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ISOMETRIC IMMERSIONS OF RIEMANNIAN SPACES
IN EUCLIDEAN SPACES

E. G. Poznyak and D. D, Sokolov UDC 514.77

Questions of the theory of isometric immersions of Riemannian spaces in Euclidean spaces be-
ginning with the very first results onthis topic and also results on immersions of pseudo-Rie-
mannian spaces in pseudo-Euclidean spaces and applications of the theory of immersions in the
general theory of relativity are considered.

The paper is devoted to a survey of works on isometric immersions of Riemannian and pseudo-Rie-
mannian spaces in Euclidean and pseudo-Euclidean spaces,

The question of immersions of Riemannian spaces is connected with two distinct approaches fo the prob-
lem of studying Riemannian manifolds. The first of these consists in investigating an abstractly defined mani-
fold. The second consists in investigating a Riemannian manifold as a submanifold of Euclidean space. The
following question arises naturally: Is every n-dimensional Riemannian manifold V2 a submanifold of Euclidean
space EN? In the most general formulation this question was solved positively in the fifties and sixties of our
century by the American mathematician Nash [141, 142, 143). The investigations of Kuiper {122, 123] are
closely related to those of Nash. Although the results of Nash and Kuiper are of universal character, they
cannot be considered definitive, since they do not give a complete answer to the very important question of
the choice of the optimal dimension N of the Euclidean space EN in which a given V* or some class of Rie-
mannian spaces is immersed. The corresponding problematics will be formulated in the paper, and a survey
of results will be given,

In the paper major coverage is given to papers on immersions of pseudo-Riemannian spaces in pseudo-
Euclidean spaces. Interest in this theme is to considerable extent connected with various problems of theo-
retical physics and theoretical astronomy. Clarifications of the physical character of corresponding results
will be given along with a survey of papers on this topic.

We shall not consider in detail the results of immersions of two-dimensional Riemannian metrics, since
the surveys [21, 22] are devoted to this problem, while the fundamental papers of Aleksandrov [1] and Pogore-~
lova [18] deal with immersions of two-dimensional metrics of positive curvature, We shall consider these
questions and also questions related to immersions in curved spaces oaly to the extent that they aid in under-
standing the history of the development of the problem considered.

The bibliography extends fo the end of 1976. We shall use the following notation: ED is n-dimensional
Euclidean space, E?p’q) is n-dimensional pseudo-Euclidean space with signature (p, q}.

1. A Survey of Papers on Isometric Immersions up to 19590

1, Formulation of the Problem. Basic Results. The problem of isometrically embedding of Riemannian
space V2 in some Euclidean space EN was first formulated by Schlaefli [167] in 1873 and, so it seemed to
him, not only formulated butf also solved. Schlaefli obtained the following equations (we shall henceforth call
them the Schlaefli equations):

Translated from Itogi Nauki i Tekhniki, Algebra, Topologiya, Geometriya, Vol. 15, pp. 173~211, 1977.
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T ;=8 (L

in which gij = gu(x , . ..,x" are the coordinates of the metric tensor of the Riemannian space V& x!, . . .,
x8 intrinsic coordinates; and rj = or /oxi, where r = rx!, . . ., xP), isthe desired radius vector of the sub-
manifold M2 in EN on which an inner metric is induced which coincides with the metric of V&,

Since the number of equatisons (1) is equal to s, = n(n + 1) /2, Schlaefli was convinced that at least lo-
cally* V2 can be embedded in E~ ", In other words, the question of the existence of solutions of the system (1)
for N = sy, did not arise [in this case the number of equations and the number of unknown functions — the co-

ordinates of the vector r(x!, . . ., x0) — coincide].

For analytic Riemannian metrics V1 the local Schlaefli problem was solved in the work of Janet [114]
(1926), Cartan [74] (1927), and Burstin [73] (1931).

To solve the problem of the embedding of analytic Riemannian manifolds V¥ in E°D Cartan made use of
the tools of the method of outer forms which he created. It should be noted that so far Cartan's proof has not
been simplified nor have the basic ideas of his arguments been clarified.

In the work cited of Janet for the linear elementt ds? = gy (dx")? + gljdxlde i >1, j>1) the Schlaefli
equations [see (1})] were brought to the form

rnrk:O, k=l,2,...,n,

2)
142 (
rurtm:rlzrlm—j*@%v I>1, m>1

by differentiations of the simplest algebraic operations. It is clear that if all the vectors ry, rjy, [the number
of these vectors is equal to n(n + 1) /2] are linearly independent, then the system (2) can be solved for the co-
ordinates of the vector ry;. As a result, a system of Cauchy—Kovalevskaya type is obtained for which a solu-
tion exists. Janet did not prove the possibility of a choice of initial data for which the linear independence of
the vectors ry, ry, is ensured This plan was realized by Burstin, He constructed an inductive process for the
isometric embedding in ESn of specially chosen submanifolds 1r1 VI of increasing dimensions such that at the
n-th step of this process the desired isometric immersion of v? in ESn is obtained, while for this immersion
all the vectors ry, rjy, are linearly independent. This type of isometric immersion of V% in EN subsequently
became known as a free immersion.

2. Problem of the Class of a Riemannian Metric. The Problem of Nonimmersibility. In 1886 Schur pub-
lished the work [169] in which the possibility is established of the local, analytic, isometric immersion of
Lobachevskii space H? in EN for N = 2n— 1. This result is very important in clarifying the problematics of
the theory of isometric immersions.

The relation of dimensions (nand N = 2n— 1) of the immersed space H in the Euclidean space ENin
Schur's result differs sharply from the relation of the dimensions [n and N =sp = n(n + 1) /2] in the general
result (Schlaefli, Janet, Cartan, and Burstin). It is ‘therefore natural to formulate the following two important
problems of the theory of isometric immersions — the problem of the class of the Riemannian metric and the
problem of nonimmersibility.

The problem of the class of the Riemannian metric of VP consists in resolving the guestion of the mini-
mal dimension N of the Euclidean space EN in which VP can be isometrically immersed. The difference N— n
is called the class of the Riemannian metric of V&,

In its original formulation this question pertained to analytic immersions of analytic Riemannian metrics.
It became clear only in the fifties that the differentiability conditions in this problem are very basic; it followed
from the remarkable result of Nach [141] that if the immersion is only required to be of class c!, then locally
the class of all Riemannian metrics is equal to 1, i.e., locally all Riemannian metrics of dimension n can be
immersed as hypersurfaces of class C! in X",

We shall subsequently discuss various aspects of this problem of the metric class in surveying other
works on the theory of immersions.

The second important problem — the problem of the immersibility of a given Riemannian n-dimensional
manifold in Euclidean space ENof given dimension N — was first formulated by Hilbert in 1900 in his famous Prob-
lems [104]. In these Problems Hilbert posed the problem of the existence in E® of a complete surface of

*At the time of Schlaefli's work local and global embedding of a manifold were not distinguished.
tLocally the linear element of V2 can always be brought to the indicated form.
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constant negative curvature. In 1901 in the work entitled "On surfaces of constant negative curvature" [105,
106] Hilbert proved the impossibility of such a surface in E3. In other words, a complete two-dimensional
Riemannian manifold of constant negative curvature cannot be isometrically immersed in E? as a surface of
class C%*

The problem of nonimmersibility of Riemannian metrics is obviously related to the problem of the met-
ric class — if the class of a given Riemannian metric is known, then the dimension of the Euclidean space in
which this metric cannot be immersed is known, However, it is necessary to be more precise here. We have
already mentioned the importance of the differentiability conditions on the manifold in EN on which a given
Riemannian metric is induced.

Local and global formulations of the problems also play a basic role in these two problems. Thus, if we
consider the question of the immersion of a two-dimensional Riemannian manifold of constant negative curva-
ture (the Lobachevskii plane) in Euclidean space, then here the local and global formulations of the question
are distinct — locally the Lobachevskii plane can be immersed in E® and therefore the class of its metric is
equal to 1; giobally it cannot be immersed in E® but in E? (see Blanusa [74], Rozendorn [23]). Thus, the ques-
tion of the global metric class of the Lobachevskii plane has so far not been settled.

