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Abstract. A sensor located inside a digital camera is only able to measure the

light that is reflected by an object. The reflected light varies with the spectral power

distribution of the illuminant. Hence, images taken with a digital camera may show

a strong color cast if an incorrect white balance setting has been chosen. Such a

color cast may also be due to an automatic white balance not working correctly.

In contrast, colors perceived by a human observer appear to be approximately con-

stant. Algorithms for automatic white balance try to mimic this ability and compute

a color-corrected image that appears to have been taken under an illuminant with

a uniform power distribution. I show how color-constancy algorithms can be imple-

mented very efficiently on modern graphics processing units.

1. Introduction

A sensor inside a digital camera measures the light that is reflected from the
objects of the scene. Some of the light is absorbed; the remainder is reflected
and is able to enter the lens of the camera where it is measured. The reflected
light varies with the type of illuminant used. Some light sources emit more
light toward the red and green part of the spectrum and therefore appear to
be very yellowish. If such an illuminant is used, then the scene will come out
very yellowish in a photograph. The color temperature of daylight also varies
during the day. Digital cameras can use post-processing to remove such a color
cast. They try to compute an image that appears to have been taken under
an illuminant with a uniform power spectrum. In digital photography, this
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is termed automatic white balance. Many digital cameras also allow the user
to select a particular color temperature. Some have pre-settings for sunlight,
cloudy sky, neon light, or illumination by a light bulb.

In contrast to a machine sensor, the colors perceived by a human observer
appear to be remarkably constant. This ability is called color constancy
[Zeki 99, Ebner 07]. For machine-vision applications, it is very important
to mimic this ability. For instance, color-based object recognition becomes
very difficult if objects appear to change their color based on the type of il-
luminant used. Therefore, it makes sense to first compute a color-constant
descriptor [Geusebroek et al. 01].

A number of algorithms have been developed to address the problem of
color constancy. The problem can only be solved if some assumptions are
made. I present a color-constancy method based on local space average color,
which is easily implemented on a graphics processing unit (GPU). Algorithms
based on local space average color have been shown to work very effectively in
object-recognition tasks [Ebner 08]. The advantages of this method are: (1) it
also works in the presence of multiple spatially varying illuminants, and (2) it
is readily implemented with three or four lines of code. It can be used to (1)
remove a color cast from textures provided that the assumptions made by the
algorithm are fulfilled and (2) provide color constancy for GPU-accelerated
computer vision, robotics, animation, or interactive gaming applications. I
also show how intrinsic images, which only depend on the reflectance compo-
nent, are efficiently computed through a pixel shader. The algorithm assumes
that the illuminant can be approximated to have the spectral power distribu-
tion of a black-body radiator. Such intrinsic images are free from shadows,
which makes them very useful for image segmentation.

2. Color Image Formation and the Gray World Assumption

A standard model of color image formation is given as follows (see Horn
[Horn 86] for an introduction to radiometry). Suppose that a light source
with radiance L(λ) at wavelength λ is illuminating a scene. Let R(x, y, λ) be
the reflectance of an object patch that is depicted at image position (x, y). For
a diffusely reflecting surface patch, i.e., a Lambertian reflector, the irradiance
E(x, y, λ) falling onto the object patch is given as E(x, y, λ) = L(λ) cos α
where cosα = NSNL is the angle between the normal vector NS of the
surface patch and the unit vector NL pointing from the surface patch into
the direction of the light source. Usually three types of sensors are used that
measure the light in the red, green, and blue parts of the spectrum. Let Si(λ)
with i ∈ {r, g, b} be the spectral sensitivity of the sensor i. Then the energy
measured by the sensor i is given as

Ii(x, y) = NS(x, y)NL(x, y)
∫

Si(λ)R(x, y, λ)L(λ)dλ.
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Let us now assume that the sensitivity of the sensor is very narrow band,
i.e., responds only to a single wavelength λi. We then have Si(λ) = δ(λi −λ),
where δ(λ) is Dirac’s delta function. This gives us

Ii(x, y) = G(x, y)
∫

δ(λi − λ)R(x, y, λ)L(λ)dλ = G(x, y)Ri(x, y)Li.

