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A Menger Redux:
Embedding Metric Spaces Isometrically in

Euclidean Space

John C. Bowers and Philip L. Bowers

Abstract. We present geometric proofs of Menger’s results on isometrically embedding metric
spaces in Euclidean space.

In 1928, Karl Menger [5] published the proof of a beautiful characterization of those
metric spaces that are isometrically embeddable in the n-dimensional Euclidean space
E

n . While a visitor at Harvard University and the Rice Institute in Houston during the
1930–31 academic year, Menger gave courses on metric geometry in which he “con-
siderably shortened and revised [his] original proofs and generalized the formulation.”
[6, p. 721]. The new proofs of the 1930–31 academic year appear in the English lan-
guage article “New Foundation of Euclidean Geometry” [6] published in the American
Journal of Mathematics in 1931. Leo Liberti and Carlile Lavor in their beautifully writ-
ten article “Six Mathematical Gems from the History of Distance Geometry” remark
on their review of a part of Menger’s characterization that “it is remarkable that almost
none of the results below offers an intuitive geometrical grasp, such as the proofs of
Heron’s formula and the Cayley theorem do. As formal mathematics has it, part of the
beauty in Menger’s work consists in turning the ‘visual’ geometrical proofs based on
intuition into formal symbolic arguments based on sets and relations.” [3, p. 12] Part
of the reason that Menger’s results fail to offer an “intuitive geometric grasp” is that
Menger offers his results in the general setting of an abstract congruence system and
semi-metric spaces.

We believe that Menger’s characterization deserves a wider circulation among the
mathematics community. The aim of this article is to explicate Menger’s characteriza-
tion in the category of metric spaces rather than in his original setting of congruence
systems and their model semi-metric spaces and in doing so to give a mostly1 self-
contained treatment with straightforward geometric proofs of his characterization. We
provide all the background material on the geometry of Euclidean space that is needed
to prove Menger’s results so that the proofs are accessible to any undergraduate who
has mastered the basics of real linear algebra and real inner product spaces.2 The full
characterization as presented in Menger [6] may be parsed in three acts. Act 1 reduces
the problem of isometrically embedding a metric space X into E

n to isometrically
embedding finite subsets of X into E

n . Act 2 characterizes those metric spaces that
fail to embed in E

n isometrically though each subset with n + 2 elements does so
embed. Acts 1 and 2 together reduce the problem of embedding X isometrically into
E

n to the problem of embedding each subset of X with n + 2 elements isometrically.

1See footnote 3.
2Mastered being the key word in this sentence. The authors believe that the assignment of this article

for careful study could be an appropriate and effective undergraduate project for helping a student master the
geometry of Euclidean space using linear algebra and the Euclidean inner product.
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Finally, Act 3 gives an algebraic condition on the distances among the points of a set
with n + 2 elements that guarantees an isometric embedding into E

n .
We give complete geometric proofs of Menger’s results of Acts 1 and 2 and the

necessity part of Act 3.3 The approach of this article to Menger’s results offers geo-
metric insights not immediately grasped in Menger’s original approach. In particular,
the construction and characterization of the metric spaces in Act 2 that fail to embed
isometrically though each subset with n + 2 elements does so embed offer details of
the structure of these spaces as well as a geometric understanding that are opaque in
Menger’s treatment. This geometric approach leads to a characterization of all such
spaces with a concrete construction for all of them.

OVERTURE: BACKGROUND ON EUCLIDEAN SPACE. We take as our model
of Euclidean n-dimensional space, denoted as E

n , the set of ordered n-tuples x =
(x1, . . . , xn) of real numbers with the usual real vector space operations and the
Euclidean inner product 〈x, y〉 = x1 y1 + · · · + xn yn . This gives rise to the Euclidean
norm |x| = √〈x, x〉 and the Euclidean distance xy = |x − y|. In this Overture, we col-
lect the basic geometric facts about Euclidean space that will be used in the proofs of
Menger’s characterization. The proofs of these basic facts use only elementary linear
algebra and are left to the reader. The reader seasoned in the geometry of Euclidean
space may skip this Overture safely and head directly to Act 1, referring only to the
statements of the lemmas as they are used.

A collection {v0, . . . , vm} of m + 1 points in E
n is affinely independent if the collec-

tion {v1 − v0, . . . , vm − v0} is linearly independent. Note that this implies that m ≤ n.
Affine independence of {v0, . . . , vm} is equivalent to the condition that, for real coef-
ficients a0, . . . , am , if

∑m
k=0 akvk = 0 and

∑m
k=0 ak = 0, then a0 = · · · = am = 0. In

case {v0, . . . , vm} is affinely independent, the linear span of the m linearly indepen-
dent vectors {v1 − v0, . . . , vm − v0} is an m-dimensional linear subspace of En that
may be expressed as

L = span[v1 − v0, . . . , vm − v0] =
{

m∑
k=0

akvk :
m∑

k=0

ak = 0

}
.

It follows from this that the affine span of {v0, . . . , vm} defined as

A = affspan[v0 . . . , vm] =
{

m∑
k=0

akvk :
m∑

k=0

ak = 1

}

is the m-dimensional affine plane obtained by translating the linear subspace L by any
element of A so that, in particular, A = v0 + L . Each element v of the affine plane
A has a unique set of affine coordinates a0, . . . , am with respect to the affine basis
V = {v0, . . . , vm} for A, with v = ∑m

k=0 akvk where
∑m

k=0 ak = 1. Note in particular
that the affine basis V itself is contained in A and that if x is any element of En not
contained in A, then the set V ∪ {x} is affinely independent.

A subset C of En is convex if, for each pair x, y of points in C , the line segment
[x, y] = {tx + (1 − t)y : 0 ≤ t ≤ 1} is contained in C . The convex hull of a set B in
E

n is the intersection of all convex sets containing B and is the smallest convex set
containing B.

3The sufficiency part of Act 3 is primarily algebraic in nature and depends on a detailed algebraic analysis
of certain determinants. As our interest is in explicating the geometry that lies behind Menger’s results, we
refer the interested reader to Menger’s original proof in [6] for the sufficiency.
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The convex hull of some affinely independent set V = {v0, . . . , vm} in E
n is called

the m-simplex spanned by V , is denoted as [v0, . . . , vm], and has the description

[v0, . . . , vm] =
{

m∑
k=0

akvk :
m∑

k=0

ak = 1, ak ≥ 0 for k = 1, . . . , m

}
.

