
Visualizing the embedding of objects in Euclidean spaceMichael Littman, Deborah F. Swayne, Nathaniel Dean, and Andreas BujaBellcoreMorristown, NJ 07962-1910ABSTRACTMatrices representing dissimilarities within a set of ob-jects are familiar in mathematics, statistics and psychol-ogy. In this paper we describe XGvis, a software systemwhich accepts diverse input data, such as graphs andmultivariate data, develops a dissimilarity matrix fromthe data, and then iteratively and interactively embedsobjects in a Euclidean space of arbitrary dimension. Us-ing a technique called multidimensional scaling, objectsare positioned so that their pairwise distances match thetarget dissimilarities as well as possible. Users can inter-act with XGobi, a software system for visualizing high-dimensional data, to browse the resulting embeddings.Mathematicians and statisticians have found XGvis tobe useful for discovering and exploring structure.XGvis runs under the X Window SystemTM.1. Introduction and motivationA dissimilarity matrix D is a matrix in which Di;j rep-resents the degree of dissimilarity between each pair ofobjects i and j. The row objects and the column objectsare usually the same and dissimilarity is assumed to bea symmetric relation. Matrix D is then a square sym-metric matrix, Di;j = Dj;i, with zeros on the diagonaland non-negative entries everywhere else.
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D    =Figure 1: A dissimilarity matrix and its graphical in-terpretation.The matrix in Figure 1 tells us how dissimilar 3 ob-jects are from one another. Object 1, for instance, di�ersfrom object 2 by a score of 4. Construing similarity asX Window System is a trademark of MIT.

closeness and dissimilarity as distance gives D a nat-ural graphical interpretation. The Euclidean distancesamong three objects arranged in the right triangle shownin Figure 1 precisely match the dissimilarity matrix D.In general, a geometric interpretation for a dissimilar-ity matrix D is created by representing each object bya point in some k dimensional space such that the dis-tance between two objects i and j approximates Di;j aswell as possible.The process of creating these graphical representa-tions is known as multidimensional scaling (MDS) andhas been studied for many years. Recently, interactivetools for visualizing these representations have becomeaccessible. In this paper, we describe a system calledXGvis which combines procedures for computing anddisplaying distance embeddings with a collection of func-tions for generating input dissimilarity matrices fromseveral data sources.How might such a system be useful? Dissimilarityinformation is very common in mathematics, statisticsand psychology. Potential sources include shortest pathdistances among vertices in a graph, measured dissimi-larity among test objects in a psychometric experiment,and distances among cases in multivariate data.The use of XGvis for graph theory applications isdriven by another visualization tool developed at Bell-core. NETPAD (Dean et al., 1991) is an interactive pro-gram for creating graphs and graph layouts and analyz-ing these structures with a library of algorithms. NET-PAD is capable of producing many interesting two di-mensional layouts, and when NETPAD and XGvis areused together, they can create and display layouts ofgraphs in three or more dimensions. To the degree thata higher dimensional layout better captures interestingaspects of a graph's structure, it can lead to special in-sights into properties of the graph. These insights canbe helpful in a mathematician's search for conjecturesand counter-examples.Dissimilarity information can also serve as an inter-mediate step between a high dimensional collection ofdata and a lower dimensional view of it. By computingthe distance between pairs of points in a ten dimensionalspace and �tting these distances with objects in a threedimensional space, one can often get a more intuitive