Note that instead of R(x, y, λi) we write Ri(x, y), instead of L(λi) we write
Li, and we replace the scalar product between the two vectors NS(x, y) and
NL(x, y) with a geometry factor G(x, y). We now see that the color of the
illuminant Li scales the energy Ii(x, y) measured by the sensor i at position
(x, y). If we allow for multiple spatially varying illuminants Li(x, y), then we
have

Ii(x, y) = G(x, y)Ri(x, y)Li(x, y).

Let ci(x, y) be the color information stored inside a texture at position
(x, y). Then we have ci(x, y) = Ii(x, y) if we are working with texture data
inside a linear color space. We will refer to the index i from now on as color
channel i. We have ci(x, y) = Ii(x, y)γ for some gamma factor γ if a gamma
correction has been applied. Let us first assume that we work with a linear
color space, i.e., ci(x, y) = Ii(x, y). Assuming that we had an estimate of the
color of the illuminant Li(x, y) for every image pixel (x, y), we could compute
a color-corrected output image by dividing each pixel ci(x, y) by this estimate
of the illuminant:

ci(x, y)
Li(x, y)

≈ G(x, y)Ri(x, y)Li(x, y)
Li(x, y)

= G(x, y)Ri(x, y). (1)

We obtain the product between the geometry factor G(x, y) and the re-
flectance Ri(x, y), which is independent of the color of the illuminant.

But how can we obtain an estimate for the color of the illuminant given a
single input image? Clearly, some assumptions have to be made to solve the
problem, as we have seven unknowns (the geometry factor, three reflectance
components, and three illuminant components) but only three known values
(the measured energy components) per texel. A simplifying assumption that
is frequently made is to assume that the illuminant is constant across the
entire image, i.e., we have Li(x, y) = Li. An additional assumption, due to
Buchsbaum [Buchsbaum 80], is to say that on average, the world is gray. This
assumption holds, provided that the viewed scene is sufficiently diverse and
contains many differently colored objects. Let n be the number of texels in an
image or texture. Then the global average ai for color channel i of all texels
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is given by

ai =
1
n

∑
x,y

ci(x, y) =
1
n

∑
x,y

G(x, y)Ri(x, y)Li

= Li
1
n

∑
x,y

G(x, y)Ri(x, y) = LiE[G]E[Ri],

where E[G] denotes the expected value of the geometry factor and E[R] de-
notes the expected value of the reflectance values. The last equality holds
because it can be assumed that geometry and reflectance are two indepen-
dent properties.

If we now assume that a large number of differently colored objects are
contained in the texture, then we may view the reflectances distributed over
the texture as a random variable that is uniformly distributed over the range
[0, 1]. In other words, we are saying that all colors are equally likely. We can
then compute the expected value of the reflectances. We have

E[Ri] =
1
n

∑
x,y

Ri(x, y) =
1
2
.
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Figure 1. Output produced by the gray world assumption for two sample images.
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Input Output

Figure 2. There has to be a sufficiently large number of different colors in the
image for the gray world assumption to hold. The sample image on the left is a
close-up of a leaf from a banana plant. In this case, the greenishness of the image
is due to the leaf of the banana plant.

We now see that the color of the illuminant Li can be estimated by computing
the average color of all image pixels:

Li = fai,

with f = 2
E[G] . If our scene is composed of Lambertian reflectors that are

illuminated at a right angle, then we have f = 2. We can now perform a color
correction using Equation (1). Figure 1 shows how the gray world assumption
works for two sample images. It removes the color cast quite nicely. Note
that for the gray world assumption to hold, there has to be a sufficiently large
number of different colors in the image. What happens if this assumption is
not fulfilled is illustrated in Figure 2 where a close-up of a leaf from a banana
plant is processed using the gray world assumption. These negative effects
can be reduced if a segmentation of the image is performed [Gershon et al. 87]
or if a histogram is computed.

3. A Color-Constant Pixel Shader Based on the
Gray World Assumption

Ebner has shown that local space average color may be used to estimate the
illuminant locally for each image pixel [Ebner 04b]. We estimate the color of
the illuminant Li(x, y) as

Li(x, y) = fai(x, y).

