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Abstract

We present the explicit forms of supergravity solutions for the various inter-
secting two BPS branes in eleven and ten dimensions, where one brane is localized
at the delocalized other brane. Our partially localized supergravity solutions de-
scribe brane configurations in the near horizon region of the delocalized branes,
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delocalized branes coincide. We also give the brane worldvolume interpretations
for some of such supergravity solutions.
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1 Introduction

Over the past years, there has been active development in constructing classical su-

pergravity solutions of p-branes and other solitons in string theories. Such classical

solutions in string theories made it possible to study quantum aspects of black holes

such as statistical interpretation of black hole entropy and absorption and decay rates

of black holes within the framework of string theories. In such studies, black holes

are regarded as being obtained by wrapping (intersecting) higher-dimensional p-branes

around compact manifolds. In the course of compactifying p-branes, the supergravity

solutions become delocalized along the compactified directions 2, which include rel-

ative transverse directions (the transverse directions which are longitudinal to some

of other constituent branes) and possibly some of overall transverse directions. So,

the corresponding intersecting p-brane solutions in higher dimensions become localized

only along the overall transverse directions. The most of intersecting brane solutions

that have been constructed are such delocalized type. For the purpose of studying

black hole physics in string theories, mostly it has been therefore sufficient to consider

delocalized intersecting brane solutions.

In the recent AdS/CFT correspondence conjecture [1] and its generalizations (for

example [2, 3, 4]), supergravity solutions in string theories also play important roles.

In this conjecture, the decoupling limits of the worldvolume theories of brane config-

urations are dual to the supergravity or superstring theories on the manifolds of the

near horizon geometry of the corresponding supergravity brane solutions. Thereby, one

can understand gauge theories, which are the decoupling limits (where massive string

modes, the Kaluza-Klein (KK) modes and gravity modes decouple from the massless

modes of open strings) of the worldvolume theories of D-branes and other solitons, in

terms of the supergravity or superstring theories on the near horizon manifolds, and

vice versa. In the D-brane interpretation of gauge theories, the transverse locations

of D-branes are interpreted as moduli of the gauge theories. For example, transverse

locations of N numbers of D-branes, which are interpreted as scalar fields in the U(N)

gauge theories, parameterize the Coulomb branch. When more than one types of branes

intersect, whereas locations of the “light” D-branes are dynamical moduli, locations of

the “heavy” branes become couplings, i.e. mass of quarks, since the kinetic energy of

their excitations is infinite, thereby being frozen at their classical values.

Therefore, if the AdS/CFT correspondence (or generally bulk/boundary holographic

2When compactifying the supergravity solutions, one has to take an infinite uniform array of branes
along the directions to be compactified in order to have an isometry necessary for the compactification.
Also, by definition, compactification means the identification of the corresponding points in each cell
of the compactification lattice, thereby the branes are periodically distributed along the compacti-
fied directions. Therefore, in the small size limit of the compactification manifold, the supergravity
solutions become delocalized along the compactified directions.
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correspondence) is correct, then all the parameters of the gauge theories, which are

boundary theories at infinity of the AdS/CFT correspondence, have to be mapped one-

to-one to the corresponding parameters of the corresponding supergravity solutions in

the bulk, namely the locations of the constituent branes along the transverse directions.

However, in delocalized intersecting p-brane solutions, locations of constituent branes

along the worldvolume directions of the other branes are not specified, thereby not

suitable for studying the bulk/boundary correspondence.

Some attempts have been made to construct localized intersecting brane solutions

[5, 6, 7] with the restricted metric Ansatz which has the same form as the corresponding

delocalized intersecting BPS brane solutions. Consistency of equations of motion along

with such simplified metric Ansatz requires that one of the branes has to be delocalized

on the relative transverse directions. Even with such simplified metric Ansatz, however,

obtaining the “explicit” analytical form of localized solutions is almost an impossible

task, since harmonic functions 3 that specify constituent branes now satisfy coupled

partial differential equations instead of the Laplace’s equations in the flat (overall)

transverse space. Solutions to such differential equations in general do not have simple

explicit form in terms of elementary functions. In the case of localized intersecting

non-extreme brane solutions, even the metric Ansatz (in terms of harmonic functions)

which would generalize such restricted metric Ansatz for the BPS case is not known,

not to mention the explicit expressions for harmonic functions. “Partially” localized

intersecting brane solutions, where constituent branes are localized along the relative

transverse directions but delocalized along the overall transverse directions, have been

constructed [8, 9, 10, 11]. However, these solutions satisfy different intersecting rules

from the ordinary intersecting branes and therefore they are only useful for studying

brane configurations with exotic intersecting rules.

However, in some special cases in the near-core limit of one of constituent branes,

one can construct explicit solutions. The first attempt was made in Ref. [12], where

the use was made of the fact that the near-core limit or the large charge limit of the KK

monopole in D = 11 is M (6,1) times an AN−1 singularity, which can be obtained from

the D = 11 flat spacetime by the ZN identification. After the dimensional reduction,

this AN−1 singularity metric becomes near-horizon limit of either D6-branes or the KK

monopole in D = 10. Since an AN−1 singularity is Ricci flat (thereby satisfying the

Einstein’s equations), one can just replace the flat transverse space of M-branes by an

AN−1 singularity. After the compactification down to D = 10, the resulting solutions

are localized brane solutions in the core of either D6-branes or the KK monopoles. The

other type of localized intersecting brane solutions that were explicitly constructed is

3Harmonic function is defined as a solution f(xi) to the Laplace’s equation 1
√

g
∂i(

√
ggij∂j)f(xi) =

0, where g ≡ det(gij). But in the following we will continue to call the solutions to such coupled
differential equations as harmonic functions.
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the D(−1)-brane solution in the core of D3-brane [13, 14, 15, 16]. In this case, it was

possible to obtain the explicit form of the harmonic function for D(−1)-brane, since

the equations of motion reduce to the Laplace’s equation in the background of the

near-horizon geometry of D3-branes, i.e. AdS5 space, which is conformaly flat.

One may argue that other localized intersecting BPS brane solutions (in the core of

one of the constituents) can be obtained by just applying duality transformations on

the above localized solutions. However, in order to apply T -duality transformations in

the transverse directions 4, one has to first compactify this direction, which becomes

delocalized through smearing or uniform array of branes along this direction. Thereby,

the power of radial coordinate in the harmonic function (of the above D6-brane, KK

monopole and the D3-brane) changes. This implies that after the required delocaliza-

tion along the T -duality direction the near-horizon geometries of D6-brane and D = 10

KK monopole do not get uplifted to an AN−1 singularity and the near-horizon geom-

etry of D3-branes is no longer conformaly flat. So, the above tricks for constructing

localized intersecting branes cannot be applied. Therefore, one has to construct such

localized intersecting BPS brane solutions case by case. It is the purpose of this paper

to construct various explicit partially localized intersecting BPS brane solutions in the

core of the delocalized constituent in various dimensions. We will apply simple coordi-

nate transformations to the differential equations satisfied by the harmonic functions

in order to bring them to the forms of partial differential equations which have known

explicit solutions.