Before 1950 the problem of the nonimmersibility of a Riemannian metric was investigated in the work
of Bianchi [48), Liber [12, 13], and Tompkins [191].

The impossibility of the local immersion of a Riemannian space HR of constant negative curvature as a
hypersurface of Euclidean space was proved in the work cited of Bianchi.

The local nonimmersibility of the space HP was investigated by Liber in the work cited above. He estab-
lished that HY cannot be locally immersed as an analytic surface in E*®?, Since according to Schur's result
HM can be isometrically immersed in E?2! Liber proved that the local class of the metric of H® under the
condition of analytic immersion is equal to n ~ 1, We note that the question of the possibility of global immer-
sion of H in E?D-! has not been solved.

In 1939 Tompkins (see the work cited above) investigated the question of the global nonimmersibility of
multidimensional Riemannian metrics. He proved that a compact, locally Euclidean, n-dimensional Riemann-
jan manifold V2 (e.g., the n-dimensional torus) cannot be regularly (in class C» immersed globally in EB-1
We note that the n-dimensional torus with a flat metric has an immersion in E*, In the work of Tompkins [191]
the connection of the local outer and inner geometry of an immersed manifold is used in the proof of nonim-
mersibility. For example, in E® each regular (of class C% developable surface is ruled and if it is complete,
then any rectilinear generator of it is complete. This implies the nonimmersibility in the class of surfaces
C? of the two-dimensional torus with the Euclidean metric in E3. Tompkins proved that locally any n-dimen-
sional compact manifold with Euclidean metric regularly immersed in Euclidean space of dimension 2n— 1
has a ruled structure in a particular sense, and therefore globally such a manifold cannot be immersed in
E2~! Tompkins' resulis were generalized in the work of Chern and Kuiper [76], Otsuki [154] and O'Neil [150].
More will be said about this below.

We note one further result of Tompkins [192]. In this work he constructed an immersion {with self-inter-
sections) of the Klein bottle with Euclidean metric in E4, Another immersion of the Klein bottle in E¢ (also
with self-intersections) was suggested by Ivanov [9].

Above we spoke of the problem of the class of a Riemannian metric, of the natural distinction of the con-
cepts of local and global class of such a metric, and also of the relation of the value of the class of the metric
to the differentiability requirements of the immersion. Until 1950 mainly the question of the local metric class
under the condition of analyticity of the immersion was investigated. As a rule, it was determined which met-
rics have a given local class. To this end a system of immersion equations was considered which turned out
to be overdetermined, and conditions were found for its compatibility. If these conditions were expressed in
terms of the inner metric of the immersed manifold, then as a result the desired characterization of metrics
of a given local class was obtained.

The first work on the class problem was that of Schouten and Struik [168] in 1921 in which it was proved
that if the Ricei tensor of the space is indentically zero, then the local class of this space is different from
one, In other words, either the space is flat and the local class is equal to zero or the space cannot be a hyper-
surface.

*Kuiper {122} proved the possibility of the isometric immersion of such a manifold in E® as a surface of class
cl,

1409



In 1940-43 Rozenson in the work [26-28] obtained a criterion for spaces of local class 1.

Earlier results of Weise [196] and Thomas [190] were used in the work of Rozenson. Results on metrics
of class 1 are systematically surveyed in the article of Yanenko [42].

The problem of the local class of Riemannian metrics was discussed in the work of Allendorfer [46]
and investigated in detail in the work of Yanenko [43-45]. The results of Yanenko will be discussed in more
detail in the next section.

2. Work onthe Theory of Immersions after 1950

1. C'-Isometric Immersions of Nash and Kuiper. A number of fundamental results in the theory of im-
mersions were obtained after 1950,

In 1954 Nash published the work [141] on so-called global C'-isometric immersions of Riemannian mani-
folds in Euclidean spaces. The result Nashobtained consists in the following. Suppose that on a closed dif-
ferentiable manifold M™ there is given a Riemannian metric, and a Riemannian manifold VB is thus obtained,
If MP can be topologically immersed in Euclidean space EN (N= n+2) as a C™-manifold, then VI can be iso-
metrically immersed in ENas an n~dimensional surface of class Cl*

It was noted in the work of Nash that the condition N = n + 2 can be replaced by the condition N= n + 1.
Kuiper [122] justified precisely the result formulated above for N= n + 1.

The method proposed by Nash is as follows. Let M be topologically immersed in EN (N= n + 2) as a
C™-submanifold. By suitable transformation of this topological immersion in EN a so-called short immersion
of the Riemannian manifold V0 can be obtained, i.e., an n-dimensional submanifold Vi' in EN on which the in-
duced Riemannian metric ds; is related to the Riemannian metric ds given on V? at corresponding points and
directions by the relation ds;/ds =< 4; < 1. By means of the "twisting™ operation proposed by Nash the short
immersion Vi is transformed into a short immersion Vz for which the quantity ds,/ds < a,<1 satisfies the
condition a; < a,.

The bas1c idea of the twisting operation consists in the follovvlng Let z? = 2 x{) be the parametric
equations of V1 T Since N = n + 2, it is possible to construct on VI two mutually orthogonal vector fields &%
and n®. The embedding V' is defined by the parametric equations

o aV c
2F=2z¢¢ COS Ay |-m* ———sm)\d)
where a;) and y(xj) are functions defined on VI, and A is an arbitrary constant which is sufficiently large.i
It is easy to see that the metric tensor of the metric ds, induced on VI differs from the metric tensor of the
metric ds; by the quantity
g9 9 (1)
A=ag g+ 0 1)

From this relation it is evident that by choice of the functions a4, ¥ and the constant A the required relation
a; < ay < 1 can be achieved,

By applying the "twisting" operation to Vz , then to V3 , etc. a sequence {Vk} of C*~manifolds is con-
structed in EN with induced metrics {dsk} which converge to ds, and the Vk themselves converge to a cl-
manifold with induced metric which coincides with the given metric.

Surprising corollaries are obtained from the results of Nash and Kuiper just presented. For example,
according to Whitney [198] each compact n-dimensional differentiable manifold M2 can be topologically im-
mersed in E?%7! ag a C®-manifold, and therefore any compact Riemannian manifold V2 can be Cl—xsometrlcally
immersed in E*2~!, If we consider any Riemannian manifold homeomorphic to the n-dimensional sphere, then,
according to Kuiper's result, this manifold can be C‘—lsometrlcally embedded in EM!, We note that any Rie-
mannian manifold can be Ci—1sometr1cally immersed in E20-1,

*Nash established that if the topological immersion of M2 in EN is an embedding (there are no self-intersec-
tions), then V1 can be isometrically embedded in EN
TV can be covered by a system of neighborhoods in each of which there is a system of curvilinear coordi-

nates xj.
iThis formula explains the term "twisting": for large A the immersion of V? becomes strongly twisted due to

the terms cos Ay and sin Ay,
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In the preceding section while discussing the immersion equations obtained by Schlaefli, it was found
that the number of equations of this system is equal to N = sy = n{n + 1) /2, and at first glance it therefore
seems natural that at least locally n-dimensional Riemannian spaces can be isometrically immersed in EN
for N = n(n + 1) /2. The analytic treatment of the results of Nash and Kuiper is thus the more surprising ~
in the class of Cl-isometric.immersions of n-dimensional Riemannian manifolds in EN for N = n+ 2 (or
even for N = n + 1) the very overdetermined system of immersion equations always has a solution belonging
to the class Cl.

A number of substantial refinements to the results of Nash and Kuiper formulated above were obtained
in the work [30] of Rokhlin and colleagues.

The Cl-isometric immersions of Riemannian metrics in Euclidean spaces obtained by means of the meth-
od proposed by Nash and perfected by Kuiper have precisely the indicated regularity class C! (second deriva-
tives are discontinuous at each point). These embeddings do not have the connection between inner and outer
properties which are usual in differential geometry;for this the requirement that the immersions belong to
the class C? is essential.* There naturally arises the question of for which « in the class of CH®-immer-
sions does this connection "arise™ or "disappear." This question was investigated in a cycle of papers of
Borisov [3]. He established that for the values 0 = o < 1/7 the corresponding immersions do not have the con-
nection between the outer and inner geometry, while for the values 2 /3 < o = 1 this connection is present,

It is also natural to pose the question of nonsmooth isometric immersions. Such immersions of two-
dimensional metrics in E3 were considered by Burago {4, 5].