Each vk is a vertex of [v0, . . . , vm]. The affine span of V − {vk} has dimension m − 1,
is called the kth support plane of the simplex, and is said to be opposite to the vertex
vk , while the simplex spanned by V − {vk} is the kth face of the simplex. The simplex
is regular if all the side-lengths vi v j , for 0 ≤ i 	= j ≤ m, are the same. Obviously, an
m-simplex is contained in the affine span of its vertices. It is not difficult to prove that
if [v0, . . . , vn] is an n-simplex in E

n and uk is a nonzero vector orthogonal to the kth
support plane for k = 0, . . . , n, then the vectors u0, . . . , un span E

n .4

The most important property of an affine basis for the proof of Menger’s charac-
terization is the following elementary result. Let {v0, . . . , vm} be an affine basis for
the m-dimensional affine plane A in E

n . The result says that an element a of A is
uniquely determined by the m + 1 distances av0, . . . , avm . This implies in particular
that the m + 1 known distances avk for k = 0, . . . , m uniquely determine the m + 1
affine coordinates a0, . . . am of a with respect to the affine basis {v0, . . . , vm}.

Lemma A. Let a be a point in the affine span A ⊂ E
n of the affine basis {v0, . . . , vm}

for A. Let b ∈ E
n. If avk = bvk for k = 0, . . . , m, then a = b.

Proof. Let a, b ∈ E
n with a ∈ A and suppose that avk = bvk for k = 0, . . . , m. If

a 	= b, then the set M = {x ∈ E
n : ax = bx} of points of En equidistant from both

a and b is an (n − 1)-dimensional affine plane, the perpendicular bisector of a and
b in E

n . For k = 0, . . . , m, since avk = bvk , vk is a point of M , and this implies that
A ⊂ M . Since a ∈ A, we have that a ∈ M , which implies that ba = aa = 0. Therefore,
a = b.

Another straightforward argument using perpendicular bisectors provides a proof
of the next result.

Lemma B. Let {v0, . . . , vm} be an affine basis for the m-dimensional affine plane A
in E

n, where m < n, and let B be an (m + 1)-dimensional affine plane containing A.
Let x be a point in B that is not in A, and let x∗ be the isometric reflection in B of x
through the affine plane A. If b is a point of B with bvk = xvk for k = 0, . . . , m, then
either b = x or b = x∗.

We need to know that when two affinely independent point sets in E
n are congruent,

then there is a global self-isometry of E
n that carries one onto the other. This says

that an m-simplex in E
n is determined up to global isometry by the lengths of its

sides, a basic well-known fact in the subdiscipline of rigidity theory for linkages in
computational geometry.

Lemma C. Let V = {v0, . . . , vm} and W = {w0, . . . , wm} be two affinely independent
subsets of En with v j vk = w j wk for 0 ≤ j, k ≤ m. Then there is an isometry ρ of En

with ρ(vk) = wk for k = 0, . . . , m.

4In fact, the collection {u0, . . . , un} is affinely independent and any n of the vectors from the list form a
vector space basis for En .
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The proof of this lemma is an easy induction on m using Lemma B and the obser-
vation that any isometry between any two affine planes in E

n extends to an isometry
of En . We may describe the isometry between A and B, the respective affine spans
of the sets V and W of the lemma, as follows. Each point a of A has a unique set of
affine coordinates a0, . . . , am with respect to the affine basis V . Define the function λ :
A → B by λ(a) = ∑m

k=0 akwk . Since both V and W are affine bases for the respective
m-dimensional affine planes A and B, λ is a bijection of A onto B, and Lemma A
implies that λ is an isometric mapping.

Let Sn−1(c, r) = {x ∈ E
n : xc = r}, the (n − 1)-sphere in E

n centered at c of radius
r > 0. Obviously, the vertices of a 1-simplex [v0, v1] lie in a unique 0-sphere in
E

1, namely S0(c, r) = {v0, v1}, the sphere of radius r = |v0 − v1|/2 centered at c =
(v0 + v1)/2 in E

1. This is the basis of an easy inductive argument using elementary
Euclidean geometry that proves the next lemma.

Lemma D. Let [v0, . . . , vn] be an n-simplex in E
n. There is a unique sphere Sn−1(c, r)

that passes through the n + 1 affinely independent vertices v0, . . . , vn of [v0, . . . , vn].

This sphere is the circumscribed sphere of the simplex [v0, . . . , vn] while the inscribed
sphere is the (n − 1)-sphere tangent to each face, i.e., which meets each face of the
simplex in a single point.

The final geometric facts that we need concern the inradius and circumradius of a
regular n-simplex �n

ε of side-length ε. The in- and circumradii are the respective radii
of the inscribed and circumscribed spheres, which have a common center since �n

ε

is regular. The calculations of these two radii constitute a nice exercise in the use of
affine coordinates.

Exercise. Let �n√
2

= [e0, . . . , en] be the regular n-simplex in E
n+1 with vertices the

standard unit coordinate vectors. Then the center of the in- and circumscribed spheres
of �n√

2
is cn = 1

n+1

∑n
k=0 ek . It follows that the inradius δn and the circumradius ζn are

given as

δn = |cn − cn−1| = 1√
n(n + 1)

,

ζn = |cn − en| =
√

n

n + 1
,

and those of �n
ε are obtained from these formulae by multiplying by the scale factor

ε/
√

2.

ACT 1: A REDUCTION TO EMBEDDING FINITELY MANY POINTS ISO-
METRICALLY. We are now in a position to state and easily prove the first result
of Menger that reduces the question of whether a given metric space embeds isomet-
rically in E

n to the question of whether each of its finite subsets with at most n + 3
elements so embeds. Rather than explicitly naming the metric of a metric space, we
shall use the convention that the juxtaposition of two points indicates the distance
between the points. So, if x and y are points of the metric space X , the expression xy
means the distance in X between the two points. This of course is the notation we use
in the Overture for the distances between points of En . When Y is a subset of X , we
always will view Y as a metric subspace, its metric inherited from that of X , and when
the metric spaces X and Y are isometric, we will write X ∼= Y .
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Theorem 1. Let X be a metric space. Then X embeds isometrically in the Euclidean
space E

n if and only if each of its finite subsets with at most n + 3 elements embeds
isometrically in E

n.

Proof. Suppose each metric subspace of X with at most n + 3 elements embeds
isometrically in E

n . Among all isometric embeddings of subsets of X with at most
n + 1 elements onto affinely independent subsets of E

n , let Y = {y0, . . . , ym} ∼=
{y0, . . . , ym} ⊂ E

n , where m ≤ n be one with a maximum number of elements. Here
of course our notation suggests that yk �→ yk for k = 0, . . . , m under the isomet-
ric embedding so that y j yk = y j yk for 0 ≤ j, k ≤ m. Let A be the affine span of
{y0, . . . , ym}, an m-dimensional affine plane in E

n . We shall show that X embeds
isometrically into A.

