Visualizing the embedding of objects in Euclidean space

Michael Littman, Deborah F. Swayne, Nathaniel Dean, and Andreas Buja
Bellcore
Morristown, NJ 07962-1910

ABSTRACT

Matrices representing dissimilarities within a set of ob-
jects are familiar in mathematics, statistics and psychol-
ogy. In this paper we describe XGvis, a software system
which accepts diverse input data, such as graphs and
multivariate data, develops a dissimilarity matrix from
the data, and then iteratively and interactively embeds
objects in a Euclidean space of arbitrary dimension. Us-
ing a technique called multidimensional scaling, objects
are positioned so that their pairwise distances match the
target dissimilarities as well as possible. Users can inter-
act with XGobi, a software system for visualizing high-
dimensional data, to browse the resulting embeddings.
Mathematicians and statisticians have found XGvis to
be useful for discovering and exploring structure.
XGvis runs under the X Window System™,

1. Introduction and motivation

A dissimilarity matrix D is a matrix in which D, ; rep-
resents the degree of dissimilarity between each pair of
objects ¢ and j. The row objects and the column objects
are usually the same and dissimilarity is assumed to be
a symmetric relation. Matrix D is then a square sym-
metric matrix, D; ; = D;;, with zeros on the diagonal
and non-negative entries everywhere else.

2
0o 4 3
4 5
D = 4 0 5
3 5 0
1 3

Figure 1: A dissimilarity matrix and its graphical in-
terpretation.

The matrix in Figure 1 tells us how dissimilar 3 ob-
jects are from one another. Object 1, for instance, differs
from object 2 by a score of 4. Construing similarity as

X Window System is a trademark of MIT.

closeness and dissimilarity as distance gives D a nat-
ural graphical interpretation. The Euclidean distances
among three objects arranged in the right triangle shown
in Figure 1 precisely match the dissimilarity matrix D.

In general, a geometric interpretation for a dissimilar-
ity matrix D is created by representing each object by
a point in some k dimensional space such that the dis-
tance between two objects ¢ and j approximates D; ; as
well as possible.

The process of creating these graphical representa-
tions is known as multidimensional scaling (MDS) and
has been studied for many years. Recently, interactive
tools for visualizing these representations have become
accessible. In this paper, we describe a system called
XGvis which combines procedures for computing and
displaying distance embeddings with a collection of func-
tions for generating input dissimilarity matrices from
several data sources.

How might such a system be useful? Dissimilarity
information is very common in mathematics, statistics
and psychology. Potential sources include shortest path
distances among vertices in a graph, measured dissimi-
larity among test objects in a psychometric experiment,
and distances among cases in multivariate data.

The use of XGvis for graph theory applications is
driven by another visualization tool developed at Bell-
core. NETPAD (Dean et al., 1991) is an interactive pro-
gram for creating graphs and graph layouts and analyz-
ing these structures with a library of algorithms. NET-
PAD is capable of producing many interesting two di-
mensional layouts, and when NETPAD and XGvis are
used together, they can create and display layouts of
graphs in three or more dimensions. To the degree that
a higher dimensional layout better captures interesting
aspects of a graph’s structure, it can lead to special in-
sights into properties of the graph. These insights can
be helpful in a mathematician’s search for conjectures
and counter-examples.

Dissimilarity information can also serve as an inter-
mediate step between a high dimensional collection of
data and a lower dimensional view of it. By computing
the distance between pairs of points in a ten dimensional
space and fitting these distances with objects in a three
dimensional space, one can often get a more intuitive

feel for the original data. This process is called dimen-
sion reduction and is widely used in data analysis and
visualization. XGvis is well suited for this task.

There are some cases when a dissimilarity matrix it-
self is the raw data to be viewed. It is a fairly common
technique in experimental psychology to extract similar-
ity judgments from human subjects about a collection
of objects. These similarity judgments are easily trans-
formed to dissimilarities and viewed using XGvis.

By molding diverse input data into the form of a dis-
similarity matrix and creating graphical views of the dis-
similarity information, XGvis has proven to be a power-
ful tool for people in many disciplines.

2. The Method

XGvis accepts various types of input data and develops
a dissimilarity matrix from each. It then uses a form
of multidimensional scaling to iteratively determine an
embedding for the data.

