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A CLASSIFICATION OF SMOOTH EMBEDDINGS

OF 4-MANIFOLDS IN 7-SPACE, II

Diarmuid Crowley and Arkadiy Skopenkov

Abstract. Let N be a closed, connected, smooth 4-manifold with H1(N ; Z) = 0. Our main

result is the following classification of the set E7(N) of smooth embeddings N → R7 up to
smooth isotopy. Haefliger proved that the set E7(S4) with the connected sum operation is a

group isomorphic to Z12. This group acts on E7(N) by embedded connected sum. Boéchat

and Haefliger constructed an invariant BH : E7(N) → H2(N ; Z) which is injective on the
orbit space of this action; they also described im(BH). We determine the orbits of the action:

for u ∈ im(BH) the number of elements in BH−1(u) is GCD(u/2, 12) if u is divisible by

2, or is GCD(u, 3) if u is not divisible by 2. The proof is based on a new approach using
modified surgery as developed by Kreck.

1. Introduction and main results

We work in the smooth category. The main result of this paper is a complete readily
calculable classification of embeddings into R7 of closed, smooth 4-manifolds N such that
H1(N) = 0. For such a manifold let E7(N) denote the set of smooth embeddings N → R

7

up to smooth isotopy. We omit Z-coefficients from the notation of (co)homology groups
and denote Poincaré duality by PD.

Classification Theorem 1.1. Let N be a closed connected 4-manifold such that
H1(N) = 0. There is the Boéchat-Haefliger invariant

BH : E
7(N) → H2(N)

whose image is

im(BH) = {u ∈ H2(N) | u ≡ PDw2(N) mod 2, u ∩ u = σ(N)}.

For each u ∈ im(BH) there is an injective invariant called the Kreck invariant,

ηu : BH−1(u) → ZGCD(u,24)

whose image is the subset of even elements.1

Corollary 1.2.2 (a) There are exactly twelve isotopy classes of embeddings N → R7

if N = S4 [Ha66] or an integral homology 4-sphere.

1991 Mathematics Subject Classification. Primary: 57R40, 57R52; Secondary: 57R65.
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1Here GCD(u, 24) is the maximal integer k such that both u ∈ H2(N) and 24 are divisible by k.

Thus ηu is surjective if u is not divisible by 2. Note that u ∈ im(BH) is divisible by 2 (for some u or,

equivalently, for each u) if and only if N is spin.
2For an explicit construction of the embeddings see §3 and Corollary 1.4(c) below.
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(b) For each integer u there are exactly GCD(u, 12) isotopy classes of embeddings
f : S2 × S2 → R7 with BH(f) = (2u, 0), and the same holds for those with BH(f) =
(0, 2u). Other values of Z2 are not in the image of BH. (We take the standard basis in
H2(S

2 × S2).)

We define the Boéchat-Haefliger invariant and the Kreck invariant in §1 and §2.
The description of im(BH) in the Classification Theorem 1.1 was already known. So

our achievement is to describe the preimages of BH (thus only this part of the proof
is presented in this paper). More precisely, in this description our achievement is the
transition from the case N = S4 (which was known) to closed connected 4-manifolds N
with H1(N) = 0.3 Let us explain what is involved in this transition.

From now on unless otherwise stated, we assume that
N is a closed connected orientable 4-manifold and f : N → R7 is an embedding.
It was known that E7(S4) with the embedded connected sum operation is a group iso-

morphic to Z12 [Ha66]. The group E7(S4) acts on the set E7(N) by connected summation
of embeddings g : S4 → R7 and f : N → R7 whose images are contained in disjoint cubes.
It was known that for H1(N) = 0 the orbit space of this action E7(S4) → E7(N) maps
bijectively under BH (defined in a different way) to im(BH). This follows by the Section
Lemma 3.1 and [BH70, Theorems 1.6 and 2.1] and smoothing theory [BH70, p. 156], cf.
[Ha67, Ha, Bo71, Fu94].

Addendum 1.3. Let N be a closed connected 4-manifold such that H1(N) = 0. For
each pair of embeddings f : N → R

7 and g : S4 → R
7

BH(f#g) = BH(f) and ηBH(f)(f#g) ≡ ηBH(f)(f) + η0(g) mod GCD(BH(f), 24).