Define ρ : X → A ⊂ E
n as follows. First, ρ(yk) = yk for k = 0, . . . , m. Now let

x ∈ X − Y and note that the set Yx = Y ∪ {x} has m + 2 < n + 3 elements. By hypoth-
esis, Yx embeds isometrically into E

n , and by Lemma C we may choose an isometric
embedding ρx : Yx → E

n such that ρx(yk) = yk for k = 0, . . . , m. By our choice of
the integer m, since Yx has m + 2 elements, its image cannot be affinely independent,
and this implies that ρx(x) is in the affine span of {y0, . . . , ym}, i.e., ρx(x) ∈ A. Define
ρ(x) = ρx(x). Notice that Lemma A implies that ρ(x) is uniquely determined by this
prescription, i.e., ρ(x) is independent of the particular initial isometric embedding of
Yx into E

n and independent of which isometry of En is used, à la Lemma C, to move
this initial image of Yx into position so that ρx(yk) = yk for k = 0, . . . , m.

Having defined the function ρ : X → A, we now verify that it is an isometry. We
need only verify that the distances xy and ρ(x)ρ(y) agree whenever x 	= y are ele-
ments of X − Y . Assume then that x 	= y ∈ X − Y . Then the set Yx,y = Y ∪ {x, y}
has m + 3 ≤ n + 3 elements and, by hypothesis, there exists an isometric embed-
ding λ : Yx,y → E

n . Let μ be a global isometry of En promised by Lemma C with
μ(λ(yk)) = yk , for k = 0, . . . , m. As before, by our choice of m, the image of Yx,y

under μ ◦ λ lies in the affine span A of {y0, . . . , ym}. Two applications of Lemma A
imply that the restriction of μ ◦ λ to Yx is equal to the isometric embedding ρx and
its restriction to Yy is equal to ρy . It follows that x ≡ μ ◦ λ(x) = ρx(x) = ρ(x) and,
similarly, y ≡ μ ◦ λ(y) = ρ(y). Since μ ◦ λ is an isometry, we then have xy = xy =
ρ(x)ρ(y), implying that ρ is an isometric mapping and hence an isometric embed-
ding.

Remark. Note that only the isometric embeddability of finite subsets of X with at
most n + 2 elements is used in defining the well-defined mapping ρ of X into A ⊂ E

n .
The only use of the isometric embeddability of n + 3 points of X appears in the last
paragraph of the proof, in proving that the mapping ρ is an isometry. In Act 2, we will
use the mapping ρ and the isometries ρx constructed in the proof of the theorem in the
setting in which every subset of X with n + 2 elements isometrically embeds in E

n ,
but X itself fails to embed so.

ACT 2: CHARACTERIZING CERTAIN FINITE SETS THAT FAIL TO EMBED
ISOMETRICALLY. In some respects, the results of this section offer the most sur-
prising aspects of Menger’s characterization. We begin by asking whether we may
improve upon Theorem 1 by reducing the number n + 3. Specializing to the case
n = 1 offers a simple but somewhat surprising glimpse into the general results of this
section. A metric space that isometrically embeds in the Euclidean line E1 is said to be
linear. In this case, the question of the linearity of three points of X is just the question
of whether the triangle inequality among an appropriate ordering of the three points is

August–September 2017] A MENGER REDUX 625

This content downloaded from 
������������70.187.211.104 on Sun, 17 Jul 2022 17:21:08 UTC������������� 

All use subject to https://about.jstor.org/terms



in fact an equality. Indeed, for three pairwise distinct points x , y, and z of the metric
space X , we say that y is between x and z provided xz = xy + yz, which we denote
by xyz. Obviously, the triple of points {x, y, z} is linear if and only if xyz, or one of its
permutations, holds. Theorem 1 says that if every three- and four-point subset of X is
linear, then X is linear. Can we do better and say that X is linear whenever each triple
of its points is linear? The answer is “no” with a family of similar counterexamples
provided by the four-point metric spaces whose elements are the vertices of Euclidean
rectangles, with distances the lengths of the shortest edge paths in the rectangles con-
necting any two. Now the really interesting fact is that these counterexamples are, up
to isometry, the only counterexamples! What we mean is this. Let X be a metric space
in which every triple of its points is linear. Then either X is linear or X consists of
precisely four distinct points w, x , y, and z, and wxy, xyz, yzw, zwx , wx = yz, and
xy = zw. In particular, if X has more than four points, then X is linear if and only if
any three of its points is linear, improving upon Theorem 1. All of these statements
about the n = 1 case can be proved by chasing around betweeness relations among
four points of X . The aim of this section is to prove that this special case of n = 1 is
representative of the general case.

First, we address the general question of whether there are any metric spaces with
n + 3 elements that fail to embed in E

n isometrically, even though every one of its sub-
sets with at most n + 2 elements does so embed. This is answered by the next result,
rather surprising to us (especially the uniqueness assertion), which is used later to
describe all such examples. To set up the result, let V = {v0, . . . , vn} ⊂ E

n be affinely
independent, and therefore an affine basis for En , and let a be any element of En . For
each j = 0, . . . , n, let A j be the j th support plane of the n-simplex [v0, . . . , vn] oppo-
site v j that is affinely spanned by Vj = V − {v j }. Let a j be the isometric reflection
in E

n of the point a through the (n − 1)-dimensional support plane A j . We say that a
is a polar point for [v0, . . . , vn] if the set {a0, . . . , an} is a set of n + 1 affinely inde-
pendent points, which therefore are the vertices of an n-simplex. In this case, Lemma
D of the Overture guarantees the existence of the unique circumscribing sphere of the
n-simplex [a0, . . . , an], say with center a∗ and radius r = r(a, v0, . . . , vn). The point
a∗ is said to be antipodal to a, the radius r is the polar diameter of the set {a, a∗},
and the ordered pair (a, a∗) is said to be antipodal with respect to the n-simplex
[v0, . . . , vn]; see Figure 1. It very well may be that a is self-antipodal, meaning that
a = a∗; in fact, a = a∗ if and only if a is equidistant from all the support planes
A0, . . . , An of [v0, . . . , vn]. This includes the incenter of the simplex [v0, . . . , vn], the
center of its inscribed sphere, as well as, for each k = 0, . . . , n, a point in the inter-
section of the half-spaces H0 ∩ · · · ∩ Hk−1 ∩ H̃k ∩ Hk+1 ∩ · · · ∩ Hn , where Hj is the
half-space bordered by A j that contains v j and H̃ j is the half-space bordered by A j

opposite v j . Note that if [v0, . . . , vn] is a regular simplex, the incenter of [v0, . . . , vn]
is the only one of these self-antipodal points that is equidistant from the vertices of
[v0, . . . , vn]. We will use this fact in the proof of Theorem 3. A metric space X is an
extension of the metric space Y if Y embeds isometrically in X .