Using f = 2 works well in practice. Brightness is increased for dark areas and
reduced in very bright areas. Algorithms based on local space average color



�

�

“jgt” — 2009/2/18 — 17:20 — page 40 — #6
�

�

�

�

�

�

40 journal of graphics tools

Pixel Shader 1 (GLSL code)

c=texture2D(textureColorSampler,gl_TexCoord[0].st,0.0);

a=texture2D(textureColorSampler,gl_TexCoord[0].st,level);

c/=2*a;

c=pow(c,0.4545); // gamma correction

// insert shading code here

gl_FragColor=c;

Figure 3. Pixel Shader 1. Each pixel is divided by twice the local space average
color. This shader assumes that the image data is stored in a linear color space.
Hence, a gamma adjustment is applied before output.

have been shown to work very well on histogram-based object recognition
tasks [Ebner 08].

If a texture is applied to a rectangle, one can use mip mapping to compute
local space average color. When mip mapping is used, a scale space of the
texture is automatically constructed. It contains the original full-size image at
the lowest level and a hierarchy of images where each image of the next higher
level is constructed by averaging texels at the current level. The highest level
contains a single texel with the average color of all of the texels. Local space
average color may be obtained from intermediate hierarchies of the mip map.

The mip map level can be computed as follows. In order for the gray
assumption to hold, the mip map level has to be sufficiently large. It should
extend over at least 30% of the image. Let l be the mip map level and
s = max{width, height}, where width is the width of the image and height is
the height of the image in pixels, then it should hold that

2l = 0.3s.

In other words, we can compute the mip map level l as

l = log2(0.3s).

Assuming that the texture data is stored in a linear color space, then a
color-corrected output can be computed using the pixel shader code as shown
in Figure 3, where it is assumed that level is equal to the level l.

Usually the texture data is stored in a nonlinear color space such as the
sRGB color space. In this case, a gamma correction has been applied to the
RGB values. The following transfer function is used by the sRGB standard
[Poynton 03]:

gammasRGB(x) =

{
12.92x if x ≤ 0.0031308,
1.055x

1
2.4 − 0.055 if x > 0.0031308.
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Figure 4. Fit of the function a log x + b with a = 0.233359 and b = 0.918031 to

the function x
1

2.2 . The general behavior of the two functions is similar for the range
[0, 1].

The overall transform is best described by

gamma(x) = xγ ,

with γ = 1/2.2, i.e., we have ci = Iγ
i . This gamma function can be ap-

proximated by the function gamma(x) ≈ a log x + b with a = 0.233359 and
b = 0.918031. Figure 4 shows these two functions. The behavior of the two
functions is similar. This similarity between the logarithmic function and a
power law was also noted by Wyszecki and Stiles [Wyszecki and Stiles 00].

If the logarithmic function is applied to the RGB values, then the mip
mapping essentially computes the the geometric average of the measured data
values Ii:

ai =
1
n

∑
x,y

ci(x, y) =
1
n

∑
x,y

a log Ii(x, y) + b

= a log

(∏
x,y

Ii(x, y)

) 1
n

+ b.

We now have to subtract this average from the pixel data ci to obtain a
color constant descriptor oi. Assuming G(x, y) = 1 and L(x, y) = Li, we
obtain

oi(x, y) = ci(x, y) − ai

= a log Ii(x, y) + b − a log

(∏
x,y

Ii(x, y)

) 1
n

− b
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= a log Ri(x, y)Li − a log

(∏
x,y

Ri(x, y)Li

) 1
n

= a log Ri(x, y) + a log Li − a log Li − a log

(∏
x,y

Ri(x, y)

) 1
n

= a log Ri(x, y) − a log

(∏
x,y

Ri(x, y)

) 1
n

.

Using the gray world assumption again, i.e., we assume that the reflectances
Ri are uniformly distributed over the range [0, 1], and using Stirling’s approx-
imation (log n! ≈ n log n − n) for large n, we see that

log

(∏
x,y

Ri(x, y)

) 1
n

≈ log

(∏
x,y

i

n

) 1
n

= log

(
n!

1
n

n

)
≈ log

(nne−n)
1
n

n
= −1,

and we obtain
oi(x, y) = a logRi(x, y) + a.

In order to obtain the reflectances, we need to apply the exponential func-
tion. We need to compute o′i(x, y) = exp(oi(x, y)/a). This would give us
o′i(x, y) = c′Ri(x, y), which is linear in the reflectances Ri with c′ = e

1
a .