Here the first equality follows by the definition of the Boéchat-Haefliger invariant, and
the second equality is proved in §3.

Definition of the Boéchat-Haefliger invariant. Denote by Cf the closure of the com-
plement in S7 ⊃ R7 to a tubular neighborhood of f(N).

Fix an orientation on N and an orientation on R7. A homology Seifert surface Af for
f is the generator of H5(Cf , ∂) ∼= Z chosen by the fixed orientations of N and R7.4

Define BH(f) to be the image of A2
f = Af ∩ Af under the composition H3(Cf , ∂) →

H4(Cf ) → H2(N) of the Poincaré-Lefschetz and Alexander duality isomorphisms.

This new definition is equivalent to the original one [BH70] by the Section Lemma 3.1.
The Classification Theorem 1.1 and Addendum 1.3 imply the following examples of the

triviality and the effectiveness of the above action.

Corollary 1.4. (a) For each embedding f : CP 2 → R7 and g : S4 → R7 the embedding
f#g is isotopic to f [Sk05, Triviality Theorem (a)].

(b) Let N be a closed connected 4-manifold such that H1(N) = 0 and the signature
σ(N) of N is not divisible by the square of an integer s ≥ 2). Then for each embeddings
f : N → R7 and g : S4 → R7 the embedding f#g is isotopic to f [Sk05].5

(c) If N is a closed connected 4-manifold such that H1(N) = 0 and f(N) ⊂ R
6 for an

embedding f : N → R7, then for each embedding g : S4 → R7 the embedding f#g is not
isotopic to f . Cf. [Sk05, the Effectiveness Theorem].

3A simpler proof of a particular case of the Classification Theorem 1.1 is given in [Sk05].
4More precisely, Af the image of the fundamental class [N ] under the composition H4(N) → H2(Cf ) →

H5(Cf , ∂) of the Alexander and Poincaré-Lefschetz duality isomorphisms; this composition is an inverse

to the composition H5(Cf , ∂) → H4(∂Cf ) → H4(N) of the boundary map and the normal bundle map, cf.

[Sk08’, the Alexander Duality Lemma]; the latter assertion justifies the name ’homology Seifert surface’.
5In other words, under the assumption of Corollary 1.4(b) the map BH is injective.
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(d) Take an integer u and an embedding fu : S2 × S2 → R7 constructed below. If
u = 6k± 1, then for each embedding g : S4 → R7 the embedding fu#g is isotopic to fu.6

Sketch of a proof. Part (a) follows from (b).
Part (b) follows by Addendum 1.3 and the Classification Theorem 1.1.
Part (c) follows by the Classification Theorem 1.1 because BH(f) = 0 when f(N) ⊂ R6,

cf. [Sk08’, Compression Theorem].
Part (d) follows by the Classification Theorem 1.1 because BH(fu) = 2W (fu) = 2u

analogously to [Sk08’, Boéchat-Haefliger Invariant Theorem], where W (fu) is defined anal-
ogously to [Sk08’, definition of the Whitney invariant]. �

The first construction of fu. Let fu : S2 → V5,3 be a map representing u times the
generator of π2(V5,3) ∼= Z. This map fu can be seen as a map from S2 to the space
of linear orthogonal embeddings R3 → R5. By the exponential law this gives a map

f̂u = pr1 ×fu : S2 × R3 → S2 × R5, where pr1 is the projection onto the first factor.

Let fu be the composition S2 × ∂D3 → S2 × ∂D5 → R7 of the restriction of f̂u and the
standard inclusion.

The second construction of fu. Take the standard embeddings 2D5 × S2 ⊂ R
7 (where

2 is multiplication by 2) and ∂D3 ⊂ ∂D5. Take u copies (1 + 1
n
)∂D5 × x (n = 1, . . . , u)

of 4-sphere outside D5 × S2 ‘parallel’ to ∂D5 × x. Join these spheres by tubes so that
the homotopy class of the resulting embedding S4 → S7 −D5 × S2 ≃ S7 − S2 ≃ S4 will
be u ∈ π4(S

4) ∼= Z. Let f be the connected sum of this embedding with the standard
embedding ∂D3 × S2 ⊂ R7.