The paper is organized as follows. In section 2, we setup the general formalism

for constructing partially localized BPS intersecting brane solutions where one of the

constituents is delocalized. We will apply this formalism to construct various explicit

partially localized intersecting M-brane solutions in section 3, and various partially

localized intersecting brane solutions in ten dimensions in section 4. Also, in sec-

tions 3 and 4, we discuss some worldvolume interpretations of such partially localized

intersecting brane solutions for the purpose of illustrating possible usefulness of our so-

lutions in studying the bulk/boundary holographic correspondence. Namely, although

partially delocalized, our solutions still contain the corresponding parameters of the

gauge theories on the “boundary”, which delocalized intersecting brane solutions lack.

In these sections, we identify the parameters of our supergravity solutions with the

4The T -duality transformations on supergravity brane solutions along the longitudinal directions
are not allowed, since these transformations introduce additional transverse directions, which the re-
sulting transformed supergravity solutions have to depend on. One cannot arbitrarily let the solutions
depend on this new coordinates through naive generalization of the form of the harmonic functions
before the T -duality transformations, as the satisfaction of the field equations is not always guaran-
teed. In fact, the true “localized” harmonic functions, which satisfy the equations of motion, take
different forms from the harmonic functions before the T -duality transformation on the longitudinal
directions. This can be seen from the various intersecting brane solutions involving D-branes, which
are presented in the following.
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corresponding parameters in the gauge theories on the boundary.

2 General Setup

In this section, we setup general formalism, which can be applied to any types of inter-

secting branes in any dimensions, for obtaining the explicit expressions for harmonic

functions.

In the BPS case, supergravity solutions for partially localized intersecting branes can

be obtained with the same metric Ansätze and the same harmonic superposition rules

as the delocalized cases. So, in the following, we shall assume the same forms of the

metric Ansätze (which differ for different types of constituent branes and therefore will

be given in sections 3 and 4 case by case) as the delocalized intersecting BPS branes.

Schematically, in general the intersecting brane configuration is given by the following

table. (This table is given also for the purpose of fixing the notations for the spacetime

coordinates, which we shall follow in the following sections.)

t ~w ~x ~y ~z

brane 1 • • •
brane 2 • • •

Here, t is the time coordinate, ~w is the possible overall longitudinal coordinate, ~x =

(x1, . . . , xp) [~y = (y1, . . . , yq)] is the relative transverse coordinate for the brane 1

[the brane 2], and ~z = (z1, . . . , zr) is the overall transverse coordinate. Generally,

for any type of intersecting brane 1 (with the harmonic function H1 = H1(~x, ~z)) and

brane 2 (with the harmonic function H2 = H2(~y, ~z)) in any dimensions with the above

configuration, the harmonic functions satisfy the following coupled partial differential

equations 5 [5, 6, 17, 12, 7]:

∂2
~zH1 +H2∂

2
~xH1 = 0,

∂2
~zH2 +H1∂

2
~yH2 = 0, (1)

along with the constraint

∂~xH1∂~yH2 = 0. (2)

5More precisely, the coordinates ~z, ~x and ~y are the coordinates in which constituent branes are
localized. Namely, when some of the coordinates are delocalized due to, for example, dimensional
reduction, the harmonic functions H1 and H2 still satisfy the same coupled differential equations (1)
but just do not depend on the delocalized coordinates. As will be seen in the following, in some cases
it is necessary to delocalize the configuration along some of the overall transverse directions for the
purpose of localizing one brane to the other. In such cases, ~z is the coordinate in the part of the
overall transverse space where the intersecting branes are localized.
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The constraint (2), i.e. ∂~xH1 = 0 or ∂~yH2 = 0, implies that either (i) the two

branes are delocalized (localized only along the overall transverse directions) or (ii)

while one brane is completely localized the other brane has to be localized along the

overall transverse directions, only. So, the supergravity solutions with the above men-

tioned simplified metric Ansätze have such limited description of the microscope brane

configurations on the boundary. However, this is not a disadvantageous situation for

studying bulk/boundary correspondence, since the decoupling limit (where only the

massless modes of open strings, which describe gauge theories, survive) of the brane

worldvolume theories requires delocalization of some types of brane configurations. For

example, for the configurations where one type of branes suspends between other type

of branes, the distance between the latter type of branes has to approach zero so that

the associated massive KK modes on the worldvolume theory of the former branes

decouple from the massless open string modes. So, these directions, which are the

relative transverse directions of the former branes, become delocalized 6.

Without loss of generality, for the sake of obtaining harmonic functions, we assume

that the brane 2 is delocalized:

∂2
~zH1 +H2∂

2
~xH1 = 0, ∂2

~zH2 = 0. (3)

In general, the harmonic function H2 that satisfies the second differential equation in

(3) has the form H2 = 1 +
∑

i
Qi

|~z−~z0 i|r−2 , where ~z0 i are locations of the i-th brane 2

with charge Qi. However, in this paper we will consider the case in which the brane

2’s coincide at the same location in the overall transverse ~z-directions. This is also

required as the decoupling limit of some types of brane configurations, as pointed out

in the previous paragraph. Therefore, we choose the following form of the harmonic

function H2 in the near core region of the brane 2:

H2 =
Q

zr−2
, (4)

where z ≡ |~z−~z0| and ~z0 is the location of the stack of N2 brane 2’s. There might exist

solutions for the harmonic function H1 in the case where each brane 2’s are located

at different points along the ~z-directions. However, it may not be possible to find

expression for H1 in closed form in terms of elementary functions. Furthermore, naive

inspection of the structure of the differential equation satisfied by H1 seems to indicate

that in general there does not exist a closed form of “localized” solution for H1 in terms

of elementary functions where brane 1’s are located at arbitrary locations along the

~z-directions away from the brane 2.

Then, the first differential equation in (3) reduces to the following form:

Q−1z−1∂z(z
r−1∂zH1) + ∂2

~xH1 = 0. (5)
6We assume here that the directions along which the latter type of branes stack are compactified

with the distance between the stack of the branes being the size of the compactification manifold.
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In the case where the harmonic function H1 depends on its relative transverse coordi-

nates ~x only through the radial coordinate x ≡ |~x|, this differential equation becomes

of the following form:

Q−1z−1∂z(z
r−1∂zH1) + x−p+1∂x(x

p−1∂xH1) = 0. (6)

We will first obtain solution H1 = H1(x, z) to the latter differential equation (6). This

solution can be easily generalized as a general solution H1 = H1(~x, z) to the former

differential equation (5).

