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Articles

The tangled tale of phase space

Phase space has been called one of the most powerful inventions of modern
science. But its historical origins are clouded in a tangle of independent
discovery and misattributions that persist today.

David D. Nolte
April 2010, page 33

Hamiltonian Mechanics is geometry in phase space.

—Vladimir L.
Arnold (1978)

Listen to a gathering of scientists in a hallway or a
coffee house, and you are certain to hear someone
mention phase space. Walk down the science aisle of the &
local bookstore, and you will surely catch a glimpse of a
portrait of a strange attractor, the powerful visual icon of :
phase space. Though it was used originally to describe
specific types of dynamical systems, today “phase Figure 1

space” has become synonymous with the idea of a large

parameter set: Whether they are stock prices in economics, the dust motes in
Saturn’s rings, or high-energy particles in an accelerator, the degrees of freedom
are loosely called the phase space of the respective systems. The concept and its
name are embedded in our scientific fluency and cultural literacy. In his popular
book Chaos on the history and science of chaos theory, James Gleick calls

phase space “one of the most powerful inventions of modern science.”L But
who invented it? Who named it? And why?
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The origins of both the concept of phase space and its name are historically
obscure—which is surprising in view of the central role it plays in practically
every aspect of modern physics (figure 1). The historical origins have been
further obscured by overly generous attribution. In virtually every textbook on
dynamics, classical or statistical, the first reference to phase space is placed
firmly in the hands of the French mathematician Joseph Liouville, usually with
a citation of the 1838 paper in which he supposedly derived the theorem on the

conservation of volume in phase space. (The box on page 34 gives a modern
derivation.) In fact, in his paper Liouville makes no mention of phase space, let
alone dynamical systems. Liouville’s paper is purely mathematical, on the
behavior of a class of solutions to a specific kind of differential equation.
Though he lived for another 44 years, he was apparently unaware of his work’s

application to statistical mechanics by others® even within his lifetime.
Therefore, Liouville’s famous paper, cited routinely by all the conventional
textbooks, and even by noted chroniclers of the history of mathematics, as the
origin of phase space, surprisingly is not!

How did we lose track of the discovery of one of our most important modern
concepts in physics? If it was not discovered by Liouville, then by whom and
when and why? And where did it get its somewhat strange name of “phase”
space? Where’s the phase?

The search for the origins of phase space presents two challenges. The first is to
identify those people who contributed to the development of the concept of
phase space. To do that, we will start back at the time of Liouville to find out
what role he really did play in the story and how his contribution found its way
into modern textbooks. The second challenge is to discover who gave phase
space its fully modern name. To answer that question, we will be led to a now
obscure encyclopedia article published in 1911 that had etymological side
effects not fully intended by its authors.

Liouville’s theorem

Liouville (1809—-82) was perhaps the most

ot it sionplerment 3
et renowned French mathematician of the mid-19th
a(mi. ., (=2 %% century. That era was the golden age of differential
oy o e e favi= - caleulus and the beginning of differential
PN T S geometry. Liouville displayed a virtuoso breadth
of expertise in topics ranging from number theory
Figure 2 and complex analysis to differential geometry and

topology. He is known among mathematicians and
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physicists for several mathematical theorems, most notably the Sturm—Liouville
theory of integral equations. The motivation for much of his work came from
physical problems in celestial mechanics, but he also drew from
electrodynamics and the theory of heat. The properties and solutions of
differential equations of many variables were among his main areas of interest,
and in that context he was working on the solution of differential equations with
constant integrals in the late 1830s.

In modern notation, the original formulation of Liouville’s theorem?2 (figure 2)
states that given a system of » first-order differential equations

dx;

_J = Pf(f" I1f sz sos oy I.II)J’

dt

if a complete set of solutions is
X =x{t, ay, ay,. .., 4a,),
where the a; are arbitrary constants, then the Jacobian determinant

OX;

Oa :

u(t) = det
satisfies the equation
du ", OP,
(550
dt — Ox;
If the expression in parentheses is zero, then u is a constant. Furthermore, if the

arbitrary constants a; are chosen to be values of x; at time ¢ = 0, then the system
has the solution

y = det| 21D _
u(t) = det 3%,(0) =

because u(0) is clearly equal to 1.
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Liouville’s 1838 paper appeared only a few years after William Rowan

Hamilton (1805—65) published his dynamics® in 1834 and 1835, yet Liouville
made no reference to his theorem’s application to dynamics.