2.1. Handling of different data types

XGvis handles three primary data types: graphs, multi-
variate data and dissimilarity judgments. A dissimilar-
ity matrix is developed from each of these using either a
default method or one chosen by the user.

A graph consists of a set of objects called vertices
and edges where vertices can be represented as points
and edges as lines connecting pairs of points. For ex-
ample, vertices could represent cities and edges could
connect pairs of cities that have a direct flight between
them. Graphs are used to represent such diverse sys-
tems as telephone networks, molecules and patterns of
bibliographic references.

XGvis accepts graphs in several forms. The simplest
is as a list of edges. Edges in XGvis are undirected —
that is, if ¢ is connected to 7 then j is assumed to be
connected to i. A user can also optionally indicate a set
of initial locations for the vertices. If these are omitted,
vertices are placed at random.

The default approach for creating a dissimilarity ma-
trix from the graph is to compute, for all pairs of vertices
in the graph, the number of edges on the shortest path
between them. XGvis uses a dynamic programming ap-
proach for finding all the shortest paths quickly.

When multivariate data is passed to XGvis, a dissimi-
larity matrix is created by computing the Euclidean dis-
tance between each pair of cases in the raw data. The
D; ; cell of the matrix is the distance between case %
and case j. Non-Euclidean metrics are computed at the
user’s request.

XGvis can accept a dissimilarity matrix directly.
These matrices are assumed to be symmetric. In the
event that a non-symmetric (though square) matrix is
passed in, XGvis’ default action is to create a symmet-
ric matrix from it by computing the elementwise mean
between the matrix and its transpose. The resulting ma-
trix is symmetric and can be used by multidimensional
scaling for creating a graphical layout.

2.2. Multidimensional scaling

Multidimensional scaling has a long and interesting his-
tory. The defining goal of multidimensional scaling
(MDS) is to take an n x n dissimilarity matrix D and to
produce vectors z1,...,x, such that the computed dis-
tance between every z; and x; approximates D; ;. Up
to 1964, people used classical or Torgerson-Young MDS
(Torgerson, 1958) in which the dissimilarities are con-
verted to an inner-product matrix and an eigenanalysis
is performed.

In the early 60s, an alternate view of MDS began to
emerge. The seminal contributor was Shepard (1962)
who showed that to construct a faithful embedding it
is sufficient to know the ranks rather than the actual
values of the dissimilarities. That is, if for every two
pairs (a,b) and (c,d) of objects it is known whether a
is closer to b than c is to d, then a faithful embedding
can be constructed. Shepard gave evidence that this is
possible and Kruskal (Kruskal, 1964a, 1964b) devised
an optimization criterion which incorporates this idea.
Kruskal defined a measure of fit called “stress” (.5).

> [F(Dig) = llzs — a5ll)°

S(D. x. =
(D 1) > e —)

(2.1)

Given a current configuration of the objects z =
Z1,-..,Ty, the target dissimilarity matrix D and a
monotonically nondecreasing function f, S is a measure
of how poor the current embedding is. It is a normalized
residual sum of squared differences between each f(D; ;)
and the distance from z; to ;. Kruskal provided a pro-
cedure for minimizing the stress by computing partial
derivatives and applying the classical steepest descent
method.

Kruskal’s MDS based on this criterion with optimiza-
tion of f over all monotonically nondecreasing functions
is called “nonmetric MDS.” It is called “nonmetric” since
the actual values D;; are thrown away by transforming
them, while their ranks and only their ranks are retained
because of monotonicity of the function.

The version of MDS used in XGvis is a metric relative
of Kruskal’s MDS. It optimizes = but leaves the function

f for the user to choose interactively from the set of
powers of D.

Solving for the z;’s in metric Kruskal MDS is a
sticky non-linear optimization problem. It does not boil
down to an eigendecomposition such as the one used in
Torgerson-Young MDS. Metric Kruskal is a more pow-
erful method than classical Torgerson-Young scaling.

Unlike performing an eigenvalue decomposition, there
does not seem to be a closed form algorithm for finding
a metric Kruskal MDS embedding. Instead we use an
iterative algorithm for finding the z;’s which minimize
S.