Theorem 2. Let V = {v0, . . . , vn} be an affine basis for E
n and let a be any element

of E
n other than one of v0, . . . , vn. Then there is an extension of V ∪ {a} to a metric

space X with n + 3 elements that fails to embed in E
n isometrically while every one

of its subsets with at most n + 2 elements does so embed if and only if a is a polar
point for [v0, . . . , vn] that does not lie in any of the n + 1 support planes A j , for
j = 0, . . . , n; moreover, X is unique up to isometry.
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(a) a is not a polar point for T even though it does
not lie on any support line of T .

(b) a is a polar point for T with a∗ antipodal to a,
and a∗ is polar for T with a∗∗ = a.

Figure 1. Polar points for a given simplex T = [v0, v1, v2].

Proof. We make the following preliminary claim. If a is a polar point for [v0, . . . , vn]
with antipodal pair (a, a∗), then a lies on the support plane A j , for some j = 0, . . . , n,
if and only if a∗ = v j . Indeed, observe that a lies on A j if and only if a j = a. This
implies, since the set {a0, . . . , an} has exactly n + 1 points, that a lies on at most one
support plane. Assume then that a lies on A j for some j = 0, . . . , n so that a j = a.
Then for any index k 	= j , ak 	= a, and this implies that the support plane Ak is the
perpendicular bisector of the two distinct points a and ak . Since aa∗ = a j a∗ = r =
aka∗, we have a∗ ∈ Ak . Hence,

a∗ ∈
⋂

{Ak : k = 0, . . . , j − 1, j + 1, . . . , n} = {v j }.

For the reverse direction, assume that a∗ = v j for some j = 0, . . . , n and that a 	∈ A j .
Then a∗ ∈ Ak for any index k 	= j , and this implies that a∗a = a∗ak = r = a∗a j , Since
a 	∈ A j , the support plane A j is the perpendicular bisector of the distinct points a and
a j , and since a∗a = r = a∗a j , we conclude that a∗ ∈ A j . But then a∗ ∈ ∩n

k=0 Ak = ∅,
a contradiction. Therefore, a ∈ A j . This proves the preliminary claim.

(⇐) Assume that a is a polar point for [v0, . . . , vn] that does not lie in any of
the n + 1 support planes A j , for j = 0, . . . , n. As a point set, let X be any set with
precisely n + 3 elements and name the distinct elements as y0, . . . , yn, a, a∗. Let Y =
{y0, . . . , yn}. Define the function ρ : X → E

n by ρ(yk) = vk , ρ(a) = a, and ρ(a∗) =
a∗. Since a does not lie on any support plane A j , neither a nor a∗ is one of the vertices
of V . It follows that ρ is bijective between Y ∪ {a} and V ∪ {a} and between Y ∪
{a∗} and V ∪ {a∗}. Define distances among the points of X by xy = ρ(x)ρ(y), the
Euclidean distance between ρ(x) and ρ(y), provided {x, y} 	= {a, a∗}, and aa∗ = r =
r(a, v0, . . . , vn). We will show that (i) every subset of X with n + 2 elements embeds
in E

n , preserving the distances defined among the points of X , and (ii) X does not
embed isometrically in E

n . Note that item (i) implies that the distances assigned on X
define a metric.

For (i), first note that the restrictions of ρ to both the sets Y ∪ {a} and to Y ∪ {a∗} are
embeddings into E

n that preserve the distances defined among the points of X . Con-
sider then subsets with n + 2 points that contain both a and a∗. For any j = 0, . . . , n,
the restriction of the distance function to the set X j = X − {y j } is just the pullback to
X j of the Euclidean metric on Vj ∪ {a∗, a j }. To be more specific, let f be the mapping
on X j defined by f (x) = ρ(x) for x ∈ Y j ∪ {a∗} and f (a) = a j . An application of
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Lemma B and the definition of the distances defined among the points of X imply that
xy = f (x) f (y) for all x, y ∈ X j .

We now verify (ii). Suppose that g is an isometric embedding of X into E
n . By com-

posing with an isometry of En if necessary, Lemma C implies that we may assume that
g(yk) = vk for k = 0, . . . , n. Two applications of Lemma A imply that g(a) = a and
g(a∗) = a∗. This implies, for every k = 0, . . . , n, that aka∗ = r = aa∗ = g(a)g(a∗) =
aa∗ so that a∗ ∈ Ak for each k = 0, . . . , n since Ak is the perpendicular bisector of the
distinct points ak and a. But this is impossible since ∩n

k=0 Ak = ∅.
As Y ∪ {a} is isometric with V ∪ {a}, we have shown that X is an extension of

V ∪ {a} with the desired properties.
(⇒) Let X be a metric extension of V ∪ {a} with n + 3 elements that fails to embed

in E
n isometrically while every one of its subsets with at most n + 2 elements does

so embed. As above, let Y = {y0, . . . , yn}, X = Y ∪ {a, b}, and ρ : Y ∪ {a} → V ∪
{a} be an isometric bijection with ρ(Y ) = V . By Lemmas A and C and the fact that
Y ∪ {b} admits an isometric embedding in E

n , there is a unique point b ∈ E
n such that

the extension of ρ to X via ρ(b) = b is an isometry on Y ∪ {b}. We claim that a is a
polar point for [v0, . . . , vn] and that b = a∗ is antipodal to a. By hypothesis, ρ is not an
isometry, and this implies that ab 	= ab. Lemmas A, B, and C used as in the preceding
paragraphs imply that, for each j = 0, . . . , n, the map g j : Y j ∪ {a, b} → Vj ∪ {a j , b}
defined by g j = ρ on Y j ∪ {b} while g j (a) = a j is an isometry. It follows that a j b =
ab ≡ r for j = 0, . . . , n so that the points a0, . . . , an all lie on the sphere centered
at b of radius r . If the set {a0, . . . , an} is affinely independent, then the claim that a
is polar and a∗ = b is confirmed. Assume then that {a0, . . . , an} fails to be affinely
independent, and let H be the affine span of {a0, . . . , an}, an affine plane of dimension
at most n − 1. Note that the vector u j = a j − a is a normal vector to the support plane
A j of the n-simplex [v0, . . . , vn], and therefore the vectors u0, . . . , un span E

n . Now if
a were an element of H , then {u0, . . . , un} would be contained in the linear subspace
H − a of dimension less than n, contradicting the fact that the vectors u0, . . . , un

span E
n . We conclude that a 	∈ H , and hence, since the points a0, . . . , an all lie on a

sphere in H and a 	∈ H , there is a sphere Sn−1(c, R) in E
n that contains the point a as

well as the points a0, . . . , an . It now follows that, since each support plane A j is the
perpendicular bisector of the pair a and a j , the center c of this sphere is an element
of each A j , but this is impossible as ∩n

k=0 Ak = ∅. We conclude then that {a0, . . . , an}
is affinely independent, a is a polar point for [v0, . . . , vn], and b = a∗ is antipodal to
a. Now we may observe that a is not in any support plane A j , for otherwise the first
paragraph of this proof would imply that b = a∗ = v j , contradicting that ρ is bijective
between Y ∪ {b} and V ∪ {b}.

