

For rendering rational parametric curves, there seems to be no generally
accepted technique for their fast and accurate display. A popular method is
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to compute a set of points along the curves, then join them by line segments
in a smooth approximation. This algorithm needs floating-point arithmetic.
How to increment the parameter to get the best approximation possible is
not obvious, and high-degree parametric curves are replaced by low-degree
parametric curves. Or, we use a pixel-based method to draw: we sample
many points along the curves, then round them to the nearest integer and
set each pixel to where the computed point falls. This method provides the
smoothest curves possible at the expense of computation time since many
points have to be computed to ensure that no gaps are created along the
curves.

In this paper, we provide a fast generating algorithm for rational quadratic
Bézier curves. In the algorithm, we first find the recurrence relation of ev-
ery point, then use the bidirectional strategy to render and the forward and
backward difference method to calculate. The experimental results show that
the algorithm has a fast generating speed and the curves keep a reasonable
rendering accuracy. This algorithm can also be generalized to higher-degree
rational Bézier curves and other rational parametric curves; it has broad ap-
plications. Source code is available online at the address listed at the end of
this paper.

2. Generating Algorithm for Rational Quadratic Bézier Curves

The standard rational quadratic Bézier curve can be written as

P (t) =
(1 − t)2w0P0 + 2t(1 − t)w1P1 + t2w2P2

(1 − t)2w0 + 2t(1 − t)w1 + t2w2
, t ∈ [0, 1],

where P0, P1, P2 are control points and w0, w1, w2 are weights of corresponding
control points. Usually, wi > 0, w0 = w2 = 1, and w1 = w.

When we render a rational quadratic Bézier curve, we can write it as x =
f(t) = u(t)

v(t) , y = g(t) = r(t)
v(t) , t ∈ [0, 1], where f(t), g(t) would have to be

rounded to integers for x, y to be integers. We first discuss x = f(t). Suppose
there exists an integer n satisfying

n ≥ max
0≤t≤1

|f ′(t)| .

Let t be i
n (0 ≤ i ≤ n). Correspondingly, xi becomes [f( i

n )], where [f( i
n )]

means the rounded integer part of f( i
n ). From the Lagrange mean value

theorem, we note that
∣∣∣∣f

(
i + 1

n

)
− f

(
i

n

)∣∣∣∣ =
∣∣∣∣f

′(θ)
n

∣∣∣∣ ≤ 1. (1)
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This inequality ensures that the drawing step is not more than one pixel, i.e.,
the rendered curve does not have gaps (Huang and Zhu, 2001).

Obviously, u(t) and v(t) are degree-2 polynomials. If m is the least common
multiple of all the denominator coefficients of (1 − t)2, t(1 − t), t2, multiply
u(t) and v(t) by n2 · m to get

f

(
i

n

)
=

n2 · m · u( i
n )

n2 · m · v( i
n )

≡ ū(i)
v̄(i)

,

where ū(i), v̄(i) are polynomials in i whose coefficients are integers.
So x = f(t) can change to the integer equation

v̄(i) · xi = ū(i) + zi, |zi| ≤ |v̄(i)|/2, (2)

where xi, zi are integers.
If xi is known, then xi+1 should be satisfied with

v̄(i + 1) · xi+1 = ū(i + 1) + zi+1, |zi+1| ≤ |v̄(i + 1)|/2.

Denoting ∆ϕ(i) = ū(i+1)
v̄(i+1) − ū(i)

v̄(i) , thus

xi+1 = (xi + ∆ϕ(i) − zi

v̄(i)
) +

zi+1

v̄(i + 1)
,

where

|∆ϕ(i)| = | ū(i + 1)
v̄(i + 1)

− ū(i)
v̄(i)

| = |f(
i + 1

n
) − f(

i

n
)| ≤ 1, | zi

v̄(i)
| ≤ 1

2
.

Hence,

|∆ϕ(i) − zi

v̄(i)
| ≤ 3

2
.

Therefore, xi+1 can only be xi − 1, xi, xi + 1; we can compute xi+1 by the
following recursive relation:

xi+1 =

⎧⎪⎨
⎪⎩

xi − 1 when ū(i+1)
v̄(i+1) − ū(i)

v̄(i) − zi

v̄(i) < − 1
2 ,

xi when − 1
2 ≤ ū(i+1)

v̄(i+1) − ū(i)
v̄(i) − zi

v̄(i) < 1
2 ,

xi + 1 when ū(i+1)
v̄(i+1) − ū(i)

v̄(i) − zi

v̄(i) ≥ 1
2 ,

and

zi+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi + xi(v̄(i + 1) − v̄(i)) + ū(i) − ū(i + 1) − v̄(i + 1)
when xi+1 = xi − 1,

zi + xi(v̄(i + 1) − v̄(i)) + ū(i) − ū(i + 1)
when xi+1 = xi,

zi + xi(v̄(i + 1) − v̄(i)) + ū(i) − ū(i + 1) + v̄(i + 1)
when xi+1 = xi + 1.
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Similarly, letting t be i
n , we can change y = g(t) to

v̄(i) · yi = r̄(i) + qi, |qi| ≤ |v̄(i)|/2. (3)

So n should be considered in terms of x, y, namely n = max
0≤t≤1

{|f ′(t)|, |g′(t)|}.
A key point in using this algorithm is to compute the upper-bound value

of |f ′(t)| and |g′(t)|. Suppose the rational Bézier curve is written as

C(t) =

l∑
i=0

ciwiBi,n(t)

l∑
i=0

wiBi,n(t)
,

where Bi,n(t) are Bernstein polynomials, ci are control points, and wi are the
weights.