The connection with mechanics was made in 1842 by e i = e Bt o e £
the Prussian mathematician Carl Gustav Jacob Jacobi e RS
(1804-51), who recognized that the differential

equations that Liouville had studied could describe

mechanical systems? (figure 3). In Hamilton’s RRCY
dynamics, position coordinates x; and momentum

coordinates p; evolve according to the Hamiltonian Figure 3
function H:
dy, OH dp, OH
dt  op  dt o,
To apply Liouville’s theorem, Jacobi made the assignments (again in modern
notation)
Xi=1m = Xi=tin s Xi=p+1:22n = Pi=1n
, _OH o __oH
- ’ = n41:2n
o j}}* i1=1mn o 3.{* i=1mn
Therefore,

2n BPI 1 DE{{ i BEII
L_po .y

ox; dx; Op; 1 Op; ox;

=1 i=1
and, according to Liouville’s observation, the Jacobian determinant u is
constant.

Explicitly referencing Liouville’s 1838 paper in the 1866 publication of his
lectures of 1842—43, Jacobi was the first to put Liouville’s mathematical
theorem into a mechanical context. What Jacobi did not do, and indeed could
not do in his time, was to represent mechanical systems within a generalized
space. In the early 1840s, there was no concept of space beyond our physical
three dimensions. That was slightly before Arthur Cayley, Hermann Grassmann,
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and Bernhard Riemann presented their new notions of multidimensional
manifolds. For Jacobi, there was no “space,” only products of differentials of
many variables. And there certainly were no trajectories through the phase
space, only the physical trajectories of individual particles through real space.
Therefore, Jacobi may be the originator of the analytical treatment of dynamical
systems of many variables, but he cannot be designated as the originator or
namer of phase space. The time was not right. First, the concept of
multidimensional spaces had to enter the psyche of 19th-century scientists.

Fermat’s “etc.”

About the time that Liouville was studying differential equations of many
variables, German and British mathematicians were taking the first steps toward
expanding the notion of space. The invention of spaces of dimensions higher
than three was gradual, not occurring in a single “aha!” moment but developing
over many years with some, like the German geometer Julius Pliicker, circling it
in the early 1840s but failing to hit it quite on the nose.

Equations of multiple variables had been around for a long time. As far back as
the mid-17th century, Pierre de Fermat noted, “In the first problems we seek a
unique point, in the latter a curve. But if the proposed problem involves three
unknowns, one has to find, to satisfy the equation, not only a point or a curve,
but an entire surface. In this way surface loci arise, etc.” Fermat’s “etc.” may be
the first hint of solutions existing in higher dimensions. Those ideas were
developed further in the 18th century by Immanuel Kant, Jean d’Alembert, and
Leonhard Euler. Today it is natural for us to assign each variable its own axis in
a generalized multidimensional space. But in the 1700s it was not natural.
Variables were algebraic entities, not coordinate axes. And while the solutions
to equations of multiple variables could lead to loci of points with multiple
indices, there was no formal thought that they represented geometric objects in
higher dimensions. Amazingly, the surface areas and volumes of spheres in four
dimensions (and higher) had been derived by Jacobi as early as 1834, but to him
they were simply integrals over products of differentials.

All that would change rather suddenly in the 1840s as Pliicker in Germany and
Cayley and James Joseph Sylvester in the UK parameterized projective
geometry and found extensions beyond the ordinary three dimensions of our
tangible world. Cayley, in his 1843 paper titled “Chapters in the Analytical
Geometry of (n) Dimensions,” was the first to take the bold step of referring to
a geometry of more than three dimensions. After that, the stage was set for the
“invention” of multiple dimensions when Grassmann developed the concept of
an n-dimensional vector space in 1844. The culmination of the
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multidimensional trend in analytic geometry came with Riemann’s lecture on
the foundations of geometry, delivered at the University of Gottingen in 1854,
in which he systematized concepts of curved spaces that were later to be so
important for general relativity.

Riemann’s work remained obscure until its publication in 1868, after which the
geometric properties of multidimensional manifolds were developed rapidly by
many others, most notably by Enrico Betti, Felix Klein, and Camille Jordan in
the 1870s. That was the same decade that a brilliant young Austrian physicist,
Ludwig Boltzmann, laid the foundations of the new field of statistical
mechanics.