The uniqueness claim follows easily since the proof thus far implies that any metric
space extending V ∪ {a} as required must have its distances determined by the pair
(a, a∗) as described in the preceding paragraph.

Remark. It is a consequence of the proof of the (⇒) case of Theorem 2 that when a
is a polar point for [v0, . . . , vn] that does not lie on any of the n + 1 support planes A j ,
for j = 0, . . . , n, then a∗ is also a polar point for [v0, . . . , vn] that lies on no support
plane and a∗∗ = a. In this case, we say that a and a∗ form a polar pair for, and are
antipodal with respect to, the simplex [v0, . . . , vn].

We are now in a position to improve upon Theorem 1.

Theorem 3. Let X be a metric space for which every subset with at most n + 2
elements isometrically embeds in E

n. Then either X isometrically embeds in E
n, or
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X has precisely n + 3 elements and X contains a subset with n + 1 elements that
embeds isometrically onto an affinely independent subset of En.

Proof. We assume that X fails to embed isometrically in E
n even though all of its

subsets with at most n + 2 elements do so embed. It follows that X has at least
n + 3 elements. Exactly as in the first two paragraphs of the proof of Theorem 1,
let Y = {y0, . . . , ym} ∼= {y0, . . . , ym} = V ⊂ E

n , where m ≤ n be a subset of X with a
maximum number of elements that embeds isometrically onto an affinely independent
subset of En , let A be the affine span of V , and define the function ρ : X → A ⊂ E

n

so that ρ(yk) = yk for k = 0, . . . , m and ρ(x) = ρx(x) for x ∈ X − Y . Though ρ

fails to be an isometry, for each x ∈ X − Y , the restriction of ρ to Yx = Y ∪ {x}, viz.,
ρx : Yx → A, is an isometry.

We now prove that m = n. If not, then m < n and A is an m-dimensional affine
plane in E

n and, as such, is isometric to the m-dimensional Euclidean space E
m . Let

Z be any subset of X with precisely m + 3 elements and note that m + 3 ≤ n + 2.
By hypothesis, Z embeds isometrically in E

n , and by the definition of m, any such
embedding is contained in an affine plane of dimension at most m. It follows that Z
embeds in A isometrically and an application of Theorem 1 implies that X embeds in
A, and therefore in E

n isometrically, a contradiction.
Since m = n, the set V is an affine basis for A = E

n , and our claim is that there are
exactly two elements in X − Y . The last paragraph of the proof of Theorem 1 implies
that if every subset of X that has n + 3 elements and contains Y embeds isometrically
in E

n , then X itself so embeds. It follows that there are two points a and b of X − Y for
which Y ∪ {a, b} fails to embed isometrically in E

n . Our claim is that X = Y ∪ {a, b}.
If not, let c be a point of X not in Y ∪ {a, b}. There are two cases to consider.

Case 1: The sets Y ∪ {a, c} and Y ∪ {b, c} do not embed isometrically in E
n. The next

two paragraphs will completely determine the metric of the set Y ∪ {a, b, c} under the
hypothesis that the sets Y ∪ {a, c} and Y ∪ {b, c} do not embed isometrically in E

n .
We then will show that the structure so obtained violates the Pythagorean theorem.

Since Y ∪ {a, b} is an extension of V ∪ {ρ(a)} that fails to embed in E
n isomet-

rically, the proof of Theorem 2 implies that the pair {ρ(a), ρ(b)} forms a polar pair
for the n-simplex [y0, . . . , ym]. But this applies to the sets Y ∪ {a, c} and Y ∪ {b, c} as
well so that {ρ(a), ρ(c)} and {ρ(b), ρ(c)} also form polar pairs for the same simplex.
It follows immediately that ρ(a) = ρ(b) = ρ(c) ≡ x ∈ E

n , and therefore x = x∗.5 It
now follows that a, b, and c satisfy ab = bc = ca = r , where r is the polar diameter
of the polar pair {x, x∗}, and, for k = 0, . . . , n, ayk = byk = cyk .

For any j = 0, . . . , n, let Y j = Y − {y j }, Vj = ρ(Y j ) = V − {y j }, and A j be the
j th support plane for the n-simplex [y0, . . . , yn]. For i 	= j ∈ {0, . . . , n}, let Yi, j =
Y − {yi , y j }, and Ai, j = Ai ∩ A j , the affine span of Vi, j = V − {yi , y j }. Since Yi, j ∪
{a, b, c} has n + 2 elements, there is an isometric embedding τi, j of Yi, j ∪ {a, b, c} into
E

n , and by Lemma C, we may assume that τi, j (yk) = yk for k 	= i, j . Set τi, j (a) = a,
τi, j (b) = b, and τi, j (c) = c and note that none of a, b, and c is in the affine plane Ai, j ,
for otherwise Lemma A would imply the equality of these three points. It follows that
the (n − 2)-dimensional affine plane Ai, j and the 2-dimensional affine plane Bi, j , the
affine span of a, b, and c, meet at a single point O. Now Ai, j may be described as
{z ∈ E

n : az = bz = cz}, and this implies, since a, b, and c are the vertices of an equi-
lateral triangle, that the (n − 2)-dimensional affine plane Ai, j and the 2-dimensional
affine plane Bi, j are orthogonal with the single point of intersection O, which is the

5We will show in the next paragraph that the self-antipodal point x must be the incenter of the n-simplex
[y0, . . . , yn].
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incenter of the 2-simplex [a, b, c]. This says that En decomposes as an orthogonal
direct sum E

n = Ai, j ⊥ Bi, j , which implies that Vi along with at least one of a, b,
and c is affinely independent. In turn, this implies that, if the set Yi ∪ {a, b, c} were
to embed isometrically into E

n , then using Lemma C, τi, j could be extended to an
isometric embedding of Yi ∪ {a, b, c} by τi, j (y j ) = y j . The fact that ay j = by j = cy j

then would imply that y j ∈ Ai, j . This would contradict the fact that the collection
Vi , being an affinely independent set of n elements, spans an (n − 1)-dimensional
affine plane and cannot be contained in the (n − 2)-dimensional affine plane Ai, j .
Thus, Yi ∪ {a, b, c}, and similarly Y j ∪ {a, b, c}, cannot embed isometrically in E

n ,
and therefore both are metric extensions of Vi, j ∪ {a, b, c} that fail to embed isomet-
rically in E

n . The uniqueness of Theorem 2 now applies to ensure that for any index
k not equal to i nor j , yi yk = y j yk , and also ayi = ay j , byi = by j , and cyi = cy j .
Because i and j are arbitrary indices, we conclude that all the distances among the
n + 1 points of Y are equal to a common positive value ε, so that the set V is the ver-
tex set of a regular n-simplex �n

ε in E
n , and that all the distances xy for x ∈ {a, b, c}

and y ∈ Y have a common value ζ . Since the incenter of a regular simplex is the only
self-antipodal point that is equidistant from the vertices of [y0, . . . , yn], we conclude
that x is the incenter of the regular simplex �n

ε and hence ζ is the circumradius of �n
ε

while the polar diameter r = ab = bc = ca is 2δ, where δ is the inradius of �n
ε .