The differential equation (6) can be solved by transforming it to either of the follow-

ing forms:

[X−a(∂XX
a∂X) + Y −b(∂Y Y

b∂Y )]F (X, Y ) = 0, (7)

[W c∂2
W + Zd∂2

Z ]G(W,Z) = 0, (8)

where a, b, c and d are real numbers. These two partial differential equations are

related through the following coordinate transformations:











W =
(

2−c
2
X
)

2
2−c

Z =
(

2−d
2
Y
)

2
2−d

,

{

X = (1− a)W
1

1−a

Y = (1− b)Z
1

1−b

, (9)

where the constants (a, b) and (c, d) are related as

a =
c

c− 2
, b =

d

d− 2
. (10)

For a localized brane, the corresponding harmonic function has to be of the non-trivial

form which is neither sum nor product of a function of X (or W ) and a function of Y

(or Z) 7. Such non-trivial solutions of the partial differential equations (7) and (8) are

respectively given by

F (X, Y ) = 1 +
P

(X2 + Y 2)
a+b
2

, (11)

G(W,Z) = 1 +
P

[ 4
(c−2)2

W 2−c + 4
(d−2)2

Z2−d]
cd−c−d

(c−2)(d−2)

, (c 6= 2 6= d), (12)

7Obtaining the solutions to the partial differential equations (7) and (8) by applying the method
of the additive or multiplicative separation of variables is very straightforward. However, when the
harmonic functions are of such forms, either the supergravity solution does not match onto a delta-
function brane source [6] or the point singularity of each term in the harmonic function represents the
brane that is delocalized in the other directions. The possibility of getting solutions with the additive
separation of variables were pointed out in Ref. [18]. Also, the expressions for harmonic functions in
terms of the infinite series of special functions by applying the method of multiplicative separation of
variables were obtained in Refs. [17, 19].
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where the integration constants in the constant terms have been set to 1 so that the

harmonic functions take ordinary forms. One can solve the differential equation (6) by

transforming it to the either of the forms (7) and (8).

The differential equation (6) can be put into the form (7) through the following

change of variables:

x → X = x, z → Y =
2
√
Q

|4− r|z
4−r
2 , (13)

resulting in the form (7) with a = p− 1 and b = r/(4− r). Or the equation (6) can be

put into the form (8) by applying the following change of variables:

x → W =

(

x

2− p

)2−p

, z → Z =

[

Q

(2− r)2

]
2−r
4−r

z2−r, (14)

resulting in the form (8) with c = (2p − 2)/(p − 2) and d = r/(r − 2). Therefore,

the harmonic function H1 = H1(x, z) that satisfies the differential equation (6) has the

form:

H1(x, z) = 1 +
P

[x2 + 4Q
(4−r)2

z4−r]
1
2
(p−1+ r

4−r
)
. (15)

The first transformation (13) already indicates that the harmonic function (15) for the

brane 1 localized at the brane 2 is not valid when the dimensionality of the the overall

transverse space is 4 (r = 4). Also, the second transformation (14) indicates that

our method cannot be applied when the overall transverse space is two-dimensional

(r = 2), in which case H2 in Eq. (4) is logarithmic, and the solution (15) is not valid.

Note, as pointed out in the previous paragraph, when the dimensionality r of the

overall transverse space with the coordinates ~z is 4, the coordinate transformations

(13) and the expression (15) for the harmonic function H1 are not valid. The only

non-trivial solution, which is not a product of a function of x and a function of z, to

the differential equation (6) with r = 4 that we have found so far has the form:

H1(x, z) = 1 + P (x2 − pQ ln z), (16)

although this looks quite extraordinary as a harmonic function associated with (local-

ized) branes and this implies that the associated brane is delocalized. However, when

the solution is smeared in one of the overall transverse directions ~z, one can find more

acceptable expression for the harmonic function H1 from Eq. (15) (with r = 3), just

as in Ref. [12], which represents brane 1’s that are completely localized except for one

delocalized overall transverse direction.

Also, for some other intersecting brane configurations to be discussed in the following

sections, we note that the corresponding supergravity solutions become delocalized

since the power in the harmonic function H1 is positive instead of negative. This

7



happens when the overall transverse space has large enough dimensionality, i.e. when

r > 4 as can be seen from Eq. (15). As can be in seen in the general expression

for the harmonic function H1(x, z) in Eq. (15), which is valid for any type of brane

(except for the case r = 4) in any spacetime dimensions, such delocalization depends

on the dimensionality of the overall transverse space and possibly that of the relative

transverse space of the brane 1, independently of the dimensionality of the overall

longitudinal space. If one delocalizes some of the overall transverse directions, the

power in the harmonic function H1 becomes negative, thereby describing the brane 1

that are completely localized except for the delocalized overall transverse directions.

This seems to imply that, if there do not exist other class of localized solutions

(where the brane 1 and the brane 2 meet in the overall transverse space), then the

corresponding microscopic brane configurations have to be delocalized in the relative

transverse directions 8 unless some of the overall transverse directions are delocalized.

So, our delocalized intersecting brane solutions (with r ≥ 4) correctly describe the

corresponding delocalized microscope brane configurations on the boundary. On the

other hand, this might be due to our choice of the simplified form of the metric Ansatz,

which is the same form as the delocalized solutions. With more general form of metric

Ansatz, there might exist completely localized intersecting brane solutions without any

delocalized overall transverse directions.

In the case when some of the overall transverse directions are delocalized for the

purpose of localizing the brane 1 at the brane 2, it is understood in the following

sections that ~z in the harmonic functions is the coordinates for the part of the overall

transverse directions where the brane configuration is localized.

It can be proven that the original differential equation (5) for the harmonic function

H1 = H1(~x, ~z) is solved by

H1(~x, ~z) = 1 +
∑

i

Pi

[|~x− ~x0 i|2 + 4Q
(4−r)2

|~z − ~z0|4−r]
1
2
(p−1+ r

4−r
)
, (17)

where the i-th brane 1 with charge Pi is located at (~x, ~z) = (~x0 i, ~z0). Note, this general

form of the “modified” harmonic function for the brane 1 is for the near horizon region

(|~z − ~z0| ≈ 0) of the brane 2 when the brane 1 and the brane 2 meet in the overall

transverse space and when all the brane 2’s coincide at ~z0.

Note, in the above expressions for harmonic functions H1 and H2, Q and Pi are just

integration constants that result from solving the differential equations. When one

wants to study the partially localized intersecting brane solutions in this paper within

the frameworks of string or M theory, one has to express the constants Q and Pi in terms

of the numbers N1 and N2 of the brane 1 and brane 2, and the charge quantization

8This possibility was later studied in Ref. [20] by noticing such properties of the solutions presented
in this paper.
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constants (expressed in terms of the fundamental string scale ls, the string coupling

constant gs, the eleven dimensional Planck scale lp, etc.) It turns out that although

the constant Q of H2 is proportional to the number N2 of brane 2’s, the constant P of

H1 is related to the product N1N2 of the numbers N1 and N2 of brane 1’s and brane

2’s 9.