Boltzmann’s phase

Boltzmann (1844—-1906) received his PhD under Joseph Stefan at the University
of Vienna in 1866 with a dissertation on the kinetic theory of gases. In the
derivation of dynamical probability distributions, Boltzmann required the use of
what we now know as conservation of volume in phase space. Initially unaware
of Jacobi’s original work or of the connection with Liouville, he derived that

principle using an approximation that he published in early 1871.% However, in

his very next paper, published later that same year,Z Boltzmann made explicit
use of Jacobi’s results to derive the conservation theorem

o (1
6, (1) .. (1) = | S22 A0 OA0) . v 0
where
ox;(t) ~ ~
3x,(0) =u(t)=1.

Despite Jacobi’s reference to Liouville’s theorem in his 1866 Vorlesungen iiber
Dynamik (Lectures on Dynamics), Boltzmann made no mention of Liouville at
this time. His seminal 1871 papers contain no language of “phase” or “space,”
although the conservation of what would later be called phase-space volume for
a conservative dynamical system appears in its mathematically modern form.

The second 1871 paper is where Boltzmann first makes the analogyZ-8 between
physical trajectories of particles in two-dimensional space and what are known
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as Lissajous figures (although he does not refer to Jules Antoine Lissajous).
Lissajous figures, also sometimes called Bowditch—Lissajous figures after the
scientist and navi-gator Nathaniel Bowditch, are two-dimensional patterns that
arise when two harmonic time series are plotted against each other—as best
experienced in physics labs using an oscilloscope and two function generators.
When the two harmonic frequencies are rational fractions, periodic patterns
occur. But when the frequency ratio is irrational, the system trajectory visits all
points on the plane bounded by the signal amplitude. That is Boltzmann’s first

description of what would later become his ergodic hypothesis,2 which states
that a dynamical system samples all parts of its dynamical space.

In Lissajous figures, the relative phase between the harmonic signals plays an
important role in determining the pattern, and the instantaneous point on the
figure defines the instantaneous relative phase of the two signals. For that
reason, the point on the figure is referred to as the phase point. In 1872
Boltzmann used the term “phase” for the first time in a paper on the further

studies of the equipartition theory of gas molecules. 1 “Phase” is not applied in
that first case to the system trajectory of the gas, which would have been the
direct analogy with Lissajous figures. However, because of the complicated
motions of the atoms in molecules, Boltzmann made the distinction between
kind of motion (Bewegungsart, such as translational and rotational motion,
which contribute to the total energy) and the phase of the motion
(Bewegungsphase, such as the changing coordinate and momentum values of
the motion). That is the defining moment for the word “phase” in phase space.

Examining Boltzmann’s work in 1879, James Clerk Maxwell (1831-79)
adopted Boltzmann’s expression of phase to describe the state of a system:

We have hitherto, in speaking of a phase of the motion of the system, supposed
it to be defined by the values of the n co-ordinates and the » momenta. We shall

call the phase so defined the phase (pg).14

In his paper, Maxwell rederived the conservation theorem, explicitly using
Hamilton’s equations to show that the Jacobian determinant was unity.
Maxwell’s rederivation was consistent with Liouville’s 1838 theorem but did
not explicitly use it.

Boltzmann, for his part, did not use the term “phase” after his 1872 paper until
the publication of his Vorlesungen iiber Gastheorie (Lectures on Gas Theory) in
1896. Also missing from Boltzmann’s stream of papers through the 1870s and
1880s is any geometric language. Despite the multidimensional volume
integrals that appear frequently in his papers, the volume elements are merely
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products of the differentials of multiple variables, and the integrals themselves
are never described as multidimensional volume integrals. His lack of geometric
language is interesting in view of the fact that multidimensional spaces were
becoming more broadly accepted at the time.

That all changed with the appearance of Boltzmann’s Lectures in 1896, in
which he took a more direct attitude toward geometry and referred to n-fold
integrals over n-fold regions. Boltzmann took a tantalizing step in the direction
of describing a single trajectory of the system through its dynamical space:

When one wishes to discuss any curve whose equation contains an arbitrary
parameter, it is customary to consider simultaneously all the curves obtained by
giving this parameter all its possible values. We are now dealing with a
mechanical system (characterized by given equations of motion) whose motion

depends on the values of the 2u parameters P, Q.12

That view of a dynamical system as a single trajectory is made by analogy to a
curve rather than made explicitly. Boltzmann still does not seem able to take
that final step of speaking of a single trajectory through a multidimensional
space. All the mathematics is in place, and he makes the analogies and uses the
geometric language of n-fold regions, but he implies the trajectory rather than
stating it explicitly. That inability is clearly related to the fact that he never uses
the word “space,” and thus does not take the last step to call it “phase space.”