feel for the original data. This process is called dimen-sion reduction and is widely used in data analysis andvisualization. XGvis is well suited for this task.There are some cases when a dissimilarity matrix it-self is the raw data to be viewed. It is a fairly commontechnique in experimental psychology to extract similar-ity judgments from human subjects about a collectionof objects. These similarity judgments are easily trans-formed to dissimilarities and viewed using XGvis.By molding diverse input data into the form of a dis-similarity matrix and creating graphical views of the dis-similarity information, XGvis has proven to be a power-ful tool for people in many disciplines.2. The MethodXGvis accepts various types of input data and developsa dissimilarity matrix from each. It then uses a formof multidimensional scaling to iteratively determine anembedding for the data.2.1. Handling of di�erent data typesXGvis handles three primary data types: graphs, multi-variate data and dissimilarity judgments. A dissimilar-ity matrix is developed from each of these using either adefault method or one chosen by the user.A graph consists of a set of objects called verticesand edges where vertices can be represented as pointsand edges as lines connecting pairs of points. For ex-ample, vertices could represent cities and edges couldconnect pairs of cities that have a direct 
ight betweenthem. Graphs are used to represent such diverse sys-tems as telephone networks, molecules and patterns ofbibliographic references.XGvis accepts graphs in several forms. The simplestis as a list of edges. Edges in XGvis are undirected {that is, if i is connected to j then j is assumed to beconnected to i. A user can also optionally indicate a setof initial locations for the vertices. If these are omitted,vertices are placed at random.The default approach for creating a dissimilarity ma-trix from the graph is to compute, for all pairs of verticesin the graph, the number of edges on the shortest pathbetween them. XGvis uses a dynamic programming ap-proach for �nding all the shortest paths quickly.When multivariate data is passed to XGvis, a dissimi-larity matrix is created by computing the Euclidean dis-tance between each pair of cases in the raw data. TheDi;j cell of the matrix is the distance between case iand case j. Non-Euclidean metrics are computed at theuser's request.

XGvis can accept a dissimilarity matrix directly.These matrices are assumed to be symmetric. In theevent that a non-symmetric (though square) matrix ispassed in, XGvis' default action is to create a symmet-ric matrix from it by computing the elementwise meanbetween the matrix and its transpose. The resulting ma-trix is symmetric and can be used by multidimensionalscaling for creating a graphical layout.2.2. Multidimensional scalingMultidimensional scaling has a long and interesting his-tory. The de�ning goal of multidimensional scaling(MDS) is to take an n�n dissimilarity matrix D and toproduce vectors x1; : : : ; xn such that the computed dis-tance between every xi and xj approximates Di;j . Upto 1964, people used classical or Torgerson-Young MDS(Torgerson, 1958) in which the dissimilarities are con-verted to an inner-product matrix and an eigenanalysisis performed.In the early 60s, an alternate view of MDS began toemerge. The seminal contributor was Shepard (1962)who showed that to construct a faithful embedding itis su�cient to know the ranks rather than the actualvalues of the dissimilarities. That is, if for every twopairs (a,b) and (c,d) of objects it is known whether ais closer to b than c is to d, then a faithful embeddingcan be constructed. Shepard gave evidence that this ispossible and Kruskal (Kruskal, 1964a, 1964b) devisedan optimization criterion which incorporates this idea.Kruskal de�ned a measure of �t called \stress" (S).S(D; x; f) := Pi;j [f(Dij)� kxi � xjk]2Pi;j kxi � xjk2 (2.1)Given a current con�guration of the objects x =x1; : : : ; xn, the target dissimilarity matrix D and amonotonically nondecreasing function f , S is a measureof how poor the current embedding is. It is a normalizedresidual sum of squared di�erences between each f(Di;j)and the distance from xi to xj . Kruskal provided a pro-cedure for minimizing the stress by computing partialderivatives and applying the classical steepest descentmethod.Kruskal's MDS based on this criterion with optimiza-tion of f over all monotonically nondecreasing functionsis called \nonmetric MDS." It is called \nonmetric" sincethe actual values Dij are thrown away by transformingthem, while their ranks and only their ranks are retainedbecause of monotonicity of the function.The version of MDS used in XGvis is a metric relativeof Kruskal's MDS. It optimizes x but leaves the function