The algorithm starts with some initial layout, which
may be random, and minimizes S through a series of gra-
dient descent moves on the point locations. With each
step, the program moves every point a small amount in
the direction which causes the stress to decrease maxi-
mally.

Aside from problems with local minima, easily avoided
by using a large step size, the points settle to a reason-
able layout quickly.

Visualizing an iterative algorithm offers two main ben-
efits. First, it is possible to observe changes in the op-
timization behavior that might result from changes in
the parameters of the stress function. For instance, one
could experiment with an additional penalty term for
constructing constrained layouts. Second, a user can
find a good layout visually without having to construct
a stopping criterion such as “run for x steps” or “run
until the error drops below €.” An iterative method al-
lows a user to implicitly use the criterion, “run until it
looks right.”

We have found this particularly important for setting
the step size parameter. Larger steps help MDS make
fast progress early and skip over local minima. Later in
the run, a smaller step size is needed to let MDS settle on
a solution. Terms like larger, later and smaller are very
much problem dependent but are easily determined (at
least in 2 and 3 dimensional embeddings) by watching
the points move.

Interactive MDS optimization was implemented by
one of us on a workstation in 1982, but it was never
documented other than in a film (Buja, 1982).

3. Control and Visualization

Embeddings in XGvis proceed as follows: a user begins
an XGvis session by invoking the program with some
initial data. Using default routines, XGvis creates a
dissimilarity matrix from the data. The user is then
presented with a graphical interface for controlling the
progress of MDS and manipulating the view of the cur-

rent embedding.

Typically, the user will set some MDS parameters and
then “run” MDS. The points are visible in a display win-
dow while MDS moves them. When the user is satisfied
with the layout, MDS can be stopped and the result-
ing embedding examined with an integrated version of
the XGobi visualization program (Swayne et al., 1991b,
1991c).

All interactions take place in two windows on the
workstation or personal computer screen. The XGvis
control panel window is used to start, stop and restart
MDS as well as to control the MDS-related parameters.
The XGobi display window is used to watch the progress
of the optimization and to interact in various ways with
the view of the data or figure.

xgvis
Run hodims: (|3
Resat power of D 1.0
Exit . |

stepsize: 0.070
% |
titers: 1

i |

do n iterations

Dist metric menu

Figure 2: XGvis Control Panel

3.1. Control panel

The XGvis control panel is shown in Figure 2. The left-
most subwindow contains a Run button that allows a
user to start and stop the optimization and a Reset but-
ton that returns the data or figure to its original config-
uration. The labels, buttons and scrollbars in the right-
most windows allow a user to adjust various optimiza-
tion and scaling parameters. These parameters can be
set before MDS begins or while it is running; they are
briefly described here.

Figure 3: Grid, power of D = 0.5

Figure 4: Grid, power of D = 2.0

Dimension: By typing an integer into the text window
at the right of the label n dims, the user specifies the di-
mension of the Euclidean space in which to embed the
point cloud or figure. Reasonable choices are 2 (XGvis
embeds the points or objects in the plane), 3 (XGvis
constructs a three dimensional layout), or up to 5 or
6, in which case special techniques and imagination are

required to interpret the resulting structures. The inter-
face actually permits embeddings in up to twenty dimen-
sions but we have not found use for nearly that many.
Occasionally one dimensional embeddings (all points on
a line — unidimensional scaling) are interesting and they
are also supported.

Transformation: The user adjusts the scrollbar be-
neath the label power of D to select the power to which
each element of D should be raised. In this way, XGvis
allows some variation in the function f shown in Equa-
tion 2.1. We restrict f(D; ;) to D} ; where p is the value
read from the scrollbar. Typically, a value of p = 1.0 is
the most meaningful: this tells XGvis to fit the dissimi-
larities in D directly.

Striking and useful effects can be obtained by chang-
ing p from its default value. Small values of p tend to
minimize differences in the dissimilarity matrix, often
resulting in a “rounder” or more compact layout. A
25 node graph connected as a 5 x 5 grid appears per-
fectly square when displayed with p = 1.0, but note the
rounded appearance of the 5 x 5 grid as it is shown in
Figure 3: this embedding was produced using p = 0.5.
In the limit p = 0.0 and MDS tries to make all pairs
of objects distance 1 from each other. See Buja et al.
(1991) for a mathematical treatment of this “null” case.