Floater gave two estimates [Floater 92]:

|C′(t)| ≤ l · Q

q
max

i,j=0,1,··· ,l
|ci − cj |, t ∈ [0, 1] (4)

and

|C′(t)| ≤ l · Q2

q2
max

i=0,1,··· ,l−1
|ci+1 − ci|, t ∈ [0, 1], (5)

where Q = max
i

{wi}, q = min
i
{wi}.

For the special case of rational quadratic Bézier curves, Hermann gave a
better estimate [Hermann 99]:

|C′(t)| ≤ 2 max
i=0,1

|ci+1 − ci|max{w̄,
2

1 + w̄
}max{

√
w2

w0
,

√
w0

w2
}, (6)

where w̄ = w1√
w0w2

.
We can get the upper bound of |f ′(t)| and |g′(t)| from Equations (4), (5),

and (6), but from the experimental results, we found that a somewhat large
upper-bound value increases the loop numbers and causes drawing of the same
pixel many times so that it influences the efficiency of the algorithm. So, for
rational quadratic Bézier curves, we can get the smallest possible upper bound
from Equation (6).

3. Improvement in the Generating Algorithm

In order to speed up the generating time, we can use the bidirectional render-
ing method [Yao and Rokne 96] to draw rational Bézier curves. When xi is
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known, xi−1 can be derived by the similar recursive relation

xi−1 =

⎧⎪⎨
⎪⎩

xi − 1 when ū(i−1)
v̄(i−1) − ū(i)

v̄(i) − zi

v̄(i) < − 1
2 ,

xi when − 1
2 ≤ ū(i−1)

v̄(i−1) − ū(i)
v̄(i) − zi

v̄(i) < 1
2 ,

xi + 1 when ū(i−1)
v̄(i−1) − ū(i)

v̄(i) − zi

v̄(i) ≥ 1
2 ,

and

zi−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi + xi(v̄(i − 1) − v̄(i)) + ū(i) − ū(i − 1) − v̄(i − 1)
when xi−1 = xi − 1,

zi + xi(v̄(i − 1) − v̄(i)) + ū(i) − ū(i − 1)
when xi−1 = xi,

zi + xi(v̄(i − 1) − v̄(i)) + ū(i) − ū(i − 1) + v̄(i − 1)
when xi−1 = xi + 1.

Similarly, yi−1, qi−1 can be derived by the recurrence relation. So when we
draw rational Bézier curves, we can render two endpoints (x0, y0), (xn, yn)
at first, then use the xi+1, yi+1 and xi−1, yi−1 recursive relation to get the
next pixels (x1, y1) and (xn−1, yn−1) simultaneously, until two rendered points
meet. Here, two rendered points meeting means that the X-value distance
and Y -value distance of two rendered points should be less than or equal to
1 at the same time. This measure can reduce the loop number nearly by a
half so that it improves the algorithm efficiency greatly. This judgment is
suitable for lower-degree curves that do not contain loops; for higher-degree
curves that contain loops, it will lead to early termination of the algorithm.
One solution is that we can use the rational de Casteljau algorithm to divide
higher-degree curves into some subcurves that do not include loops and then
use the bidirectional generating algorithm to draw every subcurve.

In order to simplify the computation when using the recurrence relation,
we can calculate ū(i), v̄(i), r̄(i) helped by the difference method [Klassen 91,
Rappoport 91]. The forward difference formulas are

∆ū(i) = ū(i + 1) − ū(i) and ∆k+1ū(i) = ∆kū(i + 1) − ∆kū(i).

We notice that the order h difference of a degree h polynomial is a constant,
so when we know all order differences ∆kū(i), we can get the differences of
each order ∆kū(i + 1) by h additions according to the formula

∆k−1ū(i + 1) = ∆k−1ū(i) + ∆kū(i), k = 1, 2,

where the order 0 difference of ū is the function ū itself.
Similarly, there is a backward difference formula for which we use the no-

tation
∇ū(i) = ū(i) − ū(i − 1).
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Figure 1. Corner point.

To compute for v̄(i), r̄(i), we can use similar forward and backward difference
methods.