f for the user to choose interactively from the set ofpowers of D.Solving for the xi's in metric Kruskal MDS is asticky non-linear optimization problem. It does not boildown to an eigendecomposition such as the one used inTorgerson-Young MDS. Metric Kruskal is a more pow-erful method than classical Torgerson-Young scaling.Unlike performing an eigenvalue decomposition, theredoes not seem to be a closed form algorithm for �ndinga metric Kruskal MDS embedding. Instead we use aniterative algorithm for �nding the xi's which minimizeS.The algorithm starts with some initial layout, whichmay be random, and minimizes S through a series of gra-dient descent moves on the point locations. With eachstep, the program moves every point a small amount inthe direction which causes the stress to decrease maxi-mally.Aside from problems with local minima, easily avoidedby using a large step size, the points settle to a reason-able layout quickly.Visualizing an iterative algorithm o�ers two main ben-e�ts. First, it is possible to observe changes in the op-timization behavior that might result from changes inthe parameters of the stress function. For instance, onecould experiment with an additional penalty term forconstructing constrained layouts. Second, a user can�nd a good layout visually without having to constructa stopping criterion such as \run for x steps" or \rununtil the error drops below �." An iterative method al-lows a user to implicitly use the criterion, \run until itlooks right."We have found this particularly important for settingthe step size parameter. Larger steps help MDS makefast progress early and skip over local minima. Later inthe run, a smaller step size is needed to let MDS settle ona solution. Terms like larger, later and smaller are verymuch problem dependent but are easily determined (atleast in 2 and 3 dimensional embeddings) by watchingthe points move.Interactive MDS optimization was implemented byone of us on a workstation in 1982, but it was neverdocumented other than in a �lm (Buja, 1982).3. Control and VisualizationEmbeddings in XGvis proceed as follows: a user beginsan XGvis session by invoking the program with someinitial data. Using default routines, XGvis creates adissimilarity matrix from the data. The user is thenpresented with a graphical interface for controlling theprogress of MDS and manipulating the view of the cur-

rent embedding.Typically, the user will set some MDS parameters andthen \run" MDS. The points are visible in a display win-dow while MDS moves them. When the user is satis�edwith the layout, MDS can be stopped and the result-ing embedding examined with an integrated version ofthe XGobi visualization program (Swayne et al., 1991b,1991c).All interactions take place in two windows on theworkstation or personal computer screen. The XGviscontrol panel window is used to start, stop and restartMDS as well as to control the MDS-related parameters.The XGobi display window is used to watch the progressof the optimization and to interact in various ways withthe view of the data or �gure.

Figure 2: XGvis Control Panel3.1. Control panelThe XGvis control panel is shown in Figure 2. The left-most subwindow contains a Run button that allows auser to start and stop the optimization and a Reset but-ton that returns the data or �gure to its original con�g-uration. The labels, buttons and scrollbars in the right-most windows allow a user to adjust various optimiza-tion and scaling parameters. These parameters can beset before MDS begins or while it is running; they arebrie
y described here.



Figure 3: Grid, power of D = 0:5

Figure 4: Grid, power of D = 2:0Dimension: By typing an integer into the text windowat the right of the label n dims, the user speci�es the di-mension of the Euclidean space in which to embed thepoint cloud or �gure. Reasonable choices are 2 (XGvisembeds the points or objects in the plane), 3 (XGvisconstructs a three dimensional layout), or up to 5 or6, in which case special techniques and imagination are

required to interpret the resulting structures. The inter-face actually permits embeddings in up to twenty dimen-sions but we have not found use for nearly that many.Occasionally one dimensional embeddings (all points ona line { unidimensional scaling) are interesting and theyare also supported.Transformation: The user adjusts the scrollbar be-neath the label power of D to select the power to whicheach element of D should be raised. In this way, XGvisallows some variation in the function f shown in Equa-tion 2.1. We restrict f(Di;j) to Dpi;j where p is the valueread from the scrollbar. Typically, a value of p = 1:0 isthe most meaningful: this tells XGvis to �t the dissimi-larities in D directly.Striking and useful e�ects can be obtained by chang-ing p from its default value. Small values of p tend tominimize di�erences in the dissimilarity matrix, oftenresulting in a \rounder" or more compact layout. A25 node graph connected as a 5 � 5 grid appears per-fectly square when displayed with p = 1:0, but note therounded appearance of the 5 � 5 grid as it is shown inFigure 3: this embedding was produced using p = 0:5.In the limit p = 0:0 and MDS tries to make all pairsof objects distance 1 from each other. See Buja et al.(1991) for a mathematical treatment of this \null" case.Larger values of p (with 3:0 being the highest settingon the scrollbar) have an opposite e�ect. Di�erences indissimilarity are accentuated resulting in more \spiky"pictures. Figure 4 demonstrates the e�ect of setting p =2:0 for the 5� 5 grid graph.Step size: The MDS update rule involves moving eachobject in the direction of the gradient of Equation 2.1.The stepsize scrollbar controls the size of the step in thedirection of the gradient. Larger values cause the embed-ding to proceed rapidly, often skipping over dangerouslocal minima. However, they run the risk of causing theembedding to \thrash," that is, jump out of control fromone con�guration to another. Smaller values are usefulwhen a �gure has begun to settle.Iteration control: With n iters set to 1, XGvis willupdate the graphics window after every MDS step. Formore complex embeddings, it is sometimes more e�cientto take several MDS steps before redrawing. Larger val-ues of n iters accomplish this. The do n iterations buttonallows a user to perform a �xed number of MDS steps.Distance metric: The user can bring up a menu of rou-tines for recomputing the target dissimilarity matrix D.The metrics implemented include shortest path distancefor graphs and Euclidean and Manhattan distances formultivariate data. This function is primarily useful forexperimenting with di�erent types of dimension reduc-tion methods or in cases where there is ambiguity as to