Shefel' [36-38] posed the question of refining the concept of a regular immersion, According to Shefel’,
regularity of an immersion depends on the immersed metric belonging to a certain class K and on particular
stability properties of the immersion with respect to a group of transformations acting in EN, For example,
if we consider so-called convext immersions in EN of two-dimensional metrics of nonnegative curvature de-
fined on the sphere and if we require further that the convexity property be preserved under affine transfor-
mations, then it is found that the immersion constructed belongs to E* — EN,

Shefel' calls such immersions of two-dimensional metrics of nonnegative curvature completely regular,
This term is also used in other instances,

2. Nash Theory of Regular Immersions. In 1956 Nash [142] proposed a method of regular isometric
immersions of regular Riemannian manifolds in Euclidean spaces. The central feature in Nash's constructions
is the generalization to the nonanalytic case of the Cauchy—Kovalevskaya theorem for the immersion equa~
tions. He considered the problem of immersion of a metric sufficiently close fo a metric of a submanifold 8
of Euclidean space EN, For this problem he formed equations for the deformation of the surface necessary to
realize the close metric. These equations can be represented as a Cauchy—Kovalevskaya system if the sub~
manifold S in question is a free immersion (the first and second derivatives of the radius vector of § are
linearly independent at each point). For this it is necessary that the dimension N be n{n + 1) /2 + n {for mani-
folds of complicated topological structure the dimension N must be raised).

By means of fine arguments Nash was able to prove the existence of solutions to the system he formed.
In other words, the possibility of immersion of metrics sufficiently close to a metric of a submanifold 8 was
proved, and the degree of closeness of the immersed metrics was established.

It is important to emphasize that the arguments of Nash are not related to the specific form of the im-
mersion equations; he obtained a general theorem for the solvability of the Cauchy problem for nonanalytic
equations of Cauchy—Kovalevskaya type (under particular additional conditions). The importance of this theo-
rem goes far beyond the framework of the theory of immersions, since it is apparently the first generalization
of this type.

Many authors (Schwarfz {170], Moser [139, 140], Rokhlin [37]) attempted to give the Nash result a clear
formulation, In the opinion of the authors of this survey, this problem has still not been finally resolved, and,
in any case, the analytic theorem of J. Nash has not yet been introduced to sufficient extent into the working
machinery of mathematics.

*1f, for example, in E® there is a surface S of class C! for which all second derivatives of the functions defin-
ing it are discontinuous, then it is not possible to introduce the concept of the usual outer curvature.

fThis means that a segment joining any two points of the immersion has no further common points with the
immersion,
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The possibility of a regular immersion of an arbifrary Riemannian manifold V2 Nash proves by means
of his analytic theorem. To this end the line element ds® of the manifold VI is represented as a sum of two
line elements ds% + ds? the first of which is the line element of some freely immersed submanifold. Next, a
Cl-isometric immersion of the metric with line element ds} is constructed, and this immersion is approxi-
mated analytically so closely that the error does not exceed the quantity required by the analytic theorem of
Nash. Further, the required immersion of the original metric is obtained by correcting the immersion of the
first metric.

By means of the method given by Nash it is possible to immerse an arbitrary n-dimensional Riemannian
manifold in EN, where N = [(3n® + 11n) /2](n + 1) [for compact manifolds N = (3n® + 11n) /2].

Embeddings of regular (CT, 3 < r < <) Riemannian metrics were considered in the work of Nash in-
dicated; the immersion also had class CT. In the work [143] Nash showed that in applying his analytic tool to
an analytic Riemannjan manifold the solution is also analytic. By means of this result, Greene and Jacobowitz
[97] proved a theorem on the immersibility of an analytic n-dimensional Riemannian manifold in E 8n*+11n)/2,

Attempts to lower the dimension N were made in the work of Greene [96] and Clarke [78]. Rokhlin and
colleagues [30] indicated a geometric method corresponding to the analytic theorem of Nash. It was found that
the methods presented in the work of Janet and Burstin can be used also for a global immersion theorem. It
was proved in [30] that each Riemannian manifold V2 can be regularly immersed isometrically in EN, where
N=n@n+1)/2 + 3n + 5.

3. Problem of the Class of Riemannian Manifolds. During this period the work of Yanenko [{43-45] was
the principal work on the problem of the class of Riemannian manifolds.

Yanenko [45] reduced the question of investigating metrics of class 2 to the question of investigating
metrics of class 1. As in previous work on the theory of class, the question of flexibility of the immersions
obtained is investigated in the work of Yanenko. We also note the work of O'Neil [149] and Takahashi [185] who
investigated immersions of class one in nonflat spaces of constant curvature and the work of Sen [173] who
classified conformally flat spaces of class 1.

It appears that the problematics of the theory of class were to considerable extent completed in the work
of Yanenko. It is likely to be a very tough problem fo obtain further effective criteria that a given metric have
a given class. After the middle of the fifties only scattered papers were devoted to the problem of the class of
proper Riemannian metrics. However, the question of immersion of various classes of metrics (metrics of
constant curvature, metrics of negative curvature, etc.) is developing rapidly; we proceed to consider this
work in the next sections. The theory of the class of pseudo-Riemannian metrics is also developing; for this
see the next section.

4. Immersions of Metrics of Constant Curvature, Papers in which the immersion of special classes of
metrics is considered are of considerable interest. The problem of immersions of metrics of constant curva-
ture defined on various manifolds has been investigated the most thoroughly. Local immersions of such met-
rics are well known, and the basic problem arising here consists in obtaining global immersions having a given
topological structure. The main results in this area have been obtained by the Yugoslavian mathematician D.
Blanusa.

Generalizing the result of Bieberbach on the immersion of the Lobachevskii plane in Hilbert space,
Blanusa constructed a realization in Hilbert space of an infinite Mobius strip with a hyperbolic metric.*

Blanusa [52] also constructed an immersion of n-dimensional Lobachevskii space in Hilbert space. Still
another immersion of multidimensional Lobachevskii space in Hilbert space was constructed by Blanusa in [61].
Pursuing these investigations, in [66] Blanusa considered a number of infinite~dimensional spaces which are
natural generalizations of finite-dimensional spacesof constant curvature and proved a large number of asser-
tions regarding their mutual immersibility (the presence of such mutual immersipility is a characteristic fea-
ture of infinite~-dimensional spaces).

In the papers [51, 50, 63] Blanusa turned to the investigation of immersions of an elliptic space. We note
that Kuiper showed [125] that the projective plane cannot be topologically immersed in three-dimensional
Euclidean space as a convex surface; in any case there thus does not exist a regular realization in three-di-
mensional Euclidean space of an elliptic plane. Blanusa established that n-dimensional elliptic space has a

*An infinite Mobius strip with hyperbolic metric is obtained by identifying by reflecting the boundaries of the
part of the Lobachevskii plane contained between two diverging lines with respect to their common perpen-
dicular.
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regular immersion in En(n+3)/2' Here the multidimensional surface, just as the sphere, has geodesics which
are sections of the immersion by certain multidimensional planes. It is found that on accounting with this
property the indicated dimension of the enveloping space cannot be improved. This result implies the existence
of an imbedding of the elliptic plane in E®* In [55, 57] Blanusa investigated the question of the immersibility
of n-dimensional elliptic space in spherical, hyperbolic, and flat spaces of dimension n{n + 3} /2 — 1 (i.e.,

one less than in the previous estimate). It was found that such immersions actually exist under certain condi-
tions on the parity of the number n and provided that certain inequalities connecting the curvatures of the im-
mersed and enveloping spaces are satisfied. Blanusa returned to this problem in the more recent work {68]
where he constructed an immersion of n-dimensional elliptic space in E (07)? apq gn@+3)/2+1,

We note that the projective plane with a metric of positive curvature, in particular, the elliptic
plane, does not admit a regular imbedding in E* (Rokhlin et al. [30]). Moreover, if n=2Kand n > 1, then n-
dimensional projective space with a metric of everywhere positive scalar curvature, for example, n-dimen-
sional elliptic space, does not admit isometric imbedding in E’D [30]. We note also the work of Boy [71] of
1903 in which a realization was constructed of the elliptic plane in E3 as a surface with a singularity.