In order to keep the curve “smooth” and avoid rendering too many redun-
dant “corner points” (see Figure 1), we can use some variables to detect and
eliminate cases where a pixel has two or more subsequent pixels in its imme-
diate neighborhood. When we use the recurrence relation to get the pixel A
(x0,y0), supposing the previous pixel of A is B (x1,y1) and the previous pixel
of B is C (x2,y2), we can judge whether pixel B is a corner point as follows:

if (|x0 − x2| > 1) or (|y0 − y2| > 1) then
Draw pixel (x1, y1);
Let x2 = x1, y2 = y1; x1 = x0; y1 = y0

else
Let x1 = x0; y1 = y0.

end if

By the diamond rule [Knuth 86], in general terms, a pixel centered at some
point (x, y) is turned on if the curve contains a point (xx, yy) such that

−1
2

< xx + yy − x − y <
1
2

and − 1
2

< yy − xx + y − x <
1
2
.

So, the “corner point” may be the pixel that is turned on, but in many
experiments, we find the chance that the corner point must be rendered to be
very small. The haphazard effect of corner point removal can be ignored; it
can keep the curve’s accurate shape.

The algorithm for drawing rational quadratic Bézier curves can be written
as follows:

Step 1. Choose the desired value n.

Step 2. Let the rational quadratic Bézier curve change to Equations (2)
and (3).
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Step 3. From v̄(0)x0 = ū(0) + z0, |z0| ≤ |v̄(0)|/2, v̄(0)y0 = r̄(0) + q0,
|q0| ≤ |v̄(0)|/2, compute x0, y0, z0, q0; draw the first point (x0, y0).
From v̄(n)xn = ū(n) + zn, |zn| ≤ |v̄(n)|/2, v̄(n)yn = r̄(n) + qn,|qn| ≤
|v̄(n)|/2, compute xn, yn, zn, qn; draw the last point (xn, yn).

Step 4. Denoting j=0, k = n.
while two pixels (xj , yj) and (xk, yk) don’t meet do

Use the recurrence relation and difference formula to compute
xj+1, zj+1, yj+1, qj+1.
if pixel (xj , yj) is not a corner point then

draw this pixel.
end if
Use the recurrence relation and difference formula to compute
xk−1, zk−1, yk−1, qk−1.
if pixel (xk, yk) is not a corner point then

draw this pixel.
end if
j++; k--;

end while
if pixel (xj , yj) is not a corner point then

draw this pixel.
end if
if pixel (xk, yk) is not a corner point then

draw this pixel.
end if

4. Generalization of the Generating Algorithm to Higher-Degree
Rational Parametric Curves

This generating algorithm for rational quadratic Bézier curves can easily be
generalized to higher-degree rational Bézier curves. We first change them to
the integer equations (Equations (2) and (3)), then use the recurrence relation
to get every pixel point-by-point. The key point in using this algorithm is to
compute the |f ′(t)| and |g′(t)| upper-bound values. For the rational Bézier
curves, the upper-bound value can be derived from Equation (4) or (5). This
algorithm can also be applied to other rational parameter curves such as
rational B-spline curves as long as we convert them to rational Bézier curve
form. And in the algorithm, we can still apply the bidirectional strategy with
the forward and backward difference methods to improve the efficiency of the
generating algorithm.
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In the generating algorithm for higher-degree rational parametric curves,
we need to judge whether the curve includes loops that can lead to early
termination of the algorithms. If the curve includes loops, we use the rational
de Casteljau algorithm to divide it into some subcurves that do not contain
loops. Then, we use this bidirectional generating algorithm to draw them.

Figure 2. Rational cubic Bézier curve.

5. Experimental Results

We used this algorithm to render some rational Bézier curves in the Microsoft
VC 6.0 development environment. The source code is available online at the
website listed at the end of this paper. Here, the computer configuration
is CPU P4/1.8 GHz, EMS memory 512 MB. Since rational quadratics can
produce straight lines and circles, we have the generating time comparison
between the bidirectional algorithm and Bresenham routines for those cases in
Table 1. Table 2 is the generating time comparison between the bidirectional
algorithm and recursive subdivision algorithm for the rational cubic Bézier
curve in Figure 2.

In Table 1, there seems to be no apparent generating time difference, but
in Table 2, we find that because the new algorithm uses the bidirectional

Algorithm Time(s)

Bresenham algorithm for line 10

Bidirectional algorithm for line 12

Bresenham algorithm for circle 15

Bidirectional algorithm for circle 14

Table 1. Time comparison with different algorithms drawing rational quadratic
Bézier curves 10,000 times.
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Algorithm Time(s)
Recursive subdivision algorithm 31
Bidirectional algorithm 17

Table 2. Time comparison with different algorithms drawing rational cubic Bézier
curves 10,000 times.

strategy to render, which reduces the loop number nearly by a half, and
uses the recurrence relation with forward and backward difference method
to calculate which simplifies the computation, these measures can make this
bidirectional algorithm faster than recursive subdivision algorithm.

Considering the curve shape, because we use some variables to get rid
of redundant points, rational Bézier curves generated by this algorithm are
“smooth” and have a reasonably accurate shape.
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