Larger values of p (with 3.0 being the highest setting
on the scrollbar) have an opposite effect. Differences in
dissimilarity are accentuated resulting in more “spiky”
pictures. Figure 4 demonstrates the effect of setting p =
2.0 for the 5 x 5 grid graph.

Step size: The MDS update rule involves moving each
object in the direction of the gradient of Equation 2.1.
The stepsize scrollbar controls the size of the step in the
direction of the gradient. Larger values cause the embed-
ding to proceed rapidly, often skipping over dangerous
local minima. However, they run the risk of causing the
embedding to “thrash,” that is, jump out of control from
one configuration to another. Smaller values are useful
when a figure has begun to settle.

Tteration control: With n iters set to 1, XGvis will
update the graphics window after every MDS step. For
more complex embeddings, it is sometimes more efficient
to take several MDS steps before redrawing. Larger val-
ues of n iters accomplish this. The do n iterations button
allows a user to perform a fixed number of MDS steps.

Distance metric: The user can bring up a menu of rou-
tines for recomputing the target dissimilarity matrix D.
The metrics implemented include shortest path distance
for graphs and Euclidean and Manhattan distances for
multivariate data. This function is primarily useful for
experimenting with different types of dimension reduc-
tion methods or in cases where there is ambiguity as to

what the default dissimilarity matrix should be.

3.2. Visualization with XGobi

When the optimization is running, the plot displayed
in the XGobi window is redrawn with each iteration so
that the motion of the points can be observed. If the
data under study is a graph, setting the figure in motion
while the optimization proceeds is particularly helpful.
Using XGobi’s Rotate or Tour mode, a viewer sees a
smooth sequence of two-dimensional projections of the
changing figure. Viewers describe this as watching the
figure “unfold” or “puff out.”

Once the user decides that the figure or point cloud
has become stable, many of XGobi’s other interactive
functions can be used to advantage. Selecting the Scale
mode allows the figure to be stretched or reshaped on
the screen using mouse motions: this is especially use-
ful if the viewer wants to zoom in on a subsection of a
complex figure. In Brush mode, a user can interactively
change the color of selected lines or points or change the
shape and size of the plotting character used for selected
points. Using Identify, a user moves the cursor near a
point of interest, and its label appears. The label can
be any user-supplied text string; by default, it is simply
an identification number, 1 to n (the number of data ob-
jects). Point brushing and identification are linked: that
is, if a user is working on the same data in another XGobi
window (which could be part of another XGvis session
or an independent instance of XGobi), then a point that
is brushed or identified in one window is simultaneously
affected in the second.

Some useful ways of selecting subsets by brushing and
rerunning MDS on the brushed subsets were provided in
an earlier implementation (Buja, 1982). These have not
been included in the current XGvis system.

XGvis calls XGobi as a function (Swayne et al., 1991).
In this use of XGobi, its data structures are defined by
XGvis, the parent program, and yet all the interactive
methods of XGobi are available for use on that data.

Figures 3 — 12 in this paper were produced using
an XGobi facility which enables the user to create a
Postscript TMrepresentation of the contents of the plot-
ting window.

4. External Interfaces: NETPAD

Command line arguments allow a user to call XGvis in
several ways: with a dissimilarity matrix, point loca-
tions, a graph specified as edges and point locations or
a graph specified in NETPAD format.

Postscript is a trademark of Adobe Systems, Inc.

NETPAD is an interactive computer program for cre-
ating and analyzing graphs and graph algorithms. It
contains a graphical user interface and an expandable
toolkit of graph algorithms. It can be used like an elec-
tronic pencil and notepad to create, modify, save, re-
call and delete graphs and their associated attributes
or attribute values. NETPAD has a library of programs
for manipulating and analyzing graphs. These programs
can be predefined functions which are part of NETPAD
or user-defined programs such as XGvis which are inter-
faced to NETPAD.

All of the graph layouts displayed in NETPAD win-
dows are two dimensional, and it is this limitation that
XGvis enables it to surmount. Users can create and ma-
nipulate graphs using NETPAD and smoothly pass them
to XGvis to be embedded in a higher dimensional space
and then viewed using interactive motion graphics.