In constructing these immersions of elliptic space Blanusa proceeded from a certain realization of the
group of motions of elliptic space as a subgroup of the group of motions of the enveloping space in a way simi-
lar to the manner in which the unit sphere may be considered a realization of the orthogonal group in the group
of motions of three-dimensional Euclidean space. Subsequently, Kobayashi (120], apparently independently,
arrived at a similar idea for the immersion of arbitrary homogeneous spaces in Euclidean spaces. On the
basis of this idea he obtained immersions of homogeneous spaces isomorphic to the unitary U{n) and spin Sp(w)
groups and also some other more complicated groups of homogeneity in Euclidean spaces.

We note also the recent work of Seidel {171} in which a method is indicated for constructing immersions
of elliptic space in Euclidean space if n + 3 points of this immersion are known beforehand.

Blanusa also considered the question of the immersion of locally Euclidean spaces in spaces of constant
curvature. He considered {54, 56] the question of the immersion of the plane and the flat cylinder in spherical
space. This question is of interest, in particular, in connection with the fact that Clifford indicated a two-
dimensional torus with Euclidean metric (a so-called flat torus) in the three-dimensional sphere 8. In [56]
Blanusa showed that the two-dimensional cylinder with Euclidean metric (the so-called flat cylinder) can be
immersed in the four-dimensional sphere. In [54], by investigating in detail the surface of Clifford, he also
constructed an immersion of the flat torus in three-dimensional elliptic space. Further, in [62] Blanusa estab-
lished that the flat cylinder can be immersed in the three-dimensional sphere, while the Klein bottle with
Euclidean metric can be immersed in four-dimensional Euclidean and hyperbolic spaces. We recall that the
first immersions of the Klein bottle with a flat metric in four-dimensional Euclidean space were found by
Tompkins [192],

In the next cycle of work Blanusa turned to the construction of immersions of n-dimensional Lobachevskii
space. In [64] he constructed by very fine analytic methods an immersion of the Lobachevskii plane in E® and
n-dimensional Lobachevskii space in E®07%, This was the first regular imbedding of the Lobachevskii plane and
space in a finite-dimensional Euclidean space. Modifying somewhat the method of Blanusa, Rozendorn con-
structed an immersion (with self-intersection) of the Lobachevskii plane in E’ [23]. In [69] Blanusa constructed
an immersion of the hyperbolic plane and of cylinders with a hyperbolic metric in the eight-dimensional sphere,
and in [70] he constructed an immersion of n-dimensional Lobachevskii space in the spherical space §%77¢,
Finally, in [65] an imbedding of two-dimensional cylinders with a hyperbolic metric in EY is constructed.

We mention also the work of Dolbeault-Lemoire [81] who showed that for n > 2 there does not exist a
regular immersion of EM in (n + 1)-dimensional Lobachevskii space.

In {6, 7] Volkov and Vladimirov established that the full Euclidean plane can be immersed in three-di-
mensional Lobachevskii space only as a horosphere or an equidistant body.

Still another cycle of Blanusa's papers is devoted to immersions of the MObius strip with various met-
rics. In connection with the formulation of this problem we recall that according to Kuiper's result [125] there
do not exist convex immersions of an infinite M&bius strip in three-dimensional Euclidean space. We note that
there do not exist immersions in E? of an infinite flat Mobius strip. Blanusa [59] constructed an immersion of
an infinite Mobius strip with flat metric in E®, and in [60] — in four~-dimensional Euclidean space and in four-
dimensional spherical and hyperbolic spaces. In[67] an immersion of the Mobius strip with hyperbolic metrie

*This work was summarized by Blanusa in the survey [58].

1413



in E'® was constructed, and in [69] — in E® and in the ten-dimensional sphere,

In the work of the Yugeslavian geometer S, Mincic a number of results extending those of Blanusa were
obtained. Immersions of the Euclidean space E*™ jn $5™~! and of E*™*! in (5m + 2)-dimensional elliptic space
were constructed. Moreover, an obvious immersion of the flat n-dimensional torus in S*™! was indicated.

5. Immersions of Metrics of Nonpositive Curvature. In 1952 Chern and Kuiper [76] showed that a closed
n-dimensional Riemannian space with curvature in two directions which is nonpositive at all points cannot be
C!-immersed in E?™"!, This result is a natural generalization of the result of Tompkins {191] on the nonim-
mersibility of the n-dimensional torus with flat metric in E*™! which was mentioned in the previous section.

In this work Chern and Kuiper applied the following important technique. Let F be a closed surface in E® lying
inside some convex surface . We displace the surface ¢ until it is tangent to F. The curvature of the surface
F at the point of tangency is not less than the curvature of the surface ¢. This technique was developed in de-
tail by Pogorelov [18] in investigating convex surfaces in three-dimensional Euclidean space. Chern and Kuiper
showed that a similar technique of "squeezing" a convex surface can be applied also to surfaces with codimen-
sion which is not too large (up to n— 1), which makes it possible to prove the theorem mentioned on the non-
immersibility of metrics of nonpositive curvature. We note that the "squeezing" technique was applied hy Soko-
lov {33] to prove the nonimmersibility of two-dimensional, positive definite metrics of positive curvature in
three-dimensional pseudo-Euclidean space (see Sec. 3).

In the same work Chern and Kuiper conjectured that if M is a compact, n-dimensional manifold at each
point of which there exists a g-dimensional space along flat elements of which the curvature is nonpositive,
then M cannot be embedded in ENA~!, This was proved by Otsuki in [154, 156, 157].

Many various generalizations of the results of Chern, Kuiper, and Otsuki were subsequently obtained,
Kuiper [121] obtained the following result. Let U? and U3 be, respectively, two- and three-dimensional com-
pact manifolds, while all the sectional curvatures of the manifold U® are negative. Then the manifold Vo = U® x
U? cannot be isometrically imbedded in E® and S7. Tachibana [184] extended the results of Chern and Kuiper to
immersions of spaces of constant curvature in nonflat spaces of constant curvature. Hartman and Nierenberg
[103] proved that if a complete d-dimensional manifold M9 with flat metric has an immersion in Ed“, then M9
is isometric either to E9 or to the cylinder S! x E9~!, Further results in this direction were obtained by Hart-
man [101, 102], Takahashi [186], and Vranceanu [195].

O'Neil [150] proved that if M™ is a compact n-dimensional manifold and M is a complete, m-dimen-
sional, simply connected manifold having sectional curvatures connected by the inequality K(MD) = K(M™M) < 0,
then MD cannot be immersed in MM for m < 2n. O'Neil further proved [152] the following result. Let MY be a
complete d-dimensional Riemannian space with negative sectional curvatures not exceeding the number ¢ < 0.
If Md can be immersed in a (d + 1)-dimensional Lobachevskii space of curvature ¢, then the i-th (i = 2) Cech
cohomology of the space MY is equal to zero. Stiel [180] proved that if M9 is a d-dimensional compact manifold
with nonpositive sectional curvatures, then MY cannot be imbedded in a (d + k)-dimensional manifold of con-
stant nonpositive curvature for k < d. Further results in this direction were obtained by O'Neil and Stiel [153],
O'Neil [152], Stiel [178, 179), Maltz [132], Ferus [83], and Nomizu [148].

We consider, finally, the work of Borisenko [2] who proved the following assertions. Let F! be a com-
pact, /~dimensional surface of class C° in a (2] — 1)~dimensional Riemannian space R%*"!, If the outer sectional
curvatures of Flare negative, then the Euler characteristic of the surface Flis equal to zero, If F! is homeo-
morphic to the sphere and the sectional curvatures of F! are less than one, then for ! # 3 and I = 7 it is im-
possible to imbed Flin R? l‘i. We also note the work of Moore [138] who obtained several results in this area.