The preceding paragraphs have uncovered the metric structure of Y ∪ {a, b, c}. Y
is isometric to the vertex set of a regular n-simplex �n

ε of side-length ε, {a, b, c} is
isometric to the vertices of a regular 2-simplex (equilateral triangle) �2

2δ of side-length
2δ, where δ is the inradius of �n

ε , and the distance from any point of Y to any of a,
b, or c is the distance ζ from the incenter of �n

ε to any of its vertices, the circumra-
dius of �n

ε . Armed with these facts, we are ready to derive a contradiction using the
embedding τi, j of the immediately preceding paragraph. Specifically, set i = 0 and
j = 1. The set Y0,1 ∪ {a, b, c} = {y2, . . . , yn, a, b, c} embeds isometrically in E

n via
τ0,1 with image {y2, . . . , yn, a, b, c}. Recall that the affine spans A0,1 of {y2, . . . , yn}
and B0,1 of {a, b, c} are orthogonal with a single point of intersection O, the incen-
ter of the 2-simplex [a, b, c]. From the exercise of the Overture, the circumradius
of [a, b, c] is s = (2δ/

√
2)ζ2 = εδnζ2 since δ = (ε/

√
2)δn . Since the distance from

a to any point of {y2, . . . , yn} is constant, the points {y2, . . . , yn} lie on a sphere in
A0,1 centered at O. But since the points {y2, . . . , yn} are the vertices of a regular
(n − 2)-simplex of side-length ε, this sphere must be the circumscribing sphere of
radius R = (ε/

√
2)ζn−2. Consider now the triangle with vertices a, yn , and O: It has

a right angle at O and side-lengths Oa = s, Oyn = R, and ayn = ζ = (ε/
√

2)ζn . An
application of the Pythagorean theorem gives s2 + R2 = ζ 2, or 2δ2

nζ
2
2 + ζ 2

n−2 = ζ 2
n .

The exercise of the Overture then implies that

4

3

1

n(n + 1)
+ n − 2

n − 1
= n

n + 1
.

Straightforward algebra applies to show that this latter equation has a unique solution,
n = −2, and this contradicts that the dimension n ≥ 1 of Euclidean space E

n satisfies
the equation.

Case 2: The set Y ∪ {b, c} does embed isometrically in E
n. In this case, the restriction

of ρ to Y ∪ {b, c} is an isometric embedding. Let a = ρ(a), b = ρ(b), and c = ρ(c).
If Y ∪ {a, c} were to fail to embed isometrically, then the uniqueness of Theorem
2 would imply that ykb = ykc for k = 0, . . . , n, which would imply by Lemma A
that ρ(b) = b = c = ρ(c), contradicting that ρ isometrically embeds {b, c}. Thus,
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ρ isometrically embeds both sets Y ∪ {a, c} and Y ∪ {b, c}. We will show that this
fact—that both these sets with n + 3 elements do embed isometrically—implies that
Y ∪ {a, b, c} necessarily embeds in E

n isometrically, a contradiction that finishes the
proof.

For the moment, we make two assumptions that are addressed in the next paragraph:
(i) the (n + 1)-element set {y1 . . . , yn, c} is affinely independent, and (ii) the n-element
set {y3, . . . , yn, b, c} is affinely independent and, hence, spans an (n − 1)-dimensional
affine plane A. By hypothesis, the (n + 1)-element set S = {y3, . . . , yn, a, b, c}
embeds in E

n isometrically, and by Lemma C we may assume the isometric embed-
ding μ : S → E

n satisfies μ = ρ on S − {a} with μ(a) = a′. Let a′′ be the isometric
reflection of a′ through A. By hypothesis and Lemma C, the three (n + 2)-element
sets Sk = {yk, y3, . . . , yn, a, b, c}, k = 0, 1, 2, embed isometrically onto the respec-
tive sets {yk, y3, . . . , yn, αk, b, c}, k = 0, 1, 2, for some αk ∈ E

n . By Lemma B, since
{y3, . . . , yn, b, c} is affinely independent, each αk is either a′ or a′′. It follows that
for at least two values of k = 0, 1, 2, the αk’s agree, i.e., without loss of generality,
we may assume that α1 = α2 = a′, and this implies that {y1, . . . , yn, a, b, c} embeds
isometrically onto {y1, . . . , yn, a′, b, c}. By Lemma A, since ρ restricts to Y ∪ {a, c}
as an isometric embedding and {y1 . . . , yn, c} is affinely independent, the distances
of a to the points of {y1, . . . , yn, c} uniquely determine ρ(a) = a. But we have seen
that {y1, . . . , yn, a, b, c} is isometric with {y1, . . . , yn, a′, b, c}, so the distances of a
to the points of {y1, . . . , yn, c} uniquely determine the point a′. Thus, a = a′, and
then ρ isometrically embeds Y ∪ {a, b, c} since then ab = a′b = ab. This of course
contradicts that Y ∪ {a, b} fails to embed in E

n isometrically.
We now show that the two assumptions of the preceding paragraph always hold

for an appropriate ordering of the vertices of the n-simplex σ = [y0, . . . , yn]. Indeed,
since ∩n

k=0 Ak = ∅, there is at least one support plane of σ that does not contain the
point c, and without loss of generality we may assume that c 	∈ A0. Assumption (i)
follows immediately. Now since ∩n

k=1 Ak = {y0} and c 	= y0, there is another support
plane not containing c, and without loss of generality we may assume that c 	∈ A1. Let
E be the affine span of the set {y2, . . . , yn, c}, an (n − 1)-dimensional affine plane. If
b 	∈ E, then assumption (ii) holds since then the larger set {y2, . . . , yn, b, c} is affinely
independent. If b ∈ E, then the same argument applied above to c and the n-simplex
σ in E

n applied now to b and the (n − 1)-simplex τ = [y2 . . . , yn, c] in E implies that
there are at least two support planes of τ in the (n − 1)-dimensional Euclidean space
E that do not contain b. These two affine planes are opposite two of the vertices of τ ,
and this implies that one of these vertices must be from the list y2, . . . , yn , so without
loss of generality we may assume that b does not lie on the support plane of τ opposite
y2. Assumption (ii) is now automatic.

Theorem 2 offers in its corollary below the claimed improvement upon Theorem 1
as long as X is not a metric space of cardinality n + 3.