It follows from the Classification Theorem 1.1 that if fk : Nk → R7 are embeddings of
closed connected 4-manifolds such that H1(Nk) = 0 and ak := BHNk

(fk), then

#BH−1
N1#N2

(a1 ⊕ a2) =

{
GCD(a1, a2, 3) if either a1 or a2 is not divisible by 2,

GCD(a1/2, a2/2, 12) if both a1 and a2 are divisible by 2.

The General Knotting Problem.

This subsection is not used in the proof of the Classification Theorem 1.1. This paper
concerns the classical Knotting Problem: given an n-manifold N and a number m, describe

Em(N), the set of isotopy classes of embeddings N → Rm.7 For recent surveys see [RS99,
Sk08]; whenever possible we refer to these surveys not to original papers.

The Knotting Problem is more accessible for 2m ≥ 3n + 4 [RS99, Sk08]. It is much
harder for

2m < 3n+ 4 :

if N is a closed manifold that is not a disjoint union of spheres, then until recently no
complete readily calculable descriptions of isotopy classes was known, in spite of the
existence of interesting approaches of Browder-Wall and Goodwillie-Weiss [Wa70, GW99,
CRS04].8 For recent results see [Sk06, Sk08’]; for rational and piecewise linear classification
see [CRS07, CRS] and [Sk06, Sk07, Sk08, §2, §3 and §5, Sk], respectively.

6For a general integer u the number of isotopy classes of embeddings fu#g is GCD(u, 12).
7The classification of embeddings into Sm is the same because if the compositions with the inclusion

i : Rm → Sm of two embeddings f0, f1 : N → Rm of a compact n-manifold N are isotopic, then f0

and f1 are isotopic (in spite of the existence of orientation-preserving diffeomorphisms Sm → Sm not

isotopic to the identity). Indeed, since f0 and f1 are isotopic, by general position i ◦ f0 and i ◦ f1 are
non-ambiently isotopic. Since every non-ambient isotopy extends to an ambient one [Hi76, Theorem 1.3],

i ◦ f0 and i ◦ f1 are isotopic.
8We are grateful to M. Weiss for indicating that the approach of [GW99] does give explicit results on

higher homotopy groups of the space of embeddings S1 → Rn.
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In particular, a complete, readily calculable classification of embeddings of a closed
connected 4-manifold N into Rm was only known only for m ≥ 8 (Wu, Haefliger, Hirsch
and Bausum) or for N = S4 and m = 7 (Haefliger):

# E
m(N) = 1 for m ≥ 9.

E
8(N) =

{
H1(N ; Z2) N orientable,

Z ⊕ Z
s−1
2 N non-orientable and H1(N ; Z2) ∼= Z

s
2.

E
7(S4) ∼= Z12.

Here Em(N) is the set of smooth embeddings N → R
m up to smooth isotopy; the equality

sign between sets denotes the existence of a bijection; the isomorphism is a group isomor-
phism for certain geometrically defined group structures. See references in [Sk08, §2, §3];
cf. [Sk06, Sk].

The ‘connected sum’ group structure on Em(Sn) was defined in [Ha66]. By [Ha61,
Ha66, Corollary 6.6, Sk08, §3], E m(Sn) = 0 for 2m ≥ 3n + 4. However, E m(Sn) 6= 0
for many m,n such that 2m < 3n+ 4,9 e.g. E7(S4) ∼= Z12.

In this paragraph assume that N is a closed n-manifold and m ≥ n + 3. The group

Em(Sn) acts on the set Em(N) by connected summation of embeddings g : Sn → Rm

and f : N → Rm whose images are contained in disjoint cubes.10 Various authors have
studied analogous connected sum action of the group of homotopy n-spheres on the set of
n-manifolds topologically homeomorphic to given manifold [Le70]. The quotient of Em(N)
modulo the above action of Em(Sn) is known in some cases.11 Thus in these cases the
knotting problem is reduced to the determination of the orbits of this action. This is as
non-trivial a problem: until recently no results were known on this action for m ≥ n+ 3,

Em(Sn) 6= 0 and N not a disjoint union of spheres. For recent results see [Sk08’, Sk06];
for a rational description see [CRS07, CRS]; for m = n+ 2 see [Vi73].

Acknowledgements. These results are based on ideas of and discussion with Matthias
Kreck and were presented at the International Pontryagin Conference (Moscow, 2008).