5. Examples

In this section, we provide two in-depth examples of ap-
plications of the XGvis system. They were chosen to
demonstrate the range of possible uses for the system,
from abstract mathematics to data analysis. The first
involves using XGvis to construct and view a three di-
mensional layout of vertices for a well-known graph. In
the second example, we use XGvis to find structure in
empirical confusion data.

5.1. Adjacent Transposition Graph

Creating views of graph structures can be helpful to
discrete mathematicians who are generating conjectures
about attributes of a mathematical system. Graphs are
useful in statistics for representing relationships between
data measurements (Thompson, 1991). A good picture
of a graph can make important trends in the data more
apparent.

Creating higher dimensional views of graphs was one
of the primary motivations for embarking on the XGvis
project. We identified numerous methods for moving
from a set of edges and vertices to a set of spatial lo-
cations for those vertices. We implemented and stud-
ied several of these including spring embeddings, iso-
metric decomposition (Winkler, 1987), and a higher di-
mensional generalization of the Tutte embedding (Tutte,
1963).

Most of our efforts were focused on the multidimen-
sional scaling algorithm described in this paper. Our
embedding strategy was to make an analogy between
shortest path distance in the graph and Euclidean dis-
tance in the resulting embedding. Starting with a graph
represented as a list of vertices and edges, we compute,

using dynamic programming, a matrix D in which D; ;
is the number of edges along the shortest path between
vertex ¢ and vertex j in the original graph.

We start with some initial assignment of vertices in
the graph to positions in & dimensional Euclidean space;
this initial mapping could simply be random. Then we
use iterative multidimensional scaling to move the ver-
tices to positions that better reflect the shortest path
distances in D. Larger k’s make it possible for MDS
to fit the data better while smaller k’s give humans a
better chance of interpreting the resulting layout. The
most instructive pictures involve trading off these forces
and choosing the smallest & that appears to capture the
significant structure in D. Often this involves a bit of
trial and error.

Let us consider a graph, shown in Figure 5, known
as the n = 4 adjacent transposition graph. This graph
has special meaning to discrete mathematicians. It was
passed on to us by Winkler, who was using it to study ex-
tensions of partial orderings. Thompson (1991) has also
used this graph to depict relationships between surveyed
preference judgments. For exploratory and explanatory
purposes, it is useful to have a drawing that shows nodes
as close together if and only if they are close together in
the actual graph.

The graph is generated as follows. We start with all
permutations of the sequence 1,2,3,4. There are 4! or 24
such sequences and we make each a vertex in the graph.
We connect two vertices by an edge if one permutation
can be turned into the other by simply transposing two
adjacent elements. Figure 5 shows an initial layout for
this graph; three of its nodes are labeled with their cor-
responding permutations. Observe that the node corre-
sponding to 1423 is connected to 1243 because one can
be turned into the other by swapping the middle two
digits. However, 2134 is not connected to 1423 because
there is no way to move from one to the other with a sin-
gle adjacent flip. How many flips would it take? What
we’d like is a representation of the graph that makes that
easier to see.

Figures 6, 7 and 8 show XGvis finding the optimal
three dimensional Euclidean layout for this graph, with
the power of D set to its default value of 1.0. Figure 6
shows an intermediate stage in the “unfolding” of this
graph, and Figures 7 and 8 show two views of the final
position determined by the MDS algorithm.

A three dimensional embedding clarifies the structure
a great deal. The resulting shape is equivalent to a trun-
cated octahedron. One striking feature of the graph is
its collection of six cycles and four cycles — hexagons and
squares. Each six cycle is the collection of all permuta-
tions in which one end is held fixed and all permutations

of the remaining three digits enumerated. Each square
consists of the permutations which have the same sym-
bols in the first two positions and the last two positions.

What was invisible is now clear. We can see in Figures
7 and 8 that 2134 and 1423 are just 3 flips apart and
that there are two paths of that length. Interestingly,
the sequence 1243 lies on both of them. The pair of
nodes corresponding to 2134 and 1243 are both on a
single square face. This face consists of all sequences
which start with 1 and 2 and end with 3 and 4. The
pair 1243 and 1423 are together on 2 hexagonal faces,
one represents all sequences ending with 3 and the other
all those starting with 1.