When more than two branes intersect, one can apply the above procedure with cou-

pled differential equations with constraints that generalize (1) and (2). (For example,

see Ref. [17].) For such general cases, one may have to transform the coupled partial

differential equations to one of the following forms:

[
∑

i

X−ai
i (∂Xi

Xai
i ∂Xi

)]F (Xi) = 0, (18)

[
∑

i

W ci
i ∂2

Wi
]G(Wi) = 0, (19)

where ai and ci are real numbers. The solutions to these partial differential equations

are respectively given by

F (Xi) = 1 + P/(
∑

i

X2
i )

∑

i
ai

2 , (20)

G(Wi) = 1 + P/[
∑

i

4

(ci − 2)2
W 2−ci

i ]
∑

i

ci
2(ci−2) , (ci 6= 2). (21)

In the following sections, we will present the explicit forms of every possible par-

tially localized intersecting two brane solutions in eleven and ten dimensions in the

case when the explicit form of the “modified” harmonic function can be obtained by

applying the method discussed in this section. Localized intersecting brane solutions

in other dimensions can be similarly constructed just by applying the procedure dis-

cussed in this section. All the possible delocalized intersecting brane configurations are

studied in Refs. [21, 22], which we generalize to the localized case. In the following,

we will just write down expressions for spacetime metric and the explicit forms of har-

monic functions, since the expressions for other fields (dilaton and form fields) can be

straightforwardly constructed by applying the same harmonic function superposition

rules as the delocalized intersecting brane cases but now with new “localized” harmonic

functions replaced.

3 Localized Intersecting M-branes

In eleven dimensions, the basic constituents of intersecting branes are M2- and M5-

branes, which respectively carry electric and magnetic charges of the three-form field,
9I would like to thank Y. Oz for pointing out this point.
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the KK monopole and the pp-wave. In the following, we write down the spacetime

metrics for all the possible combinations of intersecting pairs of these branes along

with the explicit forms of the harmonic functions.

3.1 Intersecting M2- and M5-branes

There are 4 overall transverse directions (r = 4). The M2-branes have 4 relative

transverse directions (p = 4), and the M5-branes have 1 relative transverse direction

(q = 1). Since this configuration is interpreted as M2-branes ending on M5-branes,

it is natural to let the solution be delocalized along the relative transverse direction

of the M5-branes. Formally, one can however construct solution for the other case, as

well. The spacetime metric has the following form:

ds211 = H
1/3
2 H

2/3
5 [(H2H5)

−1(−dt2 + dw2) +H−1
5 (dx2

1 + . . .+ dx2
4)

+H−1
2 dy2 + dz21 + . . .+ dz24 ], (22)

where the harmonic functions H2 and H5 are respectively associated with the M2- and

M5-branes. For the purpose of obtaining more physically acceptable form of solution,

we delocalize the solution along one of the overall transverse directions ~z 10. Then, the

harmonic functions are given by

H2 = 1 +
∑

i

Qi

(|~x− ~x0 i|2 + 4P |~z − ~z0|)3
, H5 =

P

|~z − ~z0|
. (23)

The effective worldvolume theory of the M5-brane is the 5 + 1 dimensional (2, 0)

tensor multiplet containing 5 scalars, an anti-symmetric tensor with self-dual 3-form

field strength, and 4 chiral fermions. The ends of M2-branes on the M5-branes are

regarded as (self-dual) strings (in the M5-brane worldvolume theory) charged under

this tensor. The charges Qi and locations ~x0 i in the above supergravity solution are

related to charges and locations of these strings in the worldvolume theory.

3.2 Intersecting two M5-branes

There are 3 overall transverse directions (r = 3) and 2 relative transverse directions

for each M5-brane (p = 2 = q). So, in the core region of one of the M5-branes, the

metric has the following form:

ds211 = (H1H2)
2/3[(H1H2)

−1(−dt2 + dw2
1 + dw2

2 + dw2
3)

+H−1
2 (dx2

1 + dx2
2) +H−1

1 (dy21 + dy22) + dz21 + dz22 + dz23 ], (24)

10When the solution is completely localized along all the overall transverse directions, the harmonic
function takes an unacceptable form (16) with a logarithm
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with the harmonic functions given by:

H1 = 1 +
∑

i

Pi

[|~x− ~x0 i|2 + 4P |~z − ~z0|]2
, H2 =

P

|~z − ~z0|
. (25)

From the perspective of M5-brane worldvolume theory, the 3-dimensional intersec-

tion is 1/2 supersymmetric 3-branes that carry the self-dual 3-form central charges of

the worldvolume superalgebra of the M5-brane [23]. The parameters Pi and ~x0 i are

related to the charges and the locations of these 3-branes in the M5-brane worldvolume

theory.

3.3 Intersecting two M2-branes

In this case, there are 6 overall transverse directions (r = 6) and the dimensions of the

relative transverse spaces of both of M2-branes are 2 (p = 2 = q). In the core region

of one of the M2-branes, the solution has the following form:

ds211 = H
1/3
1 H

1/3
2 [−H−1

1 H−1
2 dt2 +H−1

2 (dx2
1 + dx2

2) +H−1
1 (dy21 + dy22)

+dz21 + . . .+ dz26], (26)

where the harmonic functions are given by

H1 = 1 +
∑

i

Qi[|~x− ~x0 i|2 +Q|~z − ~z0|−2], H2 =
Q

|~z − ~z0|4
. (27)

When n of the overall transverse directions are delocalized, the harmonic functions

take the following form:

H1 = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q
(n−2)2

|~z − ~z0|n−2]
2

n−2

, H2 =
Q

|~z − ~z0|4−n
. (28)

So, when 3 overall transverse directions are delocalized, the harmonic function H1, as

well as H2, takes a standard form where branes are localized except for the 3 delocalized

overall transverse directions.

From the perspective of the M2-brane worldvolume theory, the 0 + 1 dimensional

intersection is interpreted as a 0-brane coupled to the zero form central charge in the

worldvolume superalgebra. Such 0-brane is charged with respect to the Hodge-dual of

a transverse scalar. The parameters ~x0 i and Qi are related to the locations and charges

of these worldvolume 0-branes.

3.4 M2-brane with the KK monopole

When the flat transverse space of the M2-brane is replaced by the Taub-NUT terms

of the KK monopole, the spacetime metric takes the following form:

ds211 = H
−2/3
2 [−dt2 + dw2

1 + dw2
2] +H

1/3
2 [dx2

1 + . . .+ dx2
4

11



+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2], (29)

where the harmonic functions H2 and HK for the M2-brane and the KK monopole and

a 1-form potential A = (Ai) satisfy the equations:

∂2
~zHK = 0, ∂ziHK = ǫijk∂zjAk, ∂2

~zH2 +HK∂
2
~xH2 = 0. (30)

In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are therefore given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

H2 = 1 +
∑

i

Qi

(|~x− ~x0 i|2 + 4QKK |~z − ~z0|)3
. (31)

This solution reproduces the one in Ref. [12].

The 0-form central charges of theM2-brane worldvolume superalgebra are equivalent

to the space components of the dual 2-forms, which are carried by a worldvolume 2-

branes. This 2-brane is interpreted as the intersection of the M2-brane with the KK

monopole [23]. The locations and the charges of these worldvolume 2-branes are related

to ~x0 i and Qi of the above supergravity solutions.

