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A vector space of eight-dimensional complex spinors y is constructed which is in a sense a square root of Minkowski
space. The usual position, momentum and angular momentum variables of a particle of non-zero rest mass and arbitrary
spin are given as expectation values with respect to ¢ of appropriate 8 X 8 matrices.

1. Introduction. Minkowski space M4 has proved a
very useful mathematical tool for modelling the phys-
ical world in the absence of gravity. Nevertheless
doubts arise whether the space-time continuum con-
cept is adequate on a microscopic scale, where perhaps
it needs to be quantised in some sense. One promising
approach is the twistor [O(2, 4) spinor] theory of
Penrose and co-workers [1] where the basic geometric
structure is a complex projective three-space C. A
class of points of C corresponds to null straight lines
in My, while the points in M correspond to particular
lines in C. A different approach is taken by Nash [2 3]
who replaces My as the basic manifold by what isin a
rough sense a square root of My, a real space con-
structed from pairs of real O(3, 3) spinors subject to
certain constraints. Nash finds quadratic forms in
these sixteen spinor components which model the
usual position, momentum and angular momentum
coordinates of a free particle of non-zero rest mass
and arbitrary spin. Qur approach is similar in spirit to
that of Nash but differs in that it involves the groups
SO(2, 6) and U(4, 4) rather than O(3, 3).

2. Basic postulates and the commutation relations.
We assume that the underlying geometric entity is a
space of “spinors” y, which are column vectors with
N complex components 4 *1_ The choice N = 8 will
be shown appropriate in section 3. We require the
existence of a hermitian “metric)” matrix g = g1
with matrix elements 8 5 or g4 which is used to
define the adjoint spinor ¢ = Y1, a row vector with
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components Y g = (Y4)*B ;5. We similarly define the
adjoint F = F1g for any N X N matrix F. A particle
variable f in Minkowski space is assumed to be the
“‘expectation value” with respect to Y of some self-
adjoint matrix F, defined as follows: f= (F) = YFy/
YEY. The normalisation factor in the denominator
involves a self-adjoint matrix £ which, as we shall see
below, cannot be taken as the unit matrix. The self-
adjoint requirement for # and E ensures the reality of
(F).

Thus to describe a free particle of rest mass m, po-
sition x*, momentum p* and angular momentum jA#*
we seek self-adjoint matrices X*, P* and JM with x*
= (XA), p™ = (PM) and jA = (JM), We now require
that P and J** be the infinitesimal generators of
Poincaré transformations in the following sense: the
spinor transformation

Y= = (/R Gy, J M +a, PV (1)

with infinitesimal Lorentz transformation Wy and
translation g, induces a Poincaré transformation of
the expectation values:

*1 Notation. Upper case Latin indices run from 1 to N; Greek
indices from 0 to 3;j and k over 0, 1, 2, 3,5, 6, 7;4, b, ¢,
doe fghover0,1,2,3,5,6,7,8. A superscript 4 means
the combination 5—~6, thus m%7 = m®7 — m87, The metric
tensor in M4 has components &y = diag(1, -1, -1, —1).
The Levi-Civita symbols in 8 and 4 dimensions respec-
tively are ¢@bcdefgh and ek MY with 01235678 = (0123
= +]1, The superscripts *, T and T denote the complex con-
jugate, hermitian conjugate and transpose respectively.
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@MY =xr vt 2P -ar (Y =pr P p,

GMY =M+ PR+ Y - dpt ratp . (2)

Planck’s constant 7 is inserted in (1) for dimensional
reasons. For (2) to follow from (1) the following com-
mutation relations must hold:

[X*,PM] = —irg AE, [P*,P*] =0,
DX, %] = in(gerX® — geX ), [E,PM =0,
[E’JN‘]=O5 [PK’JM]'_'ih(gKAP“_gK”P}\)’

[JLK’JNJ] = ih(g‘“J"A +gx>\Jm — gchjxp . gK[.LJL}\) .
3)

Note that if we had taken E to be the unit matrix,
then the first equation of (3) would give a contradic-
tion on taking the trace.

In addition to (3) let us postulate a self-adjoint
evolution operator = such that the spinor equation of
motion ifdy/ds = Ey causes the particle expectation
values to satisfy medx */ds = p?, dp/ds = 0, dj™/ds
= Q. This yields the further commutators
[X¥,E] =inP%/(mc), [E,E]=0,

[J¥«,Z}=0. )

[P¢,E] =0,

3. Realization of the commutation relations. The
commutators (3) and (4) do not constitute a Lie al-
gebra because the commutators [X*, X*] and [X*,
E] are not prescribed. Nevertheless if we take a rep-
resentation of the Lie algebra belonging to either
SO(3, 4) or SO(2, 5) with infinitesimal generators
M¥ (j,k=0,1,2,3,5,6,7) and metric g/* = diag(l,
—1,-1 -1, -1, 1, £1) we can realise (3) and (4)
with the identification