The results described above rest in final analysis on the fact that imbeddings of manifolds with non-
positive sectional curvatures satisfy a certain condition of saddle-shape type. It is found that immersions of
spaces with nonnegative sectional curvatures and not too large codimension satisfy a certain condition of con-
vexity type. Using this condition, Jacobowitz [113] proved that if V! is a compact, /-dimensional manifold with
sectional curvatures not exceeding A?, then V2 cannot be immersed in E2~! inside a ball of radius A. With the
help of these conditions of convexity type it is also possible to prove various theorems on the convexity of
hypersurfaces. There is a broad literature on this question going back to the work of Hadamard [101] in 1897
who proved the convexity of a complete surface of positive curvature in three-dimensional Euclidean space,
We mention also the work of Sacksteder [165] who proved that if Mdisa complete, n-dimensional manifold all
sectional curvatures of which are nonnegative and at least at one point at least one sectional curvature is posi-
tive, then any C™'~imbedding in EX*! is globally convex.
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Another aspect of the problem of the immersion of metrics of nonpositive curvature is related to the
question of the existence in E? of a compact surface of negative curvature, This question was posed by Chern
in the report [75]. An answer to this question was obtained by Rozendorn [25] who constructed an exampie of
such a surface.* In constructing this example essential use is made of an example constructed by Rozendorn
in this same work of a surface bounded above of negative curvature in E® which is regular everywhere except
at a finite number of points. We mention also the work of Rozendorn [24] inwhich an example is constructed
of a bounded, complete surface of nonpositive curvature in E3,

6. On the Tmmersion of n-Dimensional Spaces in EM™/2 we have already observed that the "natural®
dimension of the enveloping space for which the number of Schlaefli equations coincides with the number of
unknown functions in these equations is sy = n(n + 1) /2. Rokhlin and others [30] showed that in a certain sense
only an everywhere nondense set of n~-dimensional metrics can be immersed in ESn!, However, at present not
a single specific example of a metric which cannot be immersed in E®0™! ig known. There is no question that
the construction of such an example would be of considerable interest. I is also not clear? whether all n-di-
mensional spaces (including nonanalytic) can at least be locally immersed in ESn, There are only several
results on the impossibility of immersing two-dimensional metrics in three-dimensional space. In addition
to the classical results of Hilbert and Efimov on the nonimmersibility of complete metrics of negative cur-
vature, we mention the following work,

Poznyak [20] constructed examples of metrics on the sphere and in the disk which have no C?-immer-
sions globally in E?. Other examples of this type were constructed by Rokhlin and others [30] and by Greere
[93]. Pogorelov [19] constructed an example of a two-dimensional Riemannian metric of class ¢! which does
not admit a local immersion of class C? in E®, At present it seems likely that there actually are regular two-
dimensional metrics which have no regular local immersions in three-dimensional space. However, this major
question can be completely resolved only after constructing an example of an infinitely differentiable metric
having no local C*~-immersion in E3,

7. During the period in question many papers appeared in which the formulation of the local immersion
problem was discussed and refined and which also considered its relation to other areas of geometry. These
questions are discussed in [15, 16, 92, 109, 111, 119, 134-136, 166, 176, 182].

We also mention the short survey of Friedman of results on the theory of immersions [86] which has
played a considerable role in acquainting physicists and mathematicians with this problem.

3. Isometric Immersions of Spaces with Indefinite Metric

1. Immersions in Pseudo-Euclidean Spaces of Large Dimensions. Riemannian spaces with indefinite
metrici are of interest mainly in connection with applications in the theory of relativity. The problem of iso-
metric immersions of such spaces in pseudo-Euclidean spaces is interesting both from a purely geometric
point of view and in connection with certain questions of theoretical physics. Without going into details, we
note that new approaches to the problem of the symmetry of elementary particles are connected with the pos-
sibility of special isometric immersions of such spaces of physics.

After the fundamental work of Nash [141-143] on the theory of immersions the idea naturally arose of
carrying over his fechniques to the pscudo-Riemannian case.

The method developed by Nash and improved methods (see (30, 77, 96]) carry over without appreciable
changes to the case of immersions of spaces with indefinite metric in pseudo-Euclidean spaces. The corre-
sponding results have been obtained in the papers of Clarke [78], Rokhlin et al, [30], Greene [96], and Sokolov
[32]. The best ratio of the dimensions of the immersed pseude-Riemannian manifold Mr(lp Q) and enveloping
space E?S' qh) I8 obtained in the work noted above of Rokhlin [30]. It is established that MD of class C™ can

be isometrically immersed in EI(B, ) if {P,q)
1

m>sn+3n—l—5, P’>f’l"‘rp1 q/>n‘;_q: Sn:n-(n%l‘)'

*The method used by Otsuki [155] to construct such a surface in E* is suitable only for the case in which the
curvature is nonpositive.

fWe recall that in the theorems of Janet, Burstin, and Cartan (see Sec. 1) on local immersion only the case of
analytic metrics is considered, and they give no information onimmersions of metrics of class C%,
jRiemannian spaces with indefinite metric (a pseudo-Riemannian manifold) are characterized hy the fact that at
any point the line element ds? can be brought to the form ds? = dx'? + . . . + dxP’ —dyt®~ . . . — dy9’. The num-
bers p and g are moreover the same at any point,
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Immersion methods related to specific properties of pseudo~Euclidean spaces are proposed in the work
of Rokhlin et al. [30] and Sokolov [33]. An interesting fact is that in the general case it is possible to indicate a
particular solution of the immersion equations (the Schlaefli equations for the indefinite case) by raising the
dimension and special choice of the space E(p ah- For example, in the work of Sokolov [33] an immersion of a

Riemannian or pseudo-Riemannian metric given in the coordinate ball is sought in a pseudo-Euclidean space
B2 The main idea of Sokolov is to reduce the nonlinear immersion equations to linear equations by special

cﬁ%fﬂge of the unknown functions. Namely, in the Schlaefli equations for indefinite metrics and immersions in
EX
(@,
q 29
N1 02: 02 N 02 021 _ )
i=1 dxF ox? t——tH-ldxk ax? gkp

the following change of the unknown functions is made:

2=ty Zgp, =l 11, i=1,...,q

After this change the terms nonlinear in the derivatives at; /oxK (this group of terms has the form S‘gtk gtp)
X X

cancel due to the minus in front of the second sum in Egs. (4). The equations (2) reduce to the following sys-
tem of equations linear in t;:

iﬂ(‘bhiﬂ_ ot dhi>_ S 9k Iy (5)

I\t o~ ot 8| = T8k T &k G

If g = n(n + 1) /2, then it is not hard to choose functions h;j such that the system (5) has a local solution; more-
over, it is possible to write out one such solution, and from its explicit form it follows that it gives an im-
mersion of any ball of the original pseudo-Riemannian space. With the help of certain standard topological
techniques (see, e.g., [30]) it is possible to generalize this method to construct immersions of any n-dimen-

Son
sional pseudo-Riemannian spaces in E(Szn Son)

We note that by means of the methods indicated it is possible to construct C%-isometric immersions of
Cz—pseudo—Riemannian spaces {the analytic theorems of Nash are applicable for smoothness not less than C%),

2. Immersions of Low Regularity. The method of Nash for constructing C!~immersions admits general-
ization to the indefinite case Rokhlin et al. [30] proved the following result: a compact, pseudo-Riemannian
space M(p ) admits a C'-immersion in E(p ah for

P'>p+n, ¢ >q4+n, m>3n.

We note that for the indefinite case the Nash method of C'-immersions gives somewhat poorer results
than for the definite case. ThlS is related to the following circumstance. In constructing immersions in a
pseudo-Euclidean space EX ®',q" it is not sufficient to choose a large dimension m while subjecting the num-
bers p' and ' only to the obvious necessary inequalities p' = p, q' = g. Indeed, there is the following result
of Sokolov [33] Any closed pseudo-Riemannian space M(p Q) cannot be Cl—isometrically immersed either in

E(p m-p) OF E(m—q 9) for any arbitrarily large m [if there existed such an immersion, then on this immersion

there would be points at which the tangent plane had s1gnature different from (p, q)]. For example the two—
dimensional torus with indefinite metric cannot be C'-isometrically immersed either in E( 1.m-1) OF in E(m—1 1)-

It is not hard to indicate other restrictions of this type. Thus, for example, for the immersion of an n-dimen-~
sional Riemannian space, generally speaking, a pseudo-Euclidean space E?S, q" with p' = 2n — 1 is needed.