3.5 M5-brane with the KK monopole

When the flat transverse space of the M5-brane is replaced by the Taub-NUT terms

of the KK monopole, the spacetime metric takes the following form:

ds211 = H
−1/3
5 [−dt2 + dw2

1 + . . .+ dw2
5] +H

2/3
5 [dx2

+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2], (32)

where the harmonic functions H5 and HK for the M5-branes and the KK monopole

and a 1-form potential A = (Ai) satisfy the equations:

∂2
~zHK = 0, ∂ziHK = ǫijk∂zjAk, ∂2

~zH5 +HK∂
2
xH5 = 0. (33)

In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are therefore given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

H5 = 1 +
∑

i

Pi

(|~x− ~x0 i|2 + 4QKK |~z − ~z0|)3/2
. (34)

This solution is also constructed in Ref. [12].
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The time component of the 1-form central charge in the M5-brane worldvolume su-

peralgebra can be viewed as the space components of a worldvolume dual 5-form. This

charge is carried by the KK monopole [23]. Therefore, this configuration is interpreted

as the M5-brane inside of the KK monopole [24, 25].

3.6 The pp wave in the background of M2-branes

For the pp wave which travels along one of the worldvolume directions, which we choose

to be w, of the M2-brane, the metric takes the following form:

ds211 = H
−2/3
2 [−dt2 + dw2 + dx2 + (HW − 1)(dt− dw)2]

+H
1/3
2 (dz21 + . . .+ dz28), (35)

with the harmonic functions H2 and HW for the M2-brane and the pp wave satisfying

the following equations:

∂2
~zH2 = 0, ∂2

~zHW +H2∂
2
xHW = 0. (36)

In the core region of the M2-brane, the harmonic functions are therefore given by:

H2 =
Q

|~z − ~z0|6
, HW = 1 +QW (x2 +

Q

4

1

|~z − ~z0|4
). (37)

When n of the overall transverse directions are delocalized, the harmonic functions

take the following forms:

H2 =
Q

|~z − ~z0|6−n
, HW = 1 +

QW

[x2 + 4Q
(n−4)2

|~z − ~z0|n−4]
8−n

2(n−4)

. (38)

So, with 5 of the overall transverse directions delocalized the solutions become localized

except for these delocalized overall transverse directions.

Upon dimensional reduction to D = 10, the D = 11 pp-wave becomes D0-brane in

the type-IIA theory. The 0-form central charges in the D = 11 pp-wave superalgebra

are decomposed into two sets of the 0-form central charges in the D = 10 D0-brane

superalgebra, which can be respectively interpreted in the transverse 9-space as the

central charges carried by a D4-brane or the KK monopole and a fundamental string

or a D8-branes [23]. When uplifted to D = 11, the resulting configurations are M2-

brane and M5-brane and the KK monopole involving the pp-wave, whose supergravity

solutions are presented in this section and the following sections. On the other hand, the

3-momentum in the M2-brane superalgebra, interpreted as a 0-form in the transverse

8-space, is the null 3-momentum of the pp-wave inside theM2-brane [23]. Similarly, the

5-momentum in the M5-brane superalgebra, interpreted as a 0-form in the transverse

5-space, is the null 5-momentum of the D = 11 pp-wave inside of the M5-brane, whose

supergravity solution is given in the next subsection.
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3.7 The pp-wave in the background of M5-branes

For the pp wave which travels along one of the worldvolume directions, which we choose

to be w, of the M5-brane, the metric takes the following form:

ds211 = H
−1/3
5 [−dt2 + dw2 + (HW − 1)(dt− dw)2 + dx2

1 + . . .+ dx2
4]

+H
2/3
5 (dz21 + . . .+ dz25), (39)

with the harmonic functions H5 and HW for the M5-brane and the pp wave satisfying

the following equations:

∂2
~zH5 = 0, ∂2

~zHW +H5∂
2
~xHW = 0. (40)

In the core region of the M5-brane, the harmonic functions are therefore given by:

H5 =
P

|~z − ~z0|3
, HW = 1 +QW (x2 +

4P

|~z − ~z0|
). (41)

When n of the overall transverse directions are delocalized, the harmonic functions

take the following forms:

H5 =
P

|~z − ~z0|3−n
, HW = 1 +

QW

[x2 + 4P
(n−1)2

|~z − ~z0|n−1]
n+1
n−1

. (42)

So, with 2 of the overall transverse directions delocalized, the solutions become localized

except for these two delocalized overall transverse directions.

The pp-wave localized at the M5-brane is interpreted from the perspective of the

worldvolume theory at the boundary as the neutral (with respect to the self-dual

3-form field strength in the M5-brane worldvolume theory) string in the M5-brane

worldvolume.

3.8 The pp-wave in the background of the KK monopole

The spacetime metric for the pp wave which propagates in the background of the KK

monopole has the following form:

ds211 = −dt2 + dw2 + (HW − 1)(dt− dw)2 + dx2
1 + . . .+ dx2

5

+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2, (43)

where the harmonic functions HK and HW for the KK monopole and the pp wave and

a 1-form potential A = (Ai) satisfy the equations:

∂2
~zHK = 0, ∂ziHK = ǫijk∂zjAk, ∂2

~zHW +HK∂
2
~xHW = 0. (44)
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In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are therefore given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

HW = 1 +
QW

(x2 + 4QKK |~z − ~z0|)7/2
. (45)

4 Intersecting Branes in Ten Dimensions

In ten dimensions, the basic constituents of intersecting branes are D-branes, funda-

mental string, solitonic NS5-brane, the KK monopole and the pp wave. In the follow-

ing, we present intersecting brane configurations of all the possible combinations.

4.1 Two Dp-branes self-intersecting over (p− 2) dimensions

In this case, the overall transverse space has 7− p dimensions and there are 2 relative

transverse directions for both of Dp-branes. The spacetime metric has the following

form:

ds210 = (H1H2)
−1/2(−dt2 + dw2

1 + . . .+ dw2
p−2) +H

1/2
1 H

−1/2
2 (dx2

1 + dx2
2)

+H
−1/2
1 H

1/2
2 (dy21 + dy22) + (H1H2)

1/2(dz21 + . . .+ dz27−p), (46)

where the harmonic functions H1 and H2 for each Dp-branes satisfy the following

equations:

∂2
~zH1 +H2∂

2
~xH1 = 0, ∂2

~zH2 = 0. (47)

The harmonic functions are therefore given by

H1 = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q
(p−3)2

|~z − ~z0|p−3]
2

p−3

, H2 =
Q

|~z − ~z0|5−p
. (48)

Note, for p = 2, this solution becomes delocalized. So, one has to delocalize some

of the overall transverse directions to obtain supergravity solution representing the

intersecting brane localized except for the delocalized overall transverse directions.