JNM=RMM . A u=0,1,2,3,
PN = po@MSN — MO =po M XA = (Rfug)MNT
E=MST-M6T =M%, =Z=pdme)ygTE, (5)

where p is an arbitrary constant of dimensions mo-
mentum. We now construct a spinor representation
of SO(3, 4) or SO(2, 5) via the generalised Clifford
algebra Yk + ykof = 2g/  with M/* = (i/4)(y/v*
— vk 47). We shall make the choice SO(2, 5) because
this leads to a time like momentum p*, whereas
SO(3, 4) gives a space like p? (section 4). From the
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general theory of Clifford algebras [4,5] an 8 X 8
representation exists together with real symmetric
orthogonal matrices § and C satisfying

("' = —gvis, ()T =-Cyic, BC+Cp=0.

Henceforth we set N=8 and g77 = —1.
An explicit representation for v/ may be obtained
from three copies of the Pauli matrices (1, 0,, 03),

(Pl,Pz,P3),(71,7'2,T3)5
Y0=p5, (1,72, v3)=ip0, ¥3=-iryp,,
Y =130y, Y =irg3p;, B=py7, C=py0,75.

We can now enlarge the algebra to that of SO(2, 6) by
defining further infinitesimal generators M8/ = —_M/8
= %i'yf ,g88 = _1. The extended set of generators sat-
isfies

[Mab, ped) = i[ gadpgbe + gheppad _ gacprbd —ghdmec]
Mab = gyab )TB = Mab 6)
whereg, b,¢,d=0,1,2,3,5,6,7,8.

4. Minkowski space vectors and tensors. The 28 (lin-
early) independent M0 and 35 independent products

Mabed = ppabpged = (| [24) gabedefgh M, feh

a, b, c, d all different), together with the unit matrix,

give a total of 64 independent 8 X 8 matrices self-ad-
joint with respect to . Since § has eigenvalues 1, 1,1,
1, —1, —1, =1, —1 these 64 matrices are infinitesimal
generators of U(4, 4). Given an arbitrary spinor ¢ let
us define m@b = YMab y, maebed = Ypabedy g = §y.
These 64 real quantities are subject to the identities [6]

=1
mibm,© = 51q? + WTCY 2] gbe
mabmed + mbepmad 4 ppcay,bd = qmabcd

+ Re{(ll/TClI/)* \bTCMabcd yl=— % eabodefghmefm

A

cf. the identities (57) of ref. [2]. If we restrict our-
selves to the Poincaré subgroup generated by MM

and PM we can form many tensors and pseudotensors
from m®, ma¢d and q [6]. Those which seem to

have an obvious physical interpretation are the par-
ticle variables already defined, viz. x* = (h/uo)m”/
m#1 pA=uom N mA7, jN = M ImA7 | together
with wk = (ame/pg )m8rmA7, s = hqmN47 |(m47)2.
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Great simplification occurs if we restrict Y to lie in
the subspace

miT=1, m¥8=0, m’8=0, yTCy=0. (8)

This subspace is invariant under evolution according
to iady/ds = Zy. Adopting the constraints (8), (7)
yields

_ 2 _
proy=ui, piw, =0,

%s}‘“sw = —W}‘W)\ = %(hmc/uo)zqz )

kA = (mc)—le“"“”wﬂpl,, ]'K}\ =x"p)‘ _ x)\pk + gkA

)

Clearly we should take ug = mc and interpret w as
the Pauli—Lubanski spin vector with s™ as the spin
angular momentum. Note that starting from SO(3, 4)
rather than SO(2, 5) in section 3 changes the sign of
u(z) in (9), making p* space like, which is unphysical.

5. Charge conjugation, time reversal and parity.
Analogy with Dirac electron theory suggests that
charge conjugation be defined by @y = C8y*. This
operation leaves m@ unchanged, and hence x *, p?,
wh, jM gM but reverses the sign of g and m@bed
suggesting that the latter variables represent electro-
magnetic quantities. Thus ¢ and m 47 might be pro-
portional to the particle’s charge and internal mag-
netic moment tensor respectively. We can also find
time reversal and parity operators, which for the par-
ticular representation of section 3 take the form 7
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=T73p7 @ and P = p, V. These operators when ap-
plied to a spinor induce the appropriate transforma-
tions of the particle variables.

6. Conclusion. We have thus been able to model
many of the properties of noninteracting classical par-
ticles. The algebra of U(4, 4) is a very rich one, having
many subalgebras including those of SU(4) and of the
conformal group of Minkowski space time. The identi-
fication of particle variables made in section 4 is not
the only one possible. A more general one [6], which
does not impose the constraint 48 = 0, may be based
on (me)x™ — iwk =#H(mM +im )/ (mA7 +im*8), pA
= (mc)m4>‘/|m47 + im48|.

Unsolved problems within the formalism of this
paper are (i) incorporation of interactions and (ii)
quantisation,
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