what the default dissimilarity matrix should be.3.2. Visualization with XGobiWhen the optimization is running, the plot displayedin the XGobi window is redrawn with each iteration sothat the motion of the points can be observed. If thedata under study is a graph, setting the �gure in motionwhile the optimization proceeds is particularly helpful.Using XGobi's Rotate or Tour mode, a viewer sees asmooth sequence of two-dimensional projections of thechanging �gure. Viewers describe this as watching the�gure \unfold" or \pu� out."Once the user decides that the �gure or point cloudhas become stable, many of XGobi's other interactivefunctions can be used to advantage. Selecting the Scalemode allows the �gure to be stretched or reshaped onthe screen using mouse motions: this is especially use-ful if the viewer wants to zoom in on a subsection of acomplex �gure. In Brush mode, a user can interactivelychange the color of selected lines or points or change theshape and size of the plotting character used for selectedpoints. Using Identify, a user moves the cursor near apoint of interest, and its label appears. The label canbe any user-supplied text string; by default, it is simplyan identi�cation number, 1 to n (the number of data ob-jects). Point brushing and identi�cation are linked: thatis, if a user is working on the same data in another XGobiwindow (which could be part of another XGvis sessionor an independent instance of XGobi), then a point thatis brushed or identi�ed in one window is simultaneouslya�ected in the second.Some useful ways of selecting subsets by brushing andrerunning MDS on the brushed subsets were provided inan earlier implementation (Buja, 1982). These have notbeen included in the current XGvis system.XGvis calls XGobi as a function (Swayne et al., 1991).In this use of XGobi, its data structures are de�ned byXGvis, the parent program, and yet all the interactivemethods of XGobi are available for use on that data.Figures 3 { 12 in this paper were produced usingan XGobi facility which enables the user to create aPostscriptTMrepresentation of the contents of the plot-ting window.4. External Interfaces: NETPADCommand line arguments allow a user to call XGvis inseveral ways: with a dissimilarity matrix, point loca-tions, a graph speci�ed as edges and point locations ora graph speci�ed in NETPAD format.Postscript is a trademark of Adobe Systems, Inc.