However, since we now have linear reflectances, we need to apply a gamma
correction gamma(x) = x

1
γ in order to display these linear values. The in-

verse of this gamma correction, gamma(x) = xγ , can be approximated by
e

x−b
a . Hence, we just need to render

oi(x, y) = ci(x, y) − ai − a + b,

Pixel Shader 2 (GLSL code)

c=texture2D(textureColorSampler,gl_TexCoord[0].st,0.0);

a=texture2D(textureColorSampler,gl_TexCoord[0].st,level);

c-=a+0.244459-0.918031;

// insert shading code here

gl_FragColor=c;

Figure 5. Pixel Shader 2. Local space average color is subtracted from the color
of each pixel, and a normalization that is based on the gray world assumption is
applied.
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Figure 6. RGB color cube spanned by the three vectors r, g, b. The gray vector w
runs from black to white. A color correction may be performed by shifting local space
average color a onto the gray vector w. In this case, the perpendicular component
a⊥ of a is subtracted from the color of the current pixel c.

with a = 0.233359 and b = 0.918031. Thus, the code performing this opera-
tion inside a pixel shader is given as shown in Figure 5.

An alternative method is to adjust only the color of the image and leave
the brightness of the image intact. In this case, we use a shift that runs
perpendicular to the gray vector as described by Ebner [Ebner 04a]. According
to the gray world hypothesis, on average the world should be gray, i.e., local
space average color should be positioned on the gray vector that runs through
the RGB cube from black to white. If local space average color is offset
from the gray vector, we can perform a color shift for each pixel that runs
perpendicular to the gray vector, effectively moving local space average color
onto the gray vector. This is illustrated in Figure 6. Such a color shift is also
used by Ebner et al. [Ebner et al. 07] in integrating color constancy into the
JPEG2000 framework. Let a = [ar, ag, ab]T be local space average color, then
we first need to compute the component a⊥ that is perpendicular to the gray
vector w = 1√

3
[1, 1, 1]T . The perpendicular component is given by

a⊥ = a − (aT w)w.

We then subtract this component from the color of the image pixel c =
[cr, cg, cb]T to obtain a color-corrected output o = [or, og, ob]T :

o = c − a⊥ = c − a +
1
3
(ar + ag + ab)[1, 1, 1]T .

Using pixel shader code, this operation is performed as shown in Figure 7.
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Pixel Shader 3(GLSL code)

c=texture2D(textureColorSampler,gl_TexCoord[0].st,0.0);

a=texture2D(textureColorSampler,gl_TexCoord[0].st,level);

c-=a-(a[0]+a[1]+a[2])/3.0;

// insert shading code here

gl_FragColor=c;

Figure 7. Pixel Shader 3. Local space average color is computed, and only the
component that is perpendicular to the gray vector w is subtracted from each pixel.

Example A Example B
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Figure 8. Output produced by the three pixel shaders for two sample images.
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Figure 8 shows the output obtained for all three pixel shaders on the sample
images from Figure 1. Pixel Shader 1 assumes a linear color space and works
much like the gray world assumption except that it is based on local space
average color. It is therefore able to handle nonuniform illuminants. Pixel
Shader 2 assumes that colors are stored using the sRGB standard. Normal-
ization is performed using the gray world assumption. Pixel Shader 3 works
similarly except that the brightness of the input image is retained. In all
cases, we see that the color cast is nicely removed. Pixel Shader 1 should be
chosen if the image data is stored using a linear color space. Pixel Shaders 2
and 3 can be chosen if the image data is stored using the sRGB color space,
i.e., a color space with a gamma correction already applied. The computed
colors will differ between Pixel Shader 1 and Pixel Shaders 2 and 3 because
the mip map approach computes the average color of image pixels, whereas
for Pixel Shaders 2 and 3 the geometric average is computed.

In the following two sections, we show how intrinsic images can be computed
by an appropriate pixel shader.

4. Computation of Intrinsic Images

Intrinsic images contain only one characteristic of the scene being viewed
[Tappen et al. 02], e.g., a value that only depends on the reflectance of the
object. Finlayson and Hordley [Finlayson and Hordley 01] have developed a
method to compute intrinsic images for a calibrated camera. It is assumed
that the camera’s sensors are sufficiently narrow-band and that the illuminant
can be approximated by a black-body radiator. Many natural light sources
such as the flame from a candle or sunlight can be approximated by a black-
body radiator. The radiance L(λ, T ) given off by a black-body radiator at a
temperature T , measured in Kelvin, at wavelength λ is given by [Jähne 02]