3
Indeed, if all Riemannian manifolds could be imbedded in some E (n-2,q")> then the corresponding differential
manifolds on which the pseudo-Riemannian metrics are given could be topologically immersed in E?2~2, which
is, in general, impossible [199].

We note also the following result established by Avez {47]. Let M(3 1) be a compact, pseudo-Riemannian
manifold and suppose that detRij # 0 (Rij is the Ricei tensor). Then M(g 1) cannot be isometrically immersed
in any five-dimensional pseudo~Euclidean space, The proof uses the connection of the topological structure of
the manifold with the curvature.

3. Local Isometric Immersions, Friedman [85] verified that the Janet— Burstin method of proving the
existence of a local immersion carries over without appreciable changes to the indefinite case. Namely, each
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a2(n+1)
n . s . . .
analytic pseudo-Riemannian space M(p;q) has a local isometric immersion as an analytic surface in E_?

(r'54)?
p'=p, q' =q.
Vogel [194] and Lense [129] generalized the Janet—Burstin method to the immersions of a space with
degenerate metric. ¥ Lense also considered immersions in complex Euclidean spaces.

4. Immersions of Riemannian and Pseudo-Riemannian Metrics in Three-Dimensional Pseudo-Euclidean
Space; Some Questions of the Theory of Surfaces in Three-Dimensional Pseudo~Euclidean Space. The sys-
tematic study of the question of global immersion in three-dimensional pseudo-Euclidean space and of surfaces
in this space has begun only very recently, and many important questions have so far not been investigated.
We shall consider a surface in the pseudo-Euclidean space E3(2;1) with metric ds® = d}gz +dy? — dz*. All the re-
sults admit reformulation for the other three-dimensional pseudo-Euclidean space E(1;2)-

A difference of pseudo-Euclidean space from Euclidean space which is important in the theory of immer-
sions is that it contains planes with different metrics (definite, indefinite, and degenerate). Moreover, a dif-
ferent relation between the sign of the curvature and convexity of the space is observed in Eg’(w) as compared
with the space E®: Convex surfaces in Eg(l;z) have a metric of nonpositive curvaturel while saddle surfaces have
a metric of nonnegative curvature (we recall that in E3 convex surfaces have a metric of nonnegative curvature,
while saddle surfaces have a metric of nonpositive curvature). In order to see this, we consider together with
the space E‘“S(Z;I) with the metric ds? = dx? + dy? — dz? the so-called superposed Euclidean space E® with metric
ds? = dx? + dy® + dz®. Let Kand & (K* and A¥) be, respectively, the discriminant and curvature of the first
quadratic form induced on the surface @ by the metric of the space Eg(z;i) (oy the metric of the superposed space
E3). There is then the relation

KA K% (A2 =0, ©)

Formula (6) easily implies the connection formulated above between the convexity of the surface and the sign
of its curvature,
It is convenient to illustrate this connection of convexity and the sign of the curvature by the example of

the sphere in the space Es(zgi). This sphere is given by the equation

| x?+ P —22 =1

It has three connected components L., L., L.if The surfaces L;, L. are complete in the sense of the inner
definite metric of the surface of constant negative curvature; they constitute an imbedding of the complete
Lobachevskii plane in E‘q’(z;i). The surfaces L, and L_ are convex. The surface L is a surface of constant posi-
tive curvature and indefinite metric. In the general theory of relativity the metric of the surface I, induced by
the metric of E3(2;1) is usually called the two-dimensional de Sitter space—time model. We note that the surface
L is a saddle surface.

Convex surfaces with definite metric in Eg(z.q are just as "natural" a class of surfaces as convex sur-
?

faces in Euclidean space, We shall present some results concerning such surfaces. Under specific assump~
tions of fechnical character Sokolov [34] proved the following unigueness theorem for a surface @ in E3(2;1) which
is complete in the sense of the inner definite metric: If the limit cone of the surface ¢ is separated from the
isotropic cone, then the surface ¢ is uniquely determined by the metric, the orientation, the limit cone, and
the limit generator, i.e., by the same elements as a complete convex surface with curvature less than 27 in
E? (the theorem of Pogorelov [18]). The situation for surfaces with isotropic limit cone is more complicated.
To uniquely determine such surfaces, inaddition to the elements enumerated, it is necessary to also fix some
ruled surface which approximates the surface @ at infinity more precisely than the limit cone. In another work
of Sokolov [35] it is proved that the structure of the limit cone of a surface ¥ is closely related to the proper-
ties of its metric. Thus, if the curvature of the surface ¢ is separated from zero and the limit cone has a
smooth directrix, then it necessarily coincides with the isotropic cone. It is proved that if a smooth convex
surface in EB(Q;I) has a regular definite metric of strictly negative curvature, then the surface itself is regular,

TA space with degenerate metric is characterized by the fact that at any point the line element ds? can be re-
duced to the form ds? = dX% .t dxpz, where p is less than the dimension of the space.

1The concept of convexity in E3(2.1) is analogous to that in E3,

T1lt is easy to see that in the superposed space E® L, and L_ are two sheets of the two-sheeted hyperboloid
x? + y? — 2% = —1, while L is the single-sheeted hyperboloid x* + y? — z* = 1.
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The proof of this theorem is based on the following assertion which is of independent interest: Any sufficiently
small neighborhood of a two-dimensional definite metric of strictly negative curvature can be realized in Eim)
as a convex cap. The study of surfaces relative to the superposed space and formula (6) relating the curva-
tures in the original and superposed spaces are widely used in proof of the assertions formulated above along
with other methods. With the help of this formula it is possible to make use in a number of cases of the clas-
sical results of the theory of convex surfaces in E3,

We shall consider the work of Rudyak [31]. The Bonnet theorem that a surface 1n E® is uniquely deter-
mined by its first and second quadratic forms is well known. For those surfaces in E(z .1) which have definite
or indefinite metric it is not hard to prove that they are also umquely determined by their first and second
quadratic forms. However, at those points of a surface ¢ in E° (2;1) at which the tangent plane is also tangent
to the isotropic cone a degeneration of the metric, i.e., of the first quadratic form, occurs, while the second
form is not defined at all. Rudyak established that under certain conditions on the set of points of degeneracy
a surface is uniquely determined by the second quadratic form defined everywhere except at points of de-
generacy and by the first quadratic form of the surface. The basis for this proof was an interesting lemma
on the maximum principle for surfaces with degenerate metric.

The question of whether it is possible to obtain a generalization of the Bonnet theorem to surfaces in
Eiz;ﬂ with domain of degeneracy of arbitrary type has so far not been solved. One of the approaches can be
connected with the investigation of a certain analogue of the second quadratic form, namely, the form Il re-
lated to 11 by the formula

[I=A.1I,

in which A—=89—F? is the determinant of the first quadratic form. The form [ is defined also at points of
degeneracy and precisely coincides with the corresponding quantity for the superposed space.

For surfaces in EiZ;i) it is also possible to prove a number of theorems on nonimmersibility similar to
the theorems on the nonimmersibility of metrics of negative curvature in Euclidean space. However, in the
present case they can be proved by much simpler methods appropriate to pseudo~Euclidean spaces.

Before proceeding to these theorems, we note that for pseudo-Riemannian spaces and correspondingly
for surfaces in pseudo-Euclidean spaces a number of inequivalent definitions of completeness have been pro-
posed, and in the definite case analogous definitions are found equivalent to the usual concept of completeness,
Various concepts of completeness are used depending on the content of the problem to be solved (for more
details, see the survey of Geroch [93]). In this survey we shall use the concepts of geodesic and outer com-
pleteness. A pseudo-Riemannian space is called geodesically complete if on each of its geodesics the geodesic
parameter varies from — to + = (here, of course, on segments of a geodesic the geodesic parameter may
vary within finite limits). The concept of geodesic completeness was introduced by Hopf and Rinow [107]. A
surface ¢ of a pseudo-Euclidean space E’érp"q) is called outer complete if any limit point of the surface ¢ be-

longs to this surface. If ¢ is a two-dimensional surface with positive definite metric in E(2 .1)» then the concept
of completeness as a Riemannian space (inner completeness) and outer completeness is meaningful for
it. It is found that in this case inner completeness implies outer completeness, but not conversely (a counter-
example was given by Zel'manov [8]). We recall that for surfaces in E® outer completeness implies inner com-
pleteness, but not conversely (see Aleksandrov [1]).