NETPAD is an interactive computer program for cre-ating and analyzing graphs and graph algorithms. Itcontains a graphical user interface and an expandabletoolkit of graph algorithms. It can be used like an elec-tronic pencil and notepad to create, modify, save, re-call and delete graphs and their associated attributesor attribute values. NETPAD has a library of programsfor manipulating and analyzing graphs. These programscan be prede�ned functions which are part of NETPADor user-de�ned programs such as XGvis which are inter-faced to NETPAD.All of the graph layouts displayed in NETPAD win-dows are two dimensional, and it is this limitation thatXGvis enables it to surmount. Users can create and ma-nipulate graphs using NETPAD and smoothly pass themto XGvis to be embedded in a higher dimensional spaceand then viewed using interactive motion graphics.5. ExamplesIn this section, we provide two in-depth examples of ap-plications of the XGvis system. They were chosen todemonstrate the range of possible uses for the system,from abstract mathematics to data analysis. The �rstinvolves using XGvis to construct and view a three di-mensional layout of vertices for a well-known graph. Inthe second example, we use XGvis to �nd structure inempirical confusion data.5.1. Adjacent Transposition GraphCreating views of graph structures can be helpful todiscrete mathematicians who are generating conjecturesabout attributes of a mathematical system. Graphs areuseful in statistics for representing relationships betweendata measurements (Thompson, 1991). A good pictureof a graph can make important trends in the data moreapparent.Creating higher dimensional views of graphs was oneof the primary motivations for embarking on the XGvisproject. We identi�ed numerous methods for movingfrom a set of edges and vertices to a set of spatial lo-cations for those vertices. We implemented and stud-ied several of these including spring embeddings, iso-metric decomposition (Winkler, 1987), and a higher di-mensional generalization of the Tutte embedding (Tutte,1963).Most of our e�orts were focused on the multidimen-sional scaling algorithm described in this paper. Ourembedding strategy was to make an analogy betweenshortest path distance in the graph and Euclidean dis-tance in the resulting embedding. Starting with a graphrepresented as a list of vertices and edges, we compute,



using dynamic programming, a matrix D in which Di;jis the number of edges along the shortest path betweenvertex i and vertex j in the original graph.We start with some initial assignment of vertices inthe graph to positions in k dimensional Euclidean space;this initial mapping could simply be random. Then weuse iterative multidimensional scaling to move the ver-tices to positions that better re
ect the shortest pathdistances in D. Larger k's make it possible for MDSto �t the data better while smaller k's give humans abetter chance of interpreting the resulting layout. Themost instructive pictures involve trading o� these forcesand choosing the smallest k that appears to capture thesigni�cant structure in D. Often this involves a bit oftrial and error.Let us consider a graph, shown in Figure 5, knownas the n = 4 adjacent transposition graph. This graphhas special meaning to discrete mathematicians. It waspassed on to us byWinkler, who was using it to study ex-tensions of partial orderings. Thompson (1991) has alsoused this graph to depict relationships between surveyedpreference judgments. For exploratory and explanatorypurposes, it is useful to have a drawing that shows nodesas close together if and only if they are close together inthe actual graph.The graph is generated as follows. We start with allpermutations of the sequence 1,2,3,4. There are 4! or 24such sequences and we make each a vertex in the graph.We connect two vertices by an edge if one permutationcan be turned into the other by simply transposing twoadjacent elements. Figure 5 shows an initial layout forthis graph; three of its nodes are labeled with their cor-responding permutations. Observe that the node corre-sponding to 1423 is connected to 1243 because one canbe turned into the other by swapping the middle twodigits. However, 2134 is not connected to 1423 becausethere is no way to move from one to the other with a sin-gle adjacent 
ip. How many 
ips would it take? Whatwe'd like is a representation of the graph that makes thateasier to see.Figures 6, 7 and 8 show XGvis �nding the optimalthree dimensional Euclidean layout for this graph, withthe power of D set to its default value of 1.0. Figure 6shows an intermediate stage in the \unfolding" of thisgraph, and Figures 7 and 8 show two views of the �nalposition determined by the MDS algorithm.A three dimensional embedding clari�es the structurea great deal. The resulting shape is equivalent to a trun-cated octahedron. One striking feature of the graph isits collection of six cycles and four cycles { hexagons andsquares. Each six cycle is the collection of all permuta-tions in which one end is held �xed and all permutations