2. An overview of the proof

This section consists of four subsections. The first discusses the general strategy we
use. The second states the preliminary results needed to apply this strategy to calculate

E7(N). The third defines the key invariant, the Kreck invariant. The final section gives
the proof of the Classification Theorem 1.1.

A general strategy for the embedding problem.

The proof of the Classification Theorem 1.1 is based on the ideas we explain below
which are useful in a wider range of dimensions [Sk08’] and for solving problems other
than the action of Em(Sn) on Em(N) [FKV87, FKV88].

9This differs from the Zeeman-Stallings Unknotting Theorem: for m ≥ n+3 any PL or TOP embedding

Sn → Sm is PL or TOP isotopic to the standard embedding.
10Since m ≥ n + 3, the connected sum is well-defined, i.e. does not depend on the choice of an arc

between gSn and fN . If N is not connected, we assume that a component of N is chosen and we consider

embedded connected summation with this chosen component.
11In those cases when this quotient coincides with Em

P L(N) and when the latter set was known [Hu69,
§12, Vr77, Sk97, Sk02, Sk07, Sk06].
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In this subsection N is a closed connected n-manifold and f : N → Rm is an embedding.
Let νf be the normal vector bundle of f(N) and let Cf be the closure of the complement
in Sm ⊃ Rm of a tubular neighbourhood of f(N). We identify the boundary of Cf , ∂Cf ,
with the total space of the sphere bundle of νf . In this paper a bundle isomorphism is
always the restriction of a linear bundle isomorphism to the sphere bundle.

The following classical lemma reduces the classification of embeddings to the relative
classification of manifolds.

Lemma 2.1. For a closed connected manifold N embeddings f0, f1 : N → Rm are
isotopic if and only if there is a bundle isomorphism ϕ : ∂Cf0

→ ∂Cf1
which extends to

an orientation-preserving diffeomorphism Cf0
→ Cf1

#Σ for some homotopy n-sphere Σ.

Proof. The ‘only if’ part is obvious, so let us prove the ‘if’ part. The bundle iso-
morphism ϕ also extends to an orientation-preserving diffeomorphism Sm − IntCf0

→
Sm − IntCf1

. Therefore Σ ∼= Sm#Σ ∼= Sm. So ϕ extends to an orientation-preserving
diffeomorphism Cf0

∼= Cf1
. Since any orientation-preserving diffeomorphism of Rm is

isotopic to the identity, it follows that f0 and f1 are isotopic. �

Remark. Lemma 2.1 has been used to obtain embedding theorems in terms of Poincaré
embeddings [Wa70]. But ‘these theorems reduce geometric problems to algebraic problems
which are even harder to solve’ [Wa70]. One of the main problems is that in general (i.e.
not in simpler cases like that of [Sk05, the Effectiveness Theorem]) it is hard to work
with the homotopy type of the pair (Cf , ∂Cf ) (which is sometimes unknown even when
the classification of embeddings is known [Sk06]).

The main idea of our proof is to apply the modification of surgery [Kr99] which allows
to classify m-manifolds using their homotopy type just below dimension m/2.12 Apply-
ing modfified surgery we prove a diffeomorphism criterion for certain 7-manifolds with
boundary: the Almost Diffeomorphism Theorem 2.6 (cf. the Diffeomorphism Theorem
4.7) which is a new, non-trivial version of [KS91, Theorem 3.1] and of [Kr99, Theorem 6]
for 7-manifolds M with non-empty boundary and without the assumption that H4(M) is
finite.

Preparatory results.

In order to let the reader understand the main ideas before going into details, we
sometimes apply a result before presenting its proof. In such cases the proof if given in
§3 (except for the proof of ‘if part’ of the Almost Diffeomorphism Theorem 2.6 which is
given in §4).

Remark. For some readers it would be more convenient to replace homology by
cohomology using Poincaré-Lefschetz duality (these readers would have to pass back to
homology at the decisive step of the proof because in geometric situations like in this
paper cup-products are anyway calculated by passing to cap-products). For some readers
it would be more convenient to replace for a manifoldQ a homology class z ∈ Hn−2(Q, ∂Q)
by a homotopy class of a map Q → CP∞ (then sewing two maps would be a bit more
technical) and a spin structure on Q by a map Q→ BSpin.