When the overall transverse space is 4-dimensional, i.e. self-intersecting D3-branes,

the above expression for the harmonic function H1 is singular. In this case, one has

to delocalize one of the overall transverse directions. With two [one] overall transverse

directions are delocalized for p = 2 [for p = 3], the harmonic functions are given by:

H1 = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]2
, H2 =

Q

|~z − ~z0|
. (49)
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The Dp-brane worldvolume theory contains a scalar (interpreted as a Goldstone

mode of spontaneously broken translational invariance by the Dp-brane), which is

Hodge-dualized to a worldvolume (p−1)-form potential that the (p−2)-brane (common

intersection of the two Dp-branes) couples to.

4.2 Dp-branes ending on D(p+ 2)-branes

There are 6−p overall transverse directions. The dimensions of the relative transverse

space are 3 for Dp-branes and 1 for D(p+2)-branes. Since Dp-branes stretch between

D(p+2)-branes, it is natural to let D(p+2)-branes to be delocalized along their relative

transverse direction. The spacetime metric is given by

ds210 = (HpHp+2)
−1/2(−dt2 + dw2

1 + . . .+ dw2
p−1) +H1/2

p H
−1/2
p+2 (dx2

1 + dx2
2 + dx2

3)

+H−1/2
p H

1/2
p+2dy

2 + (HpHp+2)
1/2(dz21 + . . .+ dz26−p), (50)

where the harmonic functions Hp and Hp+2 for Dp- and D(p+ 2)-branes satisfy

∂2
~zHp +Hp+2∂

2
~xHp = 0, ∂2

~zHp+2 = 0. (51)

The harmonic functions are given by

Hp = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q
(p−2)2

|~z − ~z0|p−2]
(p+2)
2(p−2)

, Hp+2 =
Q

|~z − ~z0|4−p
. (52)

The fluctuations of locations ~x0 i of the Dp-branes along the D(p + 2)-brane di-

rections, together with the y-component of the Dp-worldvolume gauge field, forms a

massless hypermultiplet with free boundary conditions at y = 0. The scalars describing

the fluctuations of location ~z0 of the Dp-branes along the directions perpendicular to

the D(p + 4)-branes, together with the t- and ~w-components of the Dp-worldvolume

gauge field, form a vectormultiplet with each component field satisfying the Dirichlet

boundary conditions.

From the point of view of the D(p+2)-branes, the ends of the Dp-branes are charged

objects in the D(p+2)-brane worldvolume. For D1-branes ending on D3-branes (p = 1

case), the ends of the D1-branes are magnetic sources for the D3-brane worldvolume

gauge fields. Therefore, the worldvolume theory is the magnetic monopoles in the

4-dimensional U(Np+2) Yang-Mills theory. The locations ~x = ~x0 i of the D1-branes

along the directions of the D3-branes, together with the Wilson lines of the
∑

iNp i

U(1) worldvolume gauge fields of D1-branes along the y-direction, parameterize the

monopole moduli space. The charges Qi of the D1-branes are interpreted as magnetic

charges of the monopoles. Under the S-duality of the type-IIB theory, this supergravity

brane solution transforms to the supergravity solution for fundamental strings ending
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on D3-branes, which is presented in the following subsection. From the D3-brane

worldvolume point of view, this S-duality is the Montonen-Olive’s strong-weak cou-

pling electric-magnetic duality of the N = 4 super-Yang-Mills theory in 4 dimensions.

The ends of the fundamental strings on the D3-branes are electric charge sources, inter-

preted as charged gauge bosons. Just as the D1-brane and the fundamental string form

a multiplet under the type-IIB S-duality, the charged gauge boson and the magnetic

monopole transform as a multiplet under the Montonen-Olive duality.

When p = 1, the above harmonic function Hp represents delocalized Dp-branes,

thereby requiring delocalization of some of overall transverse directions. When p = 2,

the overall transverse space is 4-dimensional. So, one of the overall transverse directions

has to be delocalized. With two [one] of the overall transverse directions delocalized

for the p = 1 [p = 2] case, harmonic functions are given by:

Hp = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]
5
2

, Hp+2 =
Q

|~z − ~z0|
. (53)

4.3 Dp-branes inside of the worldvolume of D(p+ 4)-branes

There are 5 − p overall transverse directions. The dimensionalities of the relative

transverse spaces are 4 for Dp-branes and 0 for D(p+4)-branes. The spacetime metric

has the following form:

ds210 = (HpHp+4)
−1/2(−dt2 + dw2

1 + . . .+ dw2
p) +H1/2

p H
−1/2
p+4 (dx2

1 + . . .+ dx2
4)

+(HpHp+4)
1/2(dz21 + . . .+ dz25−p), (54)

where the harmonic functions Hp and Hp+4 for Dp- and D(p + 4)-branes satisfy the

differential equations:

∂2
~zHp +Hp+4∂

2
~xHp = 0, ∂2

~zHp+4 = 0. (55)

The harmonic functions are therefore given by

Hp = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q
(p−1)2

|~z − ~z0|p−1]
p+1
p−1

, Hp+4 =
Q

|~z − ~z0|3−p
. (56)

The decoupling limit of the worldvolume theory of the corresponding microscopic

D-brane configuration is (i) the (p + 1)-dimensional U(
∑

i Np i) gauge theory with

Np+4 flavors (in the fundamental representation of U(
∑

i Np i)) with the U(Np+4) gauge

symmetry of the D(p + 4)-branes being a global symmetry from the point of view of

Dp-branes, or (ii) small U(Np+4) instantons from the point of view of D(p+4)-branes

with
∑

i Np i Dp-branes being pointlike defects in the fundamental of U(Np+4).
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From the point of view of the worldvolume theory of the Dp-branes, the locations of

the branes are interpreted as follows. The locations of the D(p+ 4)-branes relative to

the locations of Dp-branes in the ~z-direction are masses ~mj (j = 1, . . . , Np+4) for the

Np+4-fundamentals. Since all the D(p + 4)-branes coincide in the above supergravity

solution, the full U(Np+4) symmetry is left intact, while the quarks in the fundamental

of U(Np+4) remain massless. The locations ~x0 i of Dp-branes parallel to the D(p+ 4)-

branes correspond to expectation values of an adjoint hypermultiplet of U(
∑

iNp i).

Since all the Dp-branes coincide in the direction ~z transverse to the D(p + 4)-branes

at ~z = ~z0 (parameterizing the Coulomb branch of the U(
∑

iNp i) gauge theory) for the

above supergravity solution, the full U(
∑

i Np i) gauge symmetry is left unbroken.

In the case of p = 3, i.e. intersecting D3- and D7-branes, one has to include the

orientifold 7 plane with 8 units of D7-brane charge in order to cancel the brane charges.

Then, theD3- andD7-branes have to located in pairs as mirror images of the orientifold

plane along the ~z-directions. Note, the ground state of an open string that stretches

between the same D3-brane is the neutral gauge boson W 3
µ , whereas those that stretch

between a pair of D3-brane and its mirror image are the charged gauge bosons W±
µ .