One of the questions posed at the beginning of this article can be answered here.
Why does Liouville get the credit when it was Jacobi and Boltzmann who
invented phase space and discovered conserved volumes in it? The answer is
that Boltzmann himself gives Liouville the credit in his Lectures. Although
Boltzmann had known, at the time of his early papers, of Jacobi’s reference to
Liouville’s theorem, it was only later in his Lectures of 1896 that Boltzmann

first placed Liouville’s name on the conservation theorem in a way that stuck.3
Had it not been for Jacobi’s reference to Liouville in his Lectures, Boltzmann
likely never would have known of Liouville’s paper. In turn, had Boltzmann not
given the credit to Liouville, then the conservation of phase-space volume could
very reasonably have been called Boltzmann’s theorem. Ironically, by naming it
“Liouville’s Theorem” Boltzmann obscured his own role in the discovery and
use of phase space.

If Boltzmann had used the language of system trajectories in his original papers
from 1871, it would have been astounding. He would have been far ahead of his
time in the abstract representation of the complicated motions of multiple
particles in a single three-dimensional space as a single point moving in a
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multidimensional space. On the other hand, only a few years after Boltzmann’s
Lectures, the American physicist J. Willard Gibbs (1839—-1903), writing in his
Elementary Principles in Statistical Mechanics in 1902, did express this view:

If we regard a phase as represented by a point in space of 2n dimensions, the

changes which take place in the course of time in our ensemble of systems will

be represented by a current in such space.13

Here we see, for the first time, the explicit reference to the trajectory of the
phase point in a high-dimensional space. However, even in Gibbs’s Elementary
Principles there remain hesitations. Although he rederived the conservation of
phase-space volume, he did not use the word “volume” but instead used
Grassmann’s term, “extension.” Even more telling is that the only place Gibbs
used the word “space” is in a footnote, as if the notion of a trajectory in a high-
dimensional space was an aside or an analogy, literally a footnote, rather than a
fundamental principle. So even Gibbs was not immune to the prejudices about
space at the turn of the century. Although he was a great inventor of
terminology, giving us “statistical mechanics” and “ensemble” and establishing
the modern nomenclature of vector analysis, he did not invent the phrase “phase
space.” Nor did he invent the concept of the system trajectory. That had come
from the pioneering work of Henri Poincare.

Poincaré’s tangle

Poincaré’s part in the story of phase space began with the announcement in
1885 of a mathematical prize to be offered in honor of the 60th birthday of King
Oscar I1 of Sweden. The idea of the prize had been suggested to the king by
Swedish mathematician Gosta Mittag-Leffler. The topic of the prize was to be
the problem of finding a general solution to the stability of the solar system. The
announcement stated the problem: “Given a system of arbitrarily many mass
points that attract each other according to Newton’s law, under the assumption
that no two points ever collide, try to find a representation of the coordinates of
each point as a series in a variable that is some known function of time and for
all of whose values the series converges uniformly.” The simplest n-body
problem was the three-body problem that had defied the efforts of the world’s
most renowned mathematicians, including Isaac Newton and Euler.

Poincaré (1854—-1912) was attracted by the similarity between the stated goal of
the prize and a topic on which he had already done much preliminary work. His
work in the 1880s had focused on the global behavior of dynamical curves that
approached steady-state solutions that were either points (called fixed points) or
closed curves (called limit cycles).

file:///A:/Reprints/Z_HTML/Nolte-2010_TheTangledTaleOfPhaseSpace_SciAm.htm 9/18



9/27/21, 8:48 PM The tangled tale of phase space - Physics Today April 2010

Poincaré¢ decided to formulate the prize problem in the very simple terms of two
gravitating bodies to which a third is added whose mass is so small as to make
negligible perturbations on the motions of the original two. Poincaré thought he
was able to prove that the motion of the third body was technically stable,
returning arbitrarily closely to its original position if given sufficient time.