We have used XGvis to examine other graphs from
this family including n = 3 (3! = 6 nodes connected as
a hexagon) and n = 5 (5! = 120 nodes which requires
4 spatial dimensions to draw sensibly and is therefore
difficult to visualize).

5.2. Morse code confusion data

In the previous example, the dissimilarity matrix that
XGvis derived was based on the structure of a graph.
Now we experiment with fitting an explicit dissimilarity
matrix.

In Figure 9, each point represents a Morse code se-
quence — one for each of the symbols a-z and 0-9. A
matrix of confusion rates for these symbols was deter-
mined in a psychological experiment by Rothkopf (see
Gnanadesikan, 1977, pg. 44ff for an accessible account).
To prepare the data for XGvis, we needed to convert the
confusion rates — the percentage of times one symbol was
mistaken for another — to dissimilarities. This was ac-
complished by subtracting each of the confusion rates
from 1. The resulting matrix is recognized by XGvis
as asymmetric and is made symmetric by the transfor-
mation described in Section 2.1. It has been discovered
empirically that a good layout is found for this data in
two dimensions. This is especially true if the dissimi-
larity matrix is transformed by cubing each cell; i.e., let
f(Dij) = D¥,.

Starting from a random layout, as shown in Figure
9, the points gradually migrate to positions that better
approximate the target dissimilarity matrix. With the
user watching in anticipation, they soon sort themselves
out. The final layout is shown in Figure 10. It has been
augmented by hand with some information useful for
interpreting the result.

Figure 11 contains an XGobi plot of the percentage
of dots used to represent each symbol versus its length
in characters. (Recall that symbols are represented in
Morse code by a sequence of one to five dots and/or
dashes.) The plot in Figure 11 has been brushed along

the horizontal axis so that symbols with the same length
representation in Morse code are drawn with the same
glyph; for example, symbols represented by two char-
acters (specifically i, a, n and m) are plotted using an
“x”.

The XGobi plot of % dots versus length in Figure 11
is linked to the XGvis plot in Figure 10, so the points
in Figure 10 are similarly brushed. One symbol of each
length has been labeled: the letters t, m, o, j and the
number 0. Note that in the MDS representation of the
confusion data, points form groups based on the length
of the corresponding Morse code sequence.

Within each clump, the symbols have arranged them-
selves so that Morse code symbols with a high fraction
of dots are above and to the left while those with rel-
atively more dashes are below and to the right. This
is shown in Figure 11, which was created by once more
brushing the XGobi plot, this time along the vertical
axis. The one-character and two-character symbols are
all labeled: e (one dot and thus 100% dots) and t (one
dash, 0% dots) are now brushed differently; i (two dots,
100% dots) is brushed differently than a and n (dot-dash
and dash-dot, 50% dots) and m (two dashes, 0% dots).

Information such as this can be of particular use to
code designers. By understanding the patterns of con-
fusion, it might be possible to generate a new code that
is less prone to misinterpretation.

6. Conclusion and Extensions

XGvis provides, in a single program, modules for creat-
ing, embedding, and displaying dissimilarity data. It is
remarkably general in scope, providing useful function-
ality to mathematicians, statisticians and psychologists.
The integration of computation and display make using
the system natural; useful work can be accomplished by
someone who has no expert knowledge of multidimen-
sional scaling.

We have planned to extend the XGvis system with
several other embedding algorithms. Nonmetric MDS
(described in Section 2.2) has been used successfully for
embedding graphs (Fairchild et al., 1988). Extensions
are possible for drawing directed graphs — for instance,
constraining edges to point down and to the right if pos-
sible. It is also possible to add additional terms to Equa-
tion 2.1 to encourage MDS to lay out the objects within a
certain rough outline. This can be important for graph-
ical layout applications.

The XGvis system described in this paper is not
publicly available at the time of this writing. How-
ever, the XGobi and NETPAD systems on which it
is based are available. Contact the authors for de-

tails (dfs@bellcore.com for XGobi; nate@bellcore.com
for NETPAD).

7. Acknowledgments

We'd like to thank Paul Tukey for taking the trouble to
type in the Morse code confusion data.

References

Borg, I. and Lingoes, J. (1987). Multidimensional simi-
larity structure analysis. Springer-Verlag.