It is obvious that a complete space m the sense of an inner definite metric with positive curvature sepa-
rated from zero cannot be immersed in E(2 :1). Indeed, such a space is homeomorphic to the sphere and as a
closed manifold has not even a C! realization in E'p;1) (see Sec. 2). probable that a space with definite metric
and curvature separated from zero has no outer complete realizations in E(2 .1) either, but this has not been
proved.

For spaces with indefinite metrlc the following result is known (Sokolov [35]). On an outer complete C2
surface with indefinite metric in E(2 1) the supremum of the Gaussian curvature is nonnegative. In other words,
a pseudo-Riemannian space of curvature K = ~a? < 0 cannot be immersed in E(2 1) as an outer complete surface.

The scheme for proving this assertion is as follows. If is shown that if ¢ is an outer complete surface
with indefinite metric and curvature K = —a® < 0, then it constitutes a globally strictly convex, complete sur-
face. It is further found that the total curvature of such a space computed relative to the superposed space
must be infinite and in any case exceeds 47, which cannot be, as is well known.

3
We remark that it is not clear if there exist in E(;;;) geodesically complete surfaces with indefinite met-
ric and curvature K = ~a? < 0; the existence of such surfaces is improbable.
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We note also the work of Maeda and Otsuki [131] and Hou Cheng~Shi [108) who obtained certain general-
izations of the results of Chern and Kuiper {76] and Otsuki [154] (see S4ec. 2) to the case of immersions in
pseudo-Euclidean spaces. Some results on immersions in the space E(1;3) were obtained by Mihaileanu [134].

5. There are a number of general results on the problem of the class of pseudo-Riemannian spaces.
Some general criteria of class similar to those of Yanenko are obtained in the work of Matsumoto {132]. A
number of important results on determining pseudo-Riemannian spaces with immersions of first and second
class are obtained by Yakupov [39-41]. In particular, he determined all Einstein spaces with an immersion of
first class and found a number of interesting families of Einstein spaces with an immersion of second class,
(We recall that an Einstein space is a Riemannian or pseudo-Riemannian space for which the Ricci tensor
satisfies the identity Rij = %gijy %= const.) Some results on the classification of Einstein spaces with immer-
sions of first and second class are contained also in the work of Kachurina {10] and Lapkovskii [11]. Kachurina
proved that any Einstein space with an immersion of first class is either a space of constant curvature or is
symmetric in a certain generalized sense.

The work of Rund [164] is devoted to clarifying the oufer condition to which the condition Rjj = wgjj cor-
responds under immersion, i.e., the condition that the space be an Einstein space.

A number of works are devoted to the question of how immersions of lower class are related to particular
features of the structure of the Ricci tensor. Certain physical assumptions regarding the properties of space—
time with a mathematical formalization which constitutes the pseudo-Riemannian space in question frequently
emerge as such conditions. Thus, empty spaces, i.e., having zero Ricci tensor, of class II are considered in
the work of Collinson [79]. Lancaster [126] found conformally Euclidean spaces with immersions of first class.
Eguchi [82] found criteria that a space of G3del type be a space of first class. Plebanskii {158] investigated
the problem of class for static, spherically symmetric models of space—time.

In the papers cited in this section it is a question of local analytic immersions of analytic metrics.

A number of interesting results on the theory of immersions of spaces with indefinite metric are related
to physical investigations in the general theory of relativity. These papers will be discussed in the next sec-
tion,

4, Applications of the Theory of Immersions in the

General Theory of Relativity

Practically since the very creation of the general theory of relativity physicists have been interested in
the question of whether it is possible to use a representation of space—time not as an abstract manifold but
rather as a surface in some pseudo-Euclidean space to clarify certain difficulties of the theory and also for
its further development. In this connection we mention the statements of Einstein on the prospects for using
the theory of immersions in the theory of relativity [160]. Although at present these works have not gone
beyond the framework of separate, episodic investigations, in this area a rather large volume of material has
accumulated which is of both physical and geometric interest.

The following idea unifies all the work on the use of the theory of immersions in the general theory of
relativity.* In passing from the special to the general theory of relativity in place of "privileged" Cartesian
(inertial) coordinate systems in pseudo-Euclidean space arbitrary curvilinear coordinate systems in curved
pseudo-Riemannian space are used. It is found, however, that in many concrete questions it is very difficult
to get by without some distinguished Cartesian coordinate system. In principle, it is possible to attempt to
combine the curvature of space—time and the use of Cartesian coordinates by using as the latter the Cartesian
coordinates of an enveloping space. Naturally, these coordinates are already not independent but are related
by the immersion equations, Moreover, it is possible to attempt to use the outer geometric properties of such
multidimensional surfaces for the geometrization of variousphysical quantities (e.g., isotopic spin) which in
the general theory of relativity have no geometric interpretation. The organization in Dallas (U.S.A.) in 1965
of a special seminar on the theory of immersions in the general theory of relativity under the supervision of
Robinson, Ne'eman, and Friedman [172] bears witness to the popularity of such approaches. We note also the
work of Goedecke [94], Goenner [95], and Szekeres [183]inwhich general questions of using the theory of im-
mersions in the general theory of relativity are discussed. In a number of purely mathematical works (e.g.,
Clarke [78], Greene [96], and Sokolov [32]) it is emphasized that the interest in the theory of immersions was
stimulated by physical applications.

*It is here not our task to analyze the problematics of the foundations of the theory of general relativity; there-
fore, in a number of cases the physical argumentation is somewhat simplified.
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The extent to which the theory of immersions is used in these papers is different., For example, in the
work of Maldybaeva [14] the theory of immersions remains a convenient tool which is altogether dispensable.
More substantial use of the theory of immersions is made in other papers.

We shall first consider the applications of the theory of immersions to the problem of the quantization
of the general theory of relativity. Without going into a detailed analysis of all the difficulties encountered in
solving quantization problems, we note that there is a rather consistent and extensively developed quantum
theory within the framework of the special theory of relativity (so-called relativistic quantum theory). Gener-
alization of this theory with respect to dimension causes no difficulties in principle, However, it is not clear
what the generalization of this theory to the curved spaces of the general theory of relativity should be. It is
supposed that within the framework of this hypothetical theory space—time itself must be considered in some
"quantized," statistical sense, It is possible to imagine several ways of constructing such a theory. One such
way is related to the theory of immersions and apparently goes back to the work of Joseph [115]. In this work
it is supposed that the classical space—time of the general theory of relativity is really a multidimensional
surface in some pseudo-Euclidean space of a higher number of dimensions. Particles adhere to this space by
a certain potential U which allows the particles to leave the surface a distance of an order of magnitude not
exceeding h (for simplicity we imagine this to be a é-type potential). Further, the quantization procedure is
declared to coincide with the quantization procedure in the enveloping pseudo-Euclidean space accounting with
the effect of the potential U which describes the immersion functions. The introduction of so-called second
quantization in which the potential U must have a statistical, "quantized" character would mean the quantiza-
tion of space—time,

The (independent) work of Ne'eman [146] complements the idea of Joseph. In this work it is emphasized
that a number of symmetry groups of physical quantities are known which are isomorphic to the orthogonal
groups of various Euclidean and pseudo-Euclidean spaces, but these groups have no interpretations in terms of
the Poincare group (the group of motions of space—time of the special theory of relativity). These groups are
usually interpreted as rotation groups of certain auxiliary spaces. An example of such symmetries is isotopic
invariance which consists in the indistinguishability of the proton and neutron for nuclear forces. As a conse-
quence of this, from the point of view of the theory of strong interactions the proton and neutron constitute a
single particle — the nucleon — in two states characterized by different values of the so-called isotopic spin.
Isotropic spin, just as ordinary spin, is connected with a certain group isomorphic to the group of rotations
of some "auxiliary" space. Ne'eman proposed interpreting this and other symmetry groups as subgroups of the
group of motions of the orthogonal complement to immersed space—time.