Even though Poincaré¢ did not solve the original problem, his contributions were
deemed the most worthy of the entrants, and he was awarded the prize on 21
January 1889. As part of the prize process, he wrote up his essay for publication
in Acta Mathematica. The paper was already through proofs and initial printing
late in 1889 when, upon checking one of his most important conclusions, he
discovered an error. He had originally intended to show that if the motion of the
small body were perturbed slightly, it would remain arbitrarily close to the
original motion. But upon studying his results further (after attempting to
respond to a reviewer’s comments on his manuscript), he discovered that was
not true. In fact, he found that arbitrarily small perturbations could lead to
arbitrarily large changes in the motion. If one viewed Earth as the small body;, it
raised potentially important questions about Earth’s future in the solar system.

By then Poincaré¢ had to scramble. He informed the committee of the error,
worked feverishly from December 1889 to January 1890 to correct the
manuscript, and then paid for the reprinting of the journal volumes out of his
own pocket. That the published paper was not the original submission to the

prize committee was apparently not widely known until the 1990s.1%

= 5 In the course of correcting his mistake, Poincaré took a geometric
/ approach in which he visualized the behavior around a special

| feature of the motion called a homoclinic fixed point—a saddle
15y point where stable and unstable trajectories intersect in phase
i \ space. As he studied the solutions, he discovered that the
- trajectories would cross an infinite number of times. It was that
Figure 4 “tangle” (figure 4) that was generating the arbitrarily large
response to small changes in initial conditions that he had

discovered. He was amazed by his own findings:

If one seeks to visualize the pattern formed by these two curves and their
infinite number of intersections . . . these intersections form a kind of lattice-
work, a weave, a chain-link network of infinitely fine mesh; each of the two
curves can never cross itself, but it must fold back on itself in a very
complicated way so as to recross all the chain-links an infinite number of
times. . . . One will be struck by the complexity of this figure, which I am not
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even attempting to draw. Nothing can give us a better idea of the intricacy of the
three-body problem, and of all the problems of dynamics in general .12

It was clear to him that he had discovered a fundamentally new aspect of
dynamical motion. That was the original discovery of what is today known as
sensitivity to initial conditions, which is at the heart of chaos theory.

Poincaré completed his studies of dynamic motion and published his results in

three volumes under the title New Methods of Celestial Mechanics. 12 He carried
out much of the work in phase space, introducing new tools and geometric
approaches that have become workhorses of modern dynamics. Among his
contributions are Poincar¢ sections, which plot where trajectories intersect a
specified section of phase space (see figure 1), and fixed-point classifications
that categorize various types of equilibrium behavior. The third volume of New
Methods contained the material introducing chaotic motion arising from the
homoclinic tangle. Along the way, Poincar¢ derived the theorem on the
conservation of phase space, which he called an integral invariant; he was
unaware of its derivation by Boltzmann, who in turn had at first been unaware
of Jacobi’s original derivation.

Ehrenfests’ legacy

The “space” aversion at the end of the 19th century quickly evaporated in the
first decade of the 20th, especially with the advent of relativity and the growing
conception of four-dimensional spacetime, in which time takes on some of the
properties of a fourth spatial dimension, a viewpoint developed by Hermann
Minkowski in 1907. Boltzmann by that time was dead (by his own hand), but
one of his students, Paul Ehrenfest (1880—1933), was asked by Felix Klein to
write a review of Boltzmann’s work for the Encyclopedia of Mathematical
Sciences. Ehrenfest, with his physicist wife, Tatyana, published the

encyclopedia article in 1911.18 They approached the subject systematically,
seeking to make precise definitions. That care was partly in response to the
controversies that had raged during the later part of Boltzmann’s life over
proofs or disproofs of the ergodic nature of gas systems. The Ehrenfests took
great pains to define a rigorous name for the multidimensional dynamical space
—and invented the term “I'-space”; in that space the instantaneous state of the
system was the I'-point.

There are ironies here. By the time of the encyclopedia article, the stigma of
using the expression “space” for multiple dimensions had disappeared, and the
Ehrenfests were very comfortable using the term to define Boltzmann’s n
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dimensions. But possibly because of its obscurity, they dispensed with the term
“phase” that Boltzmann so liked. Yet at the beginning of the encyclopedia
article, to set the context for their newly coined term of I'-space, they needed to
refer back to Boltzmann’s usage of “phase.” To do so, they briefly mention
Phasenraum (phase space) in the article and then immediately dispense with it,
never to use it again. That throwaway phrase is apparently the first use of the
expression “phase space” in print.