Buja, A. (1982). MDS in an interactive environment.
Half hour film, ORION project, Stanford Linear Ac-
celerator Center.

Buja, A., Logan, B. F., Reeds, J. R., and Shepp, L. A.
(1991). Inequalities and positive-definite functions
arising from a problem in multidimensional scal-
ing. Bellcore and AT&T Bell Laboratories Tech-
nical Memoranda.

Dean, N., Monma, C. L., and Mevenkamp, M. (1991).
NETPAD User’s Guide. Bellcore Technical Memo-
randum.

Fairchild, K. M., Portrock, S. E., and Furnas, G. W.
(1988). SEMNET: Three-Dimensional Graphic
Representations of Large Knowledge Bases. In
Guindon, R., editor, Cognitive Science and Its Ap-
plications for Human Computer Interaction, pages
201-233. Lawrence Erlbaum, Hillsdale, New Jersey.

Gnanadesikan, R. (1977). Methods for Statistical Data
Analysis of Multivariate Observations. John Wiley
and Sons, New York.

Kruskal, J. B. (1964a). Multidimensional scaling by op-
timizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29:1-27.

Kruskal, J. B. (1964b). Nonmetric multidimensional
scaling: a numerical method. Psychometrika,
29:115-129.

Kruskal, J. B. and Wish, M. (1978). Multidimensional
Scaling. Sage Publications, Beverly Hills.

Swayne, D. F., Buja, A., and Hubbell, N. (1991a).
XGobi Meets S: Integrating Software for Data Anal-
ysis. In Computing Science and Statistics: Proceed-
ings of the 23rd Symposium on the Interface, pages
430-434, Fairfax Station, VA. Interface Foundation
of North America, Inc.

Swayne, D. F., Cook, D., and Buja, A. (1991b). User’s
Manual for XGobi, a Dynamic Graphics Program
for Data Analysis Implemented in the X Window
System (Version 2). Bellcore Technical Memoran-
dum.

Swayne, D. F., Cook, D., and Buja, A. (1991c). XGobi:
Interactive Dynamic Graphics in the X Window
System with a Link to S. In American Statisti-
cal Association 1991 Proceedings of the Section on
Statistical Graphics, pages 1-8. American Statisti-
cal Association.

Thompson, G. L. (1991). Exploratory Graphical Tech-
niques for Ranked Data. In Proceedings of the 23rd
Symposium on the Interface, Fairfax Station, VA.
Interface Foundation of North America, Inc.

Thompson, G. L. (1993). Generalized Permutation
Polytopes and Exploratory Graphical Methods for
Ranked Data. Annals of Statistics. To appear.

Torgerson, W. S. (1958). Theory and Methods of Scaling.
John Wiley and Sons.

Tutte, W. T. (1963). How to draw a graph. Proceedings
of the London Mathematical Society, 13:743-767.

Winkler, P. (1987). The metric structure of graphs: the-
ory and applications. In Whitehead, C., editor, Sur-
veys in Combinatorics, pages 197-221. Cambridge
University Press.

2134

&

1423

1243

Figure 5: Adjacent transposition graph, first position

2134

1243
1423

Figure 6: Adjacent transposition graph, unfolding

Figure 7: Adjacent transposition graph, final position

Figure 8: Adjacent transposition graph, rotated view

o
o o
e
o o
o
o
o°
o O o] le)
o o
o o
o o
o
o o
o o
°© o
© o o ©
o
o o
Figure 9: Morse code data, initial positions

% dots
0.00.204060.81.0

O X m] + [¢]
[¢]
+
m]
[¢]
X +
[¢]
m]
+ [¢]
O X [m} o)
I I I I I
1 2 3 4 5
length

Figure 11

: Morse code data, XGobi plotting window

t-
e
u]
O
+
o O
o *
+ o o
o + *
+
o +
+
+
o o * j -
oy
o o
o 00

Figure 10: Morse code data, final positions; here the
plot is brushed by the length of the Morse code repre-

sentation of the symbol.

o t-
+
o
o
o
o o
o ©
e} + o+
o o ©
.
O +
.
.
o o
oy
+ 4
+ +
.

Figure 12: Morse code data, final positions; here the
plot is brushed by the percentage of dots in the Morse

code representation of the symbol.