1t is significant that the symmetries, as a rule, are violated. For isotopic spin symmetry violation
means the following. Although the strong (nuclear) interactions of the proton and neutron are the same, their
considerably weaker electromagnetic interactions are distinct; this is treated as a removal of the degeneracy
for different values of isotopic spin in the electromagnetic field. From the point of view of the theory of im~
mersions symmetry violation means that these symmetries of the orthogonal complement are local, i.e., they
are approximately satisfied only at distances much less than the radii of curvature of the surface in those di-
rections in which rotation occurs. In this connection it is important to emphasize the following, From the uni~
versal constants of quantum theory and the theory of relativity it is possible to construct quantities with the
dimensions of length and mass which are called, respectively, the Planck length Ip] and the Planck mass mpj.
According to current ideas, it would be natural to consider these characteristic quantities as the character-
istic length and mass of the elementary particles. It is actually found, however, that the Planck length is many
orders of magnitude less than the characteristic dimensions of the elementary particles, while the Planck
mass is many orders of magnitude greater than the characteristic mass of the elementary particles (the dif-
ferences are so great that as compared with them the differences in masses among the various particles, for
example, between the proton and electron, are insignificant). It is presently not clear how this large factor
should theoretically be obtained. However, it follows from the results of Nash [142] that the immersion of
space—time can be chosen such that in a certain sense the average ratio of the greatest and smallest value of
the radii of curvature at a given point be an arbitrarily large prescribed number. It is possible in principle
to attempt to relate this additional parameter which arises naturally in the theory of immersions to the large
ratio of the Planck mass and the mass of the elementary particles.

The idea of Ne'eman was developed in the work of Ne'eman and Rosen [147]. They attempted to deter-
mine precisely the dimension and signature of the enveloping space and to concretely interpret the symme-
tries known at that time., However, the insufficient development in 1965 both of the theory of immersions and
of the theory of symmetries did not allow them to arrive at conclusions which were sufficiently specific and
which admitted experimental verification. Moreover, it was proposed to take as the enveloping space that
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pseudo-Euclidean space which for minimal dimension admits the realization of all (or at least practically all)
space—times of the general theory of relativity., Since at that time geometry gave a very excessive estimate
for this dimension (~100) as compared with the expected dimensions of the order of s, = 10 (the estimate cur-
rently available s, + 3 x 4 +5 = 27 is also probably very excessive), Rosen [161] attempted to find a lower
bound for the desired dimension by investigating immersions of various metrics of the general theory of rela-
tivity. He constructed immersions of several dozen classes of metrics. In this connection Rosen [162] and
Ianus [110] investigated in more detail metrics which describe isolated spherically symmetric bodies, The
question of the immersion of the Schwarzschild and cerfain similar metrics was further investigated in detail
by Fujitani. For space—time models with a magnetic field a number of immersions were found by Navez [145]
and Samaranda and Navez [175].

Other results in this direction were obtained by Takeno [187] and Kitamura {117, 118].

It should be mentioned, by the way, that since metrics have been investigated which possess relatively
high symmetry, for all metrics considered, immersionshave been found in spaces of low dimension (<10}, No
interesting lower bounds on the desired surface have thus been found. On the other hand, there are a number
of results in these papers on spaces of class greater than II.

We shall mention another closely related group of works. In seeking new solutions of the Einstein equa-
tions, to distinguish a specific solution one does not, as a rule, resort fo the imposition of boundary conditions
but rather imposes on the desired space some conditions of symmetry type. The existence of an immersion in
some pseudo-Euclidean space of fixed dimension constitutes such conditions in a number of papers. One of the
most important solutions of the Einstein equations — the Kasner solution [116] — was found in this way. The
work of Kasner wag also one of the first to apply the theory of immersions in the general theory of relativity.
Other work in the same direction are the papers of Takeno [188] and Stephani [177].

In the papers considered, curved space—time is considered as a certain flat, multidimensional space with
given connections (immersion equations). It is found that a similar situation sometimes arises in the theory
of mechanics. The problem of constructing a particular class of motions can be interpreted as the question
of the structure of suitably curved configuration space (Synge [181]). In order to define connections providing
the necessary metric it is sometimes convenient to first construct an immersion of the given metric by means
of which the connections are constructed in some standard fashion,

Another area of application of the theory of immersions in the general theory of relativity concerns
questions related to complete pseudo~Riemannian spaces. As we have already noted, in the theory of pseudo-
Riemannian spaces there is no general concept of completeness, and for each group of problems it is neces~
sary to develop an appropriate concept of completeness.

The question of completeness of solutions in the general theory of relativity has two aspects. First of
all, frequently in solving the Einstein equations we obtain a metric which only describes matter and the gravi-
tational field in restricted space—time scales. In other words, the pseudo-Riemannian space M obtained is a
proper subset of the desired pseudo-Riemannian space N. It is assumed that the space N itself cannot be
represented as a proper subset of any four-dimensional pseudo-Riemannian space (it is said to be nonextend-
able). Since analytic pseudo-Riemannian spaces are usually considered, the procedure for constructing the
space N on the basis of the known space M is called analytic extension of the space M, and N itself is called
a maximal analytic extension [90]. At present there exist no sufficiently effective methods of constructing a
maximal analytic extension. Fronsdal [87] suggested in place of the analytic extension of the pseudo-Rie-
mannian manifold M to realize an analytic extension of its immersion in pseudo-Euclidean space, whichis often
much simpler (the concept of the analytic extension of a surface is analogous to that of the analytic extension
of an abstract space). In the work of Fronsdal one of the first analytic extensions of the Schwarzschild metric
was found. Other examples of extensions of solutions to the Einstein equations by the method of immersions
were obtained by Ptazowski [159]. A basic shortcoming of Fronsdal's technique is that the maximal analytic
extension of the immersion obtained by means of it is not necessarily a maximal analytic extension as an ab-
stract manifold. For example, a multidimensional surface going out to infinity may admit extension as an
abstract manifold. This effect is essentially related to the indefiniteness of the metric of the enveloping space;
in Euclidean space it is impossible.

Another aspect of this question is the following, In the general theory of relativity incompleteness (under-
stood in various senses) of nonextendable space—times is related to extremal properties of matter and space—
time which make the standard general theory of relativity inapplicable in certain space—time regions. A con-
cept of completeness which is physically and mathematically sufficiently justified has so far not been de-
veloped. Without discussing all the papers related to this question, we refer the reader to the work of Geroch
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[93]. In the work of Fronsdal just mentioned it was proposed that those metrics of general relativity be con-
sidered complete, and hence having no singularity, which have a proper immersion (i.e., an immersion as a
surface going out to infinity) in some fixed pseudo-Euclidean space. This idea of singularities was further
developed in the work of Dolan [80] and Hajicek [100]. However, using the results of Rokhlin and others [30]

it is not hard to show that all pseudo-Riemannian spaces have proper immersions in a pseudo-Euclidean space
of sufficiently high dimension., In pseudo~Euclidean spaces of lower dimensions it is not hard to construct ex—
amples of outer complete surfaces with metries which could not justifiably be considered complete from a
physical point of view; for example, these metrics might be nonextendable as abstract manifolds. Thus, the
concept of completeness proposed by Fronsdal is apparently inadequate to describe the corresponding physical
concepts, which, of course, does not detract from its purely geometric interest,

We mention, finally, the work of Tran-hu Phat {193] in which an attempt is made to use the concept of
immersions to solve the question of the energy-momentum tensor of the gravitational field and to interpret
the conceptsofenergy and momentum from an outer geometric point of view. In spite of the fact that the theory
of immersions actually makes it possible to invariantly fix a particular coordinate system and thus alleviate
the solution of the questions indicated, after the work of Isaacson [112] which threw light on this old and com-
plicated question of the foundations of the general theory of relativity, invoking the concepts of the theory of
immersions is unnecessary.
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