Encyclopedia articles in the Ehrenfests’ day were widely read, somewhat like
Reviews of Modern Physics today, and the Ehrenfests’ article was no exception.
And here is the main irony: What stuck in readers’ minds was the toss-away
phrase “phase space,” while virtually everyone ignored the I'-space invention.

Within two years of the Ehrenfests’ article, two papers—by Artur Rosenthal
(1887—-1959) and by Michel Plancherel (1885-1967), both on ergodic theory—
in the same 1913 issue of Annalen der Physik used the expression “phase space’

b

for the first time in journal publications.}Z The usage stuck, first appearing in a

journal paper title in 191818 and becoming increasingly common after that. As a
side note, Rosenthal later became a professor of mathematics at Purdue
University. My close colleague Anant Ramdas at Purdue remembers him, so we
have still today a living connection—in the “six degrees of separation” sense—
from Rosenthal to the Ehrenfests to Boltzmann to Jacobi to Liouville.

David Nolte is a professor of physics at Purdue University in West Lafayette,
Indiana.
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Figure 1. Phase space, a ubiquitous concept in physics, is especially relevant in
chaos and nonlinear dynamics. Trajectories in phase space are often plotted not
in time but in space—as maps that show how trajectories intersect a region of
phase space. Here, such a map is simulated by a so-called iterative Lozi
mapping, (x, y) — (1 +y — Ixl/2, —x). Each color represents the multiple
intersections of a single trajectory starting from different initial conditions.
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Figure 2. Liouville’s theorem, as derived in Joseph Liouville’s paper of 1838
entitled “Note Sur la Théorie de la Variation des constantes arbitraires” (“Note

on the Theory of the Variation of Arbitrary Constants”),Z often cited as the
original proof of the conservation of phase space. Liouville never applied the
theorem to mechanics—to him, it dealt just with a specific kind of differential
equation.
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Daher lisst sich der vollstindige Differentialquotient von lgR nach = unler
der merkwirdigen Form

(2.) digh _ oX,  oX, , . o6X,
g de oz ' o=z, | v o,
darstellen, wo
Aoy 0m 05 e

O,

Nach vollendeter Integration des Systems (1.) findet man also B aus der Glei-
chung (2.) durch eine Quadratur nach x. Aber es giebt Fille, in welchen
die Determinante R vor allen Inlegrationen angegeben werden kann. namlich
E’?XI Lx i .‘l..u

wenn sich die Summe ——- i ""J'{y'.::” mit Hilfe des Systems (1.) in

* * F - -
einen vollstindigen Differentialquotienten nach a transformiren lisst, oder, was
ein noch einfacherer Fﬂll ist, wcnn X, |-.{"ll'l x,, X, kein =, u.s. w. X, kein =,

enthill.  Alsdann ist _+E- 4 e e = (; daher
dle R
a1 =,
R = Const.

Figure 3. Jacobi’s rederivation of Liouville’s theorem.2 Carl Gustav Jacob
Jacobi recognized the theorem’s relevance to mechanics but used neither
“phase” nor “space” to describe it.
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Figure 4. The state space of a simple three-body system is far from simple. This
plot of velocity versus position is called a homoclinic tangle. Henri Poincaré
anticipated this infinitely nested structure, which he described in the late 19th
century in his New Methods of Celestial Mechanics, but he did not have the
numerical tools at the time to display it. (From the editor’s introduction in ref.

14, p. 162.)

Hamiltonian flow in phase space

Hamilton’s dynamical equations connect position x with momentum p, through
the Hamiltonian H:
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dx OH(xp,) dp,  OH(xp,)

dt op, | dt dx

Dynamics can generally be described as a flow or trajectory given by a vector
differential equation,

n=fn).

In phase space, i represents the position or phase point, and the flow is
expressed through Hamilton’s equations. In two-dimensional phase space,

n=(p) f(n)=(aH -aH).

o, Ox

The evolution of a volume element dV = dp,dx in phase space 1s given by

1dV _:aaH+a_aH:0
V dt ox\dp,/ Op.\ Ox

Volume in phase space is conserved under Hamiltonian flow, a property known
today as Liouville’s theorem.
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