Since all theD3-branes in the above supergravity solution 11 coincide in the ~z-direction,

these charged gauge bosons are massless and therefore the full SU(2) gauge symmetry

on the worldvolume of D3-branes is left unbroken. Since the relative locations of

D7-branes and their mirror images with respect to D3-brane locations along the ~z-

direction is zero, the quarks are massless and the SO(8) symmetry on the worldvolume

of D7-branes remains unbroken.

The p = 2 case is the supergravity solutions for D2-branes within D6-branes con-

structed in Ref. [12]. The above solution becomes singular for p = 1 and delocalized

for p = 0. After one [two] of the overall transverse directions are delocalized for p = 1

[for p = 0], the harmonic functions take the following forms:

Hp = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]3
, Hp+4 =

Q

|~z − ~z0|
. (57)

One can also obtain the localized BPS solution for D(−1)-branes in the background

of D3-branes (the p = −1 case) applying the the general formalism in section 2,

although the harmonic function for the D(−1)-brane is shown to satisfy the Laplace’s

equation in the AdS5 space. After the Wick rotation to the Euclidean time coordinate

11When p = 3, the harmonic function H7 for the D7-branes has to be logarithmic. Therefore, the
solution (56) is not valid and one cannot obtain the explicit expression for the harmonic functions
applying the method discussed in section 2. However, there might exist the explicit expressions for
harmonic functions where all the D-branes coincide in the ~z-direction. On the other hand, such
supergravity solution cannot be trusted since the conservation of brane charges requires that there
can be only 4 D3-branes and 4 D7-branes.
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x0 ≡ τ , the spacetime metric takes the following form:

ds210 = H
1/2
−1 H

−1/2
3 (dx2

0 + . . .+ dx2
3) + (H−1H3)

1/2(dz21 + . . .+ dz26), (58)

and the dilaton and the 0-form field in the RR sector are respectively given by eφ = H−1

and (χ− χ∞) = ±(e−φ − e−φ∞). Here, the subscript ∞ denotes the value of a field at

the AdS5 boundary. The harmonic functions H−1 and H3 for the D(−1)-branes and

D3-branes satisfy the following equations:

∂2
~zH−1 +H3∂

2
~xH−1 = 0, ∂2

~zH3 = 0, (59)

where ~x = (x0, . . . , x3) now the time coordinate x0 = τ included. This system of partial

differential equations cannot be solved by applying the method discussed in section 2.

But it can be easily proved that the following harmonic functions satisfy (59):

H−1 = 1 +
∑

i

Qi|~z − ~z0|4
[|~x− ~x0 i|2|~z − ~z0|2 +Q]4

, H3 =
Q

|~z − ~z0|4
. (60)

This is the solution constructed in Ref. [15], where the radial coordinate z = |~z −
~z0| in (60) is the inverse of that in their solution. The worldvolume theory of the

corresponding microscopic D-brane configuration is the multi-Yang-Mills instantons in

the 4-dimensional U(N3) gauge theory with the instanton with the instanton number

N−1 i located at ~x = ~x0 i. Since the D(−1)-brane is located at the position where the

D3-branes coincide, the size of the Yang-Mills instantons is infinite [26].

4.4 Fundamental strings ending on Dp-branes

There are 8 − p overall transverse directions. The fundamental strings have p relative

transverse directions and the Dp-branes have 1 relative transverse direction. It is

natural to let the solution to be delocalized along the relative transverse direction of

the Dp-branes. The spacetime metric has the following form:

ds210 = −H−1
F H−1/2

p dt2 +H−1/2
p (dx2

1 + . . .+ dx2
p)

+H−1
F H1/2

p dy2 +H1/2
p (dz21 + . . .+ dz28−p), (61)

where the harmonic functions HF and Hp for the fundamental string and Dp-branes

satisfy the equations:

∂2
~zHF +Hp∂

2
~xHF = 0, ∂2

~zHp = 0. (62)

The harmonic functions are therefore given by

HF = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q
(p−4)2

|~z − ~z0|p−4]
p2−6p+12
2(p−4)

, Hp =
Q

|~z − ~z0|6−p
. (63)
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Note that for p < 4 the above solution becomes delocalized and for p = 4 the solution

becomes singular. After 5−p overall transverse directions are delocalized, the harmonic

functions take the following forms:

HF = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]3
, Hp =

Q

|~z − ~z0|
, (64)

representing fundamental strings localized except for the delocalized 5−p overall trans-

verse directions.

For p = 3, this supergravity solution is S-dual to the D-strings ending on D3-branes

discussed in the previous section. Once again, the ends of the fundamental strings are

interpreted as (electrically) charged gauge bosons in the worldvolume gauge theory of

the D3-branes.

4.5 Dp-branes ending on NS5-branes

There are 3 overall transverse directions. The dimensions of the relative transverse

spaces are 6 − p for Dp-branes and 1 for NS5-branes. It is natural to delocalize in

the direction relatively transverse to the NS5-branes. The spacetime metric for the

Dp-branes (p ≤ 6) ending on NS5-branes is given by

ds210 = H−1/2
p (−dt2 + dw2

1 + . . .+ dw2
p−1) +H1/2

p (dx2
1 + . . .+ dx2

6−p)

+H−1/2
p HNSdy

2 +H1/2
p HNS(dz

2
1 + dz22 + dz23), (65)

where the harmonic functions Hp and HNS for the Dp-branes and NS5-branes satisfy

the equations:

∂2
~zHp +HNS∂

2
~xHp = 0, ∂2

~zHNS = 0. (66)

The harmonic functions are therefore given by

Hp = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]
8−p

2

, HNS =
Q

|~z − ~z0|
. (67)

The p = 6 case is the supergravity solution for NS5-branes within D6-branes con-

structed in Ref. [12].

Since the y-direction, in which the NS5-branes stack, is delocalized, one can think

of the NS5-branes as being periodically arrayed in the y-direction with the periodic-

ity given by the circumference of the compactification circle. The scalars describing

the fluctuations of the location ~z = ~z0 of the Dp-branes in the perpendicular direc-

tions to the NS5-branes, along with the y-component of the Dp-worldvolume gauge

field, form the hypermultiplet. The scalars corresponding to the locations ~x = ~x0 i of

the Dp-branes in the parallel directions of the NS5-branes, together with the t- and
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~x-components of the Dp-worldvolume gauge field, form the vector multiplet. Since

the Dp-branes are finite in y, the worldvolume gauge theory is effectively 1 + (p − 1)

dimensional with the Kaluza-Klein excitations on the Dp-branes invisible at large dis-

tances. For p = 3, 4, the corresponding worldvolume theory is 1 + (p− 1) dimensional
∏N5

i=1 U(N4) supersymmetric gauge theory with N5 (bifundamental) hypermultiplets

transforming in the (N4, N̄4) of U(N4) × U(N4). Here, each U(N4) gauge group is

associated with N4 Dp-branes that stretch between two adjacent NS5-branes.