L(λ, T ) =
2hc2

λ5

1

(e
hc

kB T λ − 1)
,

where h = 6.626068 · 10−34 Js is Planck’s constant, kB = 1.3806 · 10−23 J
K

is Boltzmann’s constant, and c = 2.9979 · 108 m
s is the speed of light. The

temperature T , which is used to approximate many light sources, is usually
no larger than 10,000 K. Thus, the equation of the black-body radiator can
be simplified. Considering that the visible spectrum ranges from 400 nm to
700 nm, we have

e
hc

kB Tλ � 1

for λ < 700 nm and T 1 10,000 K. The result is a simple equation for the
radiance L(λ, T ):

L(λ, T ) = kc1λ
−5e−

c2
T λ ,
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with constants c1 = 2hc2, c2 = hc
kB

, and k. The constant k can be used to
model different intensities.

Given the above derivation for the color of the image pixels c, we obtain

ci = G · Ri · kc1λ
−5
i e

− c2
T λi .

The coordinate index (x, y) has been omitted here. Note that the color of
the illuminant only depends on the temperature of the black-body radiator.
The product on the righthand side can be split into a sum by applying the
logarithm to both sides:

log(ci) = log(kG) + log(c1λ
−5
i Ri) − c2

Tλi
.

Only the last term depends on the temperature T . Finlayson and Hordley
[Finlayson and Hordley 01] suggested to compute the difference ρ between
two different color channels. This removes the first term. One obtains

ρrg = log(cr) − log(cg) = log(λ−5
r Rr) − c2

Tλr
− log(λ−5

g Rg) +
c2

Tλg
,

ρbg = log(cb) − log(cg) = log(λ−5
b Rb) − c2

Tλb
− log(λ−5

g Rg) +
c2

Tλg
,

for the differences between the red and green and the blue and green channels,
respectively. Writing R′

i = λ−5
i Ri and letting Ei = − c2

λi
, one obtains

ρrg = log
(

R′
r

R′
g

)
+

1
T

(Er − Eg),

ρbg = log
(

R′
b

R′
g

)
+

1
T

(Eb − Eg).

The two equations define a line in (ρrg, ρbg)-color space. The line is parameter-
ized by the temperature T . The constants Ei only depend on the wavelength
λi. For any given reflectance, one obtains a line with the same orientation
because [Er −Eg, Eb −Eg] is independent of reflectance. Let e be this vector.

The dependence on the temperature of the black-body radiator can be
removed by projecting the data points in a direction orthogonal to the line.
The vector e⊥, which is orthogonal to the vector e, is given by [Eb−Eg,−(Er−
Eg)]T . When the coordinates (ρrg, ρbg) are projected onto this line, they
become independent of the illuminant:[

Eb − Eg

−(Er − Eg)

]
·
[
ρrg

ρbg

]
= (Eb − Eg) log

(
R′

r

R′
g

)
− (Er − Eg) log

(
R′

b

R′
g

)
.

The terms (Eb − Eg) and (Er − Eg) are constant for a given sensor. The
derived reflectance term R′

i is only a function of the reflectance Ri and the
wavelength to which the sensor responds.
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Instead of choosing one of the sensors and then computing differences, one
can also divide each channel by the geometric mean of the three channels
and then take the logarithm [Finlayson and Drew 01]. The result is a three-
dimensional color space ρi:

ρi = log(ci) − log(cM ),

with cM = 3
√

crcgcb. If one carries out the same computations as described
above and plots the colors of a single surface in this color space for differ-
ent black-body illuminants, one again obtains a line parameterized by the
temperature T .

The vector ρ = [ρr, ρg, ρb] is orthogonal to the vector u = 1√
3
[1, 1, 1]T .

Thus, all points ρ are located on a two-dimensional plane defined by u. It
is therefore sufficient to specify any point inside this color space by just two
numbers. Finlayson et al. [Finlayson et al. 04] define a standardized coordi-
nate system for the geometric mean chromaticity space using {χ̂1 and χ̂2} as
the two basis vectors. The two vectors are given by

U = [χ̂1, χ̂2] =

⎛
⎜⎜⎜⎝
√

2
3 0

−
√

1
6 −

√
1
2

−
√

1
6

√
1
2

⎞
⎟⎟⎟⎠ .

The χ chromaticity space is therefore defined as [χ1, χ2] = UT ρ. The matrix
U simply rotates vectors inside the plane defined by u to a standard coordinate
system.