Corollary. Let X be a metric space whose cardinality is not equal to n + 3. Then X
embeds isometrically in the Euclidean space E

n if and only if each of its finite subsets
with at most n + 2 elements embeds isometrically in E

n.

We summarize in the next corollary facts uncovered in this section about all the
finite metric spaces with precisely n + 3 elements that fail to embed isometrically
in E

n , even though every subset with at most n + 2 elements does so embed. This
provides a characterization up to isometry of all such metric spaces. Indeed, all such
spaces up to isometry are obtained from the vertex set of an n-simplex in E

n and a
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polar pair. All distances are the Euclidean ones, except for that between the points of
the polar pair, and that distance is the polar diameter of the pair.

Corollary. Let X be a metric space that fails to embed isometrically in E
n though

all of its subsets with at most n + 2 elements do so embed. Then X has precisely
n + 3 elements and any subset of X of cardinality n + 1 isometrically embeds in E

n as
an affine basis. Moreover, for any two points a and b of X, there exists a mapping ρ :
X → E

n that restricts to isometric embeddings of X − {a} and X − {b}, and then ρ(a)

and ρ(b) form a polar pair for the n-simplex σ spanned by the points of ρ(X − {a, b}).
The points ρ(a) and ρ(b) do not lie on any of the n + 1 support planes of σ . The
distance ab = r , the polar diameter of the set {ρ(a), ρ(a)∗}, where ρ(a)∗ = ρ(b),
while the remaining distances in X are xy = ρ(x)ρ(y), when {x, y} 	= {a, b}. For any
j = 0, . . . , n, the polar diameter is r = ρ(a) jρ(a)∗ = ρ(a) jρ(b), where ρ(a) j is the
isometric reflection of ρ(a) through the (n − 1)-dimensional support plane A j of the
n-simplex σ .

Now that we have characterized those spaces X with the desired embedding prop-
erties into E

n , how common are they? The answer is contained in the next proposition,
whose proof is left to the reader.

Proposition. Let [v0, . . . , vn] be an n-simplex in E
n. The set of points a that are polar

to [v0, . . . , vn] is a dense open subset of E
n whose complement has measure zero.

ACT 3: CAYLEY–MENGER DETERMINANTS AND ISOMETRIC EMBED-
DING. Acts 1 and 2 have reduced the question of the isometric embeddability into E

n

of the metric space X with more than n + 3 elements to the question of the isometric
embeddability of each subset of X with n + 2 elements. Menger in his 1931 paper
[6] gave a purely algebraic invariant for an (n + 2)-element metric space that encodes
isometric embeddability into E

n . To describe this, we need the classical formula for
the volume of a simplex.

Theorem 4. The n-dimensional volume vn of an n-simplex [v0, . . . , vn] in E
n is

vn = vn([v0, . . . , vn]) = 1

n!

∣∣∣ det V
∣∣∣,

where, for k = 0, . . . , n, the kth row of the (n + 1) × (n + 1) square matrix V consists
of the n coordinates of the vertex vk augmented by a “1” in the (n + 1)st position.

The reader may find many references to this in the literature and perhaps one of the
shortest proofs is given by P. Stein [9]. Since our desire is to give proofs of Menger’s
results using geometric arguments at the undergraduate level, we give a quick geomet-
ric proof, even shorter than Stein’s.

Proof. First we derive the n-dimensional volume of a cone C over an (n − 1)-
dimensional base B. Let e1, . . . , en be the standard unit basis of En and A = hen +
En−1, the (n − 1)-dimensional affine plane at height h ≥ 0 above the coordinate hyper-
plane En−1 = span[e1, . . . , en−1]. Let B be a subset of A with (n − 1)-dimensional
volume vn−1 = vn−1(B), and let C = 0 ∗ B, the cone over B with vertex 0, the ori-
gin of E

n . Now C is just the union of the line segments in E
n between the origin

and the points of B; precisely, C = {tb : 0 ≤ t ≤ 1, b ∈ B} = ∪0≤t≤1t B, where
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t B = {tb : b ∈ B}. For each 0 ≤ t ≤ 1, since all distances are dilated by a factor of
t by the dilation x �→ tx, we have vn−1(t B) = tn−1vn−1(B). The “volume by slicing”
technology of elementary calculus implies that

vn(C) =
∫ h

0
vn−1

( x

h
B

)
dx = vn−1(B)

∫ h

0

xn−1

hn−1
dx = 1

n
vn−1(B)h.

The classical formula for the volume of the n-simplex now follows by induction.
Indeed, the basis of the induction, n = 1, holds trivially. Assume the formula holds
for any (n − 1)-simplex in E

n−1, and let h be the distance from v0 to the 0th support
plane A0 of σ = [v0, . . . , vn], an n-simplex in E

n . Let σ0 = [v1, . . . , vn] be the face
of σ opposite v0. First make the simplifying assumption that A0 = span[e2, . . . , en]
and v0 = he1. Then V, the matrix in the statement of the theorem, has h, 0, . . . , 0, 1 as
its first row and h, 0, . . . , 0 as its first column, and the n × n minor V0 of V obtained
by striking out the first row and column is the matrix in the statement of the theorem
for the simplex σ0 in the (n − 1)-dimensional Euclidean space A0. It follows from this
and the inductive hypothesis that det V = h det V0 = (n − 1)!hvn−1(σ0). Since σ =
v0 ∗ σ0, the result of the preceding paragraph implies that vn(σ ) = n−1vn−1(σ0)h =
(n!)−1 det V, verifying the inductive step.

To finish the proof, since any n simplex [v0, . . . , vn] in E
n may be moved so that

A0 = span[e2, . . . , en] and v0 = he1 by a rigid motion, all we need do is verify that
det V is invariant under any translation of the vertices by a vector a and under the appli-
cation of any n × n orthogonal matrix On . This is left as a nice exercise in the manip-
ulation of determinants, using that det On = 1, det AB = det A · det B, and det A = 0
when one column is a multiple of another.

Menger’s clever idea is to manipulate the (n + 1) × (n + 1) square matrix V to
obtain an associated (n + 2) × (n + 2) square matrix D whose determinant expresses
the squared volume of the n-simplex [v0, . . . , vn] entirely in terms of di j = vi v j , 0 ≤
i, j ≤ n, the distances among the vertices of the simplex. Noting that Cayley in his
first paper used this same determinant in discussing finite subsets of E3, Blumenthal
[1] termed det D the Cayley–Menger determinant. First consider the two matrices

A =

⎛⎜⎜⎝
v01 . . . v0n 1 0
...

. . .
...

...
...

vn1 . . . vnn 1 0
0 . . . 0 0 1

⎞⎟⎟⎠ and B =

⎛⎜⎜⎝
v01 . . . v0n 0 1
...

. . .
...