4.6 Fundamental strings with NS5-branes

For fundamental strings parallel to NS5-branes, there are 4 overall transverse direc-

tions. So, the delocalization along one of the overall transverse directions is required.

The fundamental strings have 4 relative transverse directions and the NS5-branes have

no relative transverse direction. The metric has the following form:

ds210 = H−1
F (−dt2 + dw2) + dx2

1 + · · ·+ dx2
4 +HNS(dz

2
1 + · · ·+ dz24), (68)

where the harmonic functions HF and HNS for the fundamental strings and the NS5-

branes satisfy

∂2
~zHF +HNS∂

2
~xHF = 0, ∂2

~zHNS = 0. (69)

The harmonic functions are therefore given by

HF = 1 +
∑

i

Qi

[|~x− ~x0 i|2 + 4Q|~z − ~z0|]3
, HNS =

Q

|~z − ~z0|
. (70)

This solution is also constructed in Ref. [12].

4.7 Two NS5-branes intersecting over 3 dimensions

The spacetime metric has the following form:

ds210 = −dt2 + dw2
1 + dw2

2 + dw2
3 +H1(dx

2
1 + dx2

2)

+H2(dy
2
1 + dy22) +H1H2(dz

2
1 + dz22), (71)

where the harmonic functions H1 and H2 for each NS5-branes satisfy:

∂2
~zH1 +H2∂

2
~xH1 = 0, ∂2

~zH2 = 0. (72)

The overall transverse space is 2-dimensional. This means that the harmonic function

H2 in Eq. (4) has to be logarithmic. So, one cannot construct the localized solution

by applying the method developed in this paper.
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4.8 The KK monopole in the transverse space of Dp-brane
with p ≤ 4.

The spacetime metric has the following form:

ds210 = H−1/2
p (−dt2 + dw2

1 + . . .+ dw2
p) +H1/2

p [dx2
1 + . . .+ dx2

5−p

+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2], (73)

where the harmonic functions Hp and HKK for the Dp-branes and the KK monopoles

and a 1-form potential A = (Ai) satisfy

∂2
~zHp +HKK∂

2
~xHp = 0, ∂2

~zHKK = 0, ∂ziHK = ǫijk∂zjAk. (74)

In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

Hp = 1 +
∑

i

Qi

(|~x− ~x0 i|2 + 4QKK|~z − ~z0|)
7−p

2

. (75)

The corresponding worldvolume theory is the one with the flat transverse space

replaced by an ALE space with ANKK−1 singularity.

4.9 The KK monopole in the transverse space of the funda-

mental string

The spacetime metric is given by

ds210 = H−1
F (−dt2 + dw2) + dx2

1 + . . .+ dx2
4

+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2, (76)

where the harmonic functions HF and HKK for the fundamental strings and the KK

monopole and a 1-form potential A = (Ai) satisfy

∂2
~zHF +HKK∂

2
~xHF = 0, ∂2

~zHKK = 0, ∂ziHK = ǫijk∂zjAk. (77)

In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

HF = 1 +
∑

i

Qi

(|~x− ~x0 i|2 + 4QKK |~z − ~z0|)3
. (78)

The corresponding worldvolume theory is described by a conformal field theory in

the target manifold including an ALE space with ANKK−1 singularity.
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4.10 The KK monopole in the transverse space of the NS5-
brane

The spacetime metric has the following form:

ds210 = −dt2 + dw2
1 + . . .+ dw2

5 +HNS[HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2], (79)

where HNS and HK are the harmonic functions for the NS5-branes and the KK

monopole and A = (Ai) is a 1-form potential. There are no relative transverse di-

rections. So, there is no point in considering the localized intersecting configuration.

4.11 The pp wave propagating in the background of the KK

monopole

The spacetime metric has the following form:

ds210 = −dt2 + dw2 + (HW − 1)(dt− dw)2 + dx2
1 + . . .+ dx2

4

+HK(dz
2
1 + dz22 + dz23) +H−1

K (dy + Aidzi)
2, (80)

where the harmonic functions HK and HW for the KK monopole and the pp wave and

a 1-form potential A = (Ai) satisfy the equations:

∂2
~zHK = 0, ∂ziHK = ǫijk∂zjAk, ∂2

~zHW +HK∂
2
~xHW = 0. (81)

In the core region of the KK monopole or in the limit of large KK monopole charge,

the harmonic functions are therefore given by:

HK =
QKK

|~z − ~z0|
, A = QKK cos θdφ,

HW = 1 +
QW

(x2 + 4QKK |~z − ~z0|)3
. (82)

4.12 Fundamental string with the pp wave propagating along

its longitudinal direction

The spacetime metric has the following form:

ds210 = H−1
F [−dt2 + dw2 + (HW − 1)(dt− dw)2] + dz21 + . . .+ dz28, (83)

where HF and HW are respectively the harmonic functions for the fundamental strings

and the pp wave. Since there is no relative transverse directions, it is of no point to

discuss the special localized solution.
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4.13 NS5-brane with the pp wave propagating along one of

its longitudinal directions

The spacetime metric has the following form:

ds210 = −dt2 + dw2 + (HW − 1)(dt− dw)2 + dx2
1 + . . .+ dx2

4

+HNS(dz
2
1 + . . .+ dz24), (84)

with the harmonic functions HNS and HW for the NS5-brane and the pp wave satis-

fying the following equations:

∂2
~zHNS = 0, ∂2

~zHW +HNS∂
2
~xHW = 0. (85)

In the core region of the NS5-brane with one of its overall transverse directions delo-

calized, the harmonic functions are therefore given by:

HNS =
P

|~z − ~z0|
, HW = 1 +

QW

(x2 + 4P |~z − ~z0|)3
. (86)

4.14 Dp-brane with the pp wave propagating along one of its

longitudinal directions

The spacetime metric has the following form:

ds210 = H−1/2
p [−dt2 + dw2 + (HW − 1)(dt− dw)2 + dx2

1 + . . .+ dx2
p−1]

+H1/2
p (dz21 + . . .+ dz29−p), (87)

with the harmonic functions Hp and HW for the Dp-brane and the pp wave satisfying

the following equations:

∂2
~zHp = 0, ∂2

~zHW +Hp∂
2
~xHW = 0. (88)

In the core region of the Dp-branes, the harmonic functions are therefore given by:

Hp =
Q

|~z − ~z0|7−p
, HW = 1 +

QW

(x2 + 4Q
(p−5)2

|~z − ~z0|p−5)
p2−8p+19
2(p−5)

. (89)

For the p < 5 the pp wave becomes delocalized and for p = 5 the above solution

becomes singular. After 6 − p of the overall transverse directions are delocalized, the

harmonic functions take the following forms:

Hp =
Q

|~z − ~z0|
, HW = 1 +

QW

(x2 + 4Q|~z − ~z0|)3
. (90)

The p = 6 case is the supergravity solution for the pp wave localized within D6-branes

constructed in Ref. [12].
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