The invariant direction e can be obtained by taking a sequence of images of
a calibration target, such as a Macbeth color checker, at different times during
the day. The colors of a single patch on the color checker will approximately
line up along the invariant direction. We can do a covariance analysis on
the data and find the direction of the largest spread. This is the invariant
direction e. It is also possible to compute an intrinsic image given a single
image from an uncalibrated camera [Finlayson et al. 04]. This can be done by
choosing the projective direction among all possible directions in which the
entropy of the projected points is minimal.

Invariant data points g are obtained by projecting the original data points
χ onto the vector e⊥, which is perpendicular to the vector e:

g = χ · e⊥ = χ1 cos θ + χ2 sin θ,

where θ denotes the direction of the vector e⊥. Now each color is described by
a one-dimensional scalar. In order to display the data, it can be transformed
to the range [0, 1]. Figure 9(b)–(d) shows intrinsic images computed for a
sample image with different orientations of the vector e⊥.
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Input Image θ = 40.75◦ θ = 60.75◦ θ = 80.75◦ Color Image

(a) (b) (c) (d) (e)

Figure 9. (a) Input image. (b) Intrinsic image that was computed by projecting
the data onto the vector e⊥ with θ = 40.75◦. (c) Intrinsic image with θ = 60.75.
Notice how the shadow (which is caused by indirect illumination inside the shadow)
disappears in the intrinsic image. (d) Intrinsic image with θ = 80.75. (e) Color
image computed from the intrinsic image.

5. A Pixel Shader for the Computation of Intrinsic Images
and Shadow Removal

Intrinsic images that only depend on the reflectance of an object point are
automatically free from shadows. This can clearly be seen in Figure 9(c),
where the computed intrinsic image is free from shadows. Such an image can
be used for object segmentation if one wants to extract an object but not the
corresponding shadow.

It may be possible to obtain a full-color image in some cases from the
intrinsic image. The ability to obtain a correct color image from the in-
trinsic image depends on the image content. Note that once we project the
data points onto e⊥, reflectances that differ by a multiplier [e

s
λr , e

s
λg , e

s
λb ]T

with s ∈ R can no longer be distinguished. All colors that are located
in the direction e cannot be distinguished. Some information is invariably
lost.

Provided that the original image contains only a specific subset of all colors,
a full-color image can still be obtained. One can either restore the reds,
greens, browns, and yellows, or one can restore the blues, cyans, and magentas
[Ebner 07]. This can be done by shifting the colors in χ chromaticity space
along the direction e by a small amount as suggested by Drew et al. [Drew
et al. 03]. The shift can be performed in the direction of either the negative
or positive half-space created by the vector e⊥.

Figure 10 shows a pixel shader that computes the intrinsic images shown
in Figure 9. The exact value that has to be used for the parameter theta
depends on the camera model used. For the examples shown here, a Canon
10D was used. The optimal value for the parameter theta was determined to
be 60.75◦ using a color Mondrian. Figure 9(e) show the results obtained when
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Pixel Shader 4 for Intrinsic Images (GLSL code)

float offset=0.5; // color offset

float theta=radians(60.75); // camera dependent angle

vec2 ePerp=vec2(cos(angle),sin(angle));

vec3 color=texture2D(textureColorSampler,

gl_TexCoord[0].st,0.0).rgb;

color=pow(color,2.2);

color+=vec3(0.001,0.001,0.001);

float gm=pow(color[0]*color[1]*color[2],1.0/3.0);

color=log(color/gm);

vec2 chi=vec2(dot(color,vec3(0.81650,-0.40825,-0.40825)),

dot(color,vec3(0.0,-0.70711,0.70711)));

float s=dot(chi,ePerp); // projection

chi=offset*vec2(sin(angle),-cos(angle))+s*ePerp;

color=vec3(0.8165*chi[0],dot(chi,vec2(-0.40825,-0.70711)),

dot(chi,vec2(-0.40825,+0.70711)));

// insert shading code here

gl_FragColor=vec4(s+1); // Figure 9(c)

gl_FragColor=vec4(color,1.0); // Figure 9(e)

Figure 10. Pixel shader 4 (intrinsic images). The color is first transformed to χ
chromaticity space. All data points are projected onto the vector ePerp= e⊥.

a color image is computed by applying a shift of 1
2e and then transforming the

data back to the RGB color space. The resulting image is free from shadows.
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