of the remaining three digits enumerated. Each squareconsists of the permutations which have the same sym-bols in the �rst two positions and the last two positions.What was invisible is now clear. We can see in Figures7 and 8 that 2134 and 1423 are just 3 
ips apart andthat there are two paths of that length. Interestingly,the sequence 1243 lies on both of them. The pair ofnodes corresponding to 2134 and 1243 are both on asingle square face. This face consists of all sequenceswhich start with 1 and 2 and end with 3 and 4. Thepair 1243 and 1423 are together on 2 hexagonal faces,one represents all sequences ending with 3 and the otherall those starting with 1.We have used XGvis to examine other graphs fromthis family including n = 3 (3! = 6 nodes connected asa hexagon) and n = 5 (5! = 120 nodes which requires4 spatial dimensions to draw sensibly and is thereforedi�cult to visualize).5.2. Morse code confusion dataIn the previous example, the dissimilarity matrix thatXGvis derived was based on the structure of a graph.Now we experiment with �tting an explicit dissimilaritymatrix.In Figure 9, each point represents a Morse code se-quence { one for each of the symbols a-z and 0-9. Amatrix of confusion rates for these symbols was deter-mined in a psychological experiment by Rothkopf (seeGnanadesikan, 1977, pg. 44� for an accessible account).To prepare the data for XGvis, we needed to convert theconfusion rates { the percentage of times one symbol wasmistaken for another { to dissimilarities. This was ac-complished by subtracting each of the confusion ratesfrom 1. The resulting matrix is recognized by XGvisas asymmetric and is made symmetric by the transfor-mation described in Section 2.1. It has been discoveredempirically that a good layout is found for this data intwo dimensions. This is especially true if the dissimi-larity matrix is transformed by cubing each cell; i.e., letf(Dij) = D3ij :Starting from a random layout, as shown in Figure9, the points gradually migrate to positions that betterapproximate the target dissimilarity matrix. With theuser watching in anticipation, they soon sort themselvesout. The �nal layout is shown in Figure 10. It has beenaugmented by hand with some information useful forinterpreting the result.Figure 11 contains an XGobi plot of the percentageof dots used to represent each symbol versus its lengthin characters. (Recall that symbols are represented inMorse code by a sequence of one to �ve dots and/ordashes.) The plot in Figure 11 has been brushed along



the horizontal axis so that symbols with the same lengthrepresentation in Morse code are drawn with the sameglyph; for example, symbols represented by two char-acters (speci�cally i, a, n and m) are plotted using an\x".The XGobi plot of % dots versus length in Figure 11is linked to the XGvis plot in Figure 10, so the pointsin Figure 10 are similarly brushed. One symbol of eachlength has been labeled: the letters t, m, o, j and thenumber 0. Note that in the MDS representation of theconfusion data, points form groups based on the lengthof the corresponding Morse code sequence.Within each clump, the symbols have arranged them-selves so that Morse code symbols with a high fractionof dots are above and to the left while those with rel-atively more dashes are below and to the right. Thisis shown in Figure 11, which was created by once morebrushing the XGobi plot, this time along the verticalaxis. The one-character and two-character symbols areall labeled: e (one dot and thus 100% dots) and t (onedash, 0% dots) are now brushed di�erently; i (two dots,100% dots) is brushed di�erently than a and n (dot-dashand dash-dot, 50% dots) and m (two dashes, 0% dots).Information such as this can be of particular use tocode designers. By understanding the patterns of con-fusion, it might be possible to generate a new code thatis less prone to misinterpretation.6. Conclusion and ExtensionsXGvis provides, in a single program, modules for creat-ing, embedding, and displaying dissimilarity data. It isremarkably general in scope, providing useful function-ality to mathematicians, statisticians and psychologists.The integration of computation and display make usingthe system natural; useful work can be accomplished bysomeone who has no expert knowledge of multidimen-sional scaling.We have planned to extend the XGvis system withseveral other embedding algorithms. Nonmetric MDS(described in Section 2.2) has been used successfully forembedding graphs (Fairchild et al., 1988). Extensionsare possible for drawing directed graphs { for instance,constraining edges to point down and to the right if pos-sible. It is also possible to add additional terms to Equa-tion 2.1 to encourageMDS to lay out the objects within acertain rough outline. This can be important for graph-ical layout applications.The XGvis system described in this paper is notpublicly available at the time of this writing. How-ever, the XGobi and NETPAD systems on which itis based are available. Contact the authors for de-
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Figure 5: Adjacent transposition graph, �rst position
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Figure 7: Adjacent transposition graph, �nal position
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Figure 6: Adjacent transposition graph, unfolding
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Figure 8: Adjacent transposition graph, rotated view



Figure 9: Morse code data, initial positions
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Figure 12: Morse code data, �nal positions; here theplot is brushed by the percentage of dots in the Morsecode representation of the symbol.