...
...

vn1 . . . vnn 0 1
0 . . . 0 1 0

⎞⎟⎟⎠ ,

where vk = (vk1, . . . , vkn) for k = 0, . . . , n, and note that det A = det V = − det B.
The product of A with the transpose of B is

ABtr =

⎛⎜⎜⎝
〈v0, v0〉2 . . . 〈v0, vn〉2 1

...
. . .

...
...

〈vn, v0〉2 . . . 〈vn, vn〉2 1
1 . . . 1 0

⎞⎟⎟⎠
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and the Cayley–Menger matrix is

D = D(v0, . . . , vn) =

⎛⎜⎜⎝
d2

00 . . . d2
0n 1

...
. . .

...
...

d2
n0 . . . d2

nn 1
1 . . . 1 0

⎞⎟⎟⎠ .

In the Cayley–Menger determinant, det D, substituting d2
i j = 〈vi − v j , vi − v j 〉 =

〈vi , vi 〉 + 〈v j , v j 〉 − 2〈vi , v j 〉, then for i, j = 0, . . . , n, multiplying the last row by
〈vi , vi 〉 and subtracting from the i th row, then multiplying the last column by 〈v j , v j 〉
and subtracting from the j th column, gives det D = (−2)n det ABtr = (−1)n+12n(det V)2.
Coupling this with Theorem 4 gives the squared-volume of the n-simplex [v0, . . . , vn]
in E

n entirely in terms of the distances among its vertices as

v2
n = vn([v0, . . . , vn])2 = (−1)n+1

2n(n!)2
det D.

Since v2
n ≥ 0, the sign of the determinant det D is (−1)n+1. Notice that vn = 0 = det D

for the points v0, . . . , vn in E
n if and only if the set {v0, . . . , vn} fails to be affinely

independent.
If X is any metric space of cardinality r , the Cayley–Menger determinant for X is

det D = det D(X) =

∣∣∣∣∣∣∣∣
d2

11 . . . d2
1r 1

...
. . .

...
...

d2
r1 . . . d2

rr 1
1 . . . 1 0

∣∣∣∣∣∣∣∣ ,
where x1, . . . , xr is some ordering of the points of X and di j = xi x j . Note that det D is
independent of the ordering of the points of X and, obviously, is an isometric invariant
of finite metric spaces. This implies the following. If X is a metric space that isomet-
rically embeds in E

n via the isometry ρ, then for any finite subset Y ⊂ X with, say,
r distinct points, the Cayley–Menger determinant det D(Y ) either vanishes or has the
sign (−1)r . Moreover, the determinant vanishes if and only if ρ(Y ) is affinely depen-
dent, which always occurs when r > n + 1. This gives a necessary condition for n + 2
points of X to embed isometrically in E

n , and Menger showed it to be sufficient.

Theorem 5. The (n + 2)-point metric space X embeds isometrically in E
n if and only

if, for each subset Y ⊂ X, the Cayley–Menger determinant det D(Y ) either vanishes
or has the sign (−1)|Y |, where |Y | is the cardinality of Y , and det D(X) = 0.

Necessity has been demonstrated. The proof of sufficiency is by induction and involves
a detailed algebraic analysis. The authors offer no geometric proof of sufficiency and
refer the reader to Menger’s original argument in [6].

We close this act by condensing all three fundamental results of Menger into a
characterization of those metric spaces isometrically embeddable in Euclidean space,
as he did in [6].

Metrical Characterization of Euclidean Sets. A metric space X embeds isometri-
cally in E

n if and only if, when X contains more than n + 3 points, then
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(i) for every Y ⊂ X with precisely r ≤ n + 1 points, the Cayley–Menger determi-
nant det D(Y ) either vanishes or has the sign (−1)r , and

(ii) the determinant associated with each n + 2 distinct points of X vanishes;
and when X contains exactly n + 3 points, in addition to these conditions,

(iii) det D(X) = 0.

POSTLUDE: DISTANCE AND METRIC GEOMETRY. Menger’s 1931 results
may be counted as the modern starting point for the discipline of distance geometry,6

a discipline that studies sets based on given distances between pairs of its points. Spe-
cial interest rests on the relation of general metric spaces to the metric spaces of the
classical geometries—spherical and elliptic, Euclidean, and hyperbolic spaces. More
recently, distance geometry has found applications to a great variety of fields, includ-
ing protein structure, molecular structure, wireless sensor networks, multidimensional
scaling, and graph rigidity. Liberti et al. [4] is a fantastic reference source for these and
other applications. Distance geometry has close affinity to and not insignificant over-
lap with the discipline of metric geometry,7 which concerns the metric relationships
that characterize segments and lines and curves and surfaces, and today finds expres-
sion in the study of metric curvature and length spaces, with applications to geometric
group theory and geometric topology. The classic reference for distance geometry is
Leonard Blumenthal’s 1953 treatise Theory and Applications of Distance Geometry
[1] and a modern reference for the still-developing discipline of metric geometry is
Dmitri Burago, Yuri Burago, and Sergei Ivanov’s 2001 treatise A Course in Metric
Geometry [2].

Aside from the original articles [5] and [6], detailed proofs of Menger’s results
appear in Chapter IV of Blumenthal [1], whose approach is that of Menger’s with
proofs that are more algebraic and combinatorial than ours. Blumenthal goes much
further in that he develops the corresponding isometric embedding results for both
spherical and hyperbolic spaces, as well as Hilbert spaces. Of interest also is C. L. Mor-
gan [7], where the problem of embedding metric spaces into Euclidean spaces is
addressed entirely algebraically. There, Morgan gives determinant conditions, simi-
lar in flavor to Menger’s use of the Cayley–Menger determinant, to give necessary and
sufficient algebraic conditions based on the distances among points for a metric space
to admit a Euclidean embedding. This is a little different from Schoenberg’s [8] earlier
algebraic approach for finite metric spaces that gives a condition on the the matrix of
squared distances that is necessary and sufficient for embedding into Euclidean space.
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The Paul R. Halmos–Lester R. Ford Awards for 2016

The Paul R. Halmos–Lester R. Ford Awards, established in 1964, are made annually
to authors of outstanding expository papers in the MONTHLY. The award is named
for Paul R. Halmos and Lester R. Ford, Sr., both distinguished mathematicians and
former editors of the MONTHLY. Winners of the Halmos–Ford Awards for expository
papers appearing in Volume 123 (2016) of the MONTHLY are as follows.

• Adrien Kassel and David Wilson, “The Looping Rate and Sandpile Density of
Planar Graphs,” pp. 19–39.
• Deborah A. Kent and David J. Muraki, “A Geometric Solution of a Cubic by
Omark Khayyam . . . in Which Colored Diagrams Are Used Instead of Letters for
the Greater Ease of Learners,” pp. 149–160.
• Harold P. Boas, “Mocposite Functions,” pp. 427–438.
• Lawrence Zalcman, “A Tale of Three Theorems,” pp. 643–656.
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