Recall that unless otherwise stated
N is a closed connected orientable 4-manifold and f : N → R

7 is an embedding.

Lemma 2.2. The normal bundle of f , νf , does not depend on f .

12The realization of this idea is close to, but different from the realization of [Sk05]. Here we use
BSpin × CP∞-surgery while in [Sk05] BO 〈5〉 × CP∞-surgery is used.
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Proof. The lemma follows because ν = νf is completely defined by its characterictic
classes [DW59]. We have e(ν) = 0, w2(ν) = w2(N) by the Wu formula and p1(ν) = p1(N)
by the analogue of the Wu formula for real Pontryagin classes. �

Take two embeddings f0, f1 : N → S7. By Lemma 2.2 there is a bundle isomorphism
ϕ : ∂Cf0

→ ∂Cf1
. By Lemma 2.1 embeddings f0 and f1 are isotopic if and only if there

is an extension ϕ : Cf0
→ Cf1

#Σ. In this situation we may assume:
• that ϕ preserves the spin structures s, s′ coming from S7 and
• that ϕ sends the generator Af0

∈ H5(Cf0
, ∂) to the generator Af1

∈ H5(Cf1
, ∂).

The first property is fulfilled because H1(N) = 0. A necessary condition for the second
property is ϕ∗∂Af0

= ∂Af1
.

Agreement Lemma 2.3. Suppose that H1(N) has no 2-torsion,13 f0, f1 : N → S7

are embeddings and ϕ : ∂Cf0
→ ∂Cf1

is a bundle isomorphism. We have ϕ∗∂Af0
= ∂Af1

if and only if BH(f0) = BH(f1).

Now suppose that BH(f0) = BH(f1). There is a spin bordism between (Cf0
, Af0

)
and (Cf1

, Af1
) relative to the boundaries identified by ϕ (because by the Remark the

obstruction to the existence of such a cobordism assumes values in ΩSpin
7 (CP∞) = 0

[KS91, Lemma 6.1]). It remains to replace the bordism by an h-cobordism. This problem is
solved by modified surgery [Kr99]. The heart of our argument is to analyse the dependence
of the surgery obstructions which arise from various choices of the bordism and the bundle
isomorphism ϕ. We call the resulting obstruction the Kreck invariant.

The definition of the Kreck invariant.

For any manifoldQ we abbreviateHi(Q, ∂Q) toHi(Q, ∂) and denote Poincaré-Lefschetz
duality by

PD : Hi(Q) → Hq−i(Q, ∂) and PD : Hi(Q) → Hq−i(Q, ∂).

Recall that for an abelian group G the divisibility d(0) of zero is zero and the divisibility

d(x) of x ∈ G− {0} is max{k ∈ Z | there is x1 ∈ G : x = kx1}.

A sentence involving k holds for each k = 0, 1.
A set X = (C0, C1, A0, A1, ϕ) consisting of compact connected spin 7-manifolds C0 and

C1, generators Ak ∈ H5(Ck, ∂) ∼= Z and a spin diffeomorphism ϕ : ∂C0 → ∂C1 is called
admissible if

∂A1 = ϕ∗∂A0, H3(∂C0) = 0, p1(C0) = p1(C1) = 0 and d(A2
0) = d(A2

1).

According to our strategy we first define the obstruction ηX to extending ϕ to a diffeo-
morphism carrying A0 to A1.

14

Denote Mϕ := C0∪ϕ (−C1). For y ∈ H5(Mϕ) and an orientable n-submanifold C ⊂Mϕ

we denote15

y ∩ C := PD[(PDy)|C ] ∈ Hn−2(C, ∂).

13We conjecture that this assumption is superfluous when ϕ is a spin bundle isomorphism.
14A more general situation makes things simpler, but a reader who do not wish to keep in mind the

properties of Ck, Ak, ϕ may assume that Ck = Cfk
, Ak = Afk

and ϕ is any spin bundle isomorphism.
15If y is represented by a closed oriented 6-submanifold Y ⊂ Mϕ transverse to C, then y ∩ C is

represented by Y ∩ C. If C = ∂C0, then y ∩ C = y ∩ [C]. If C = C0, then y ∩ C = y ∩ [C′], where C′ is
the image of [Mϕ] under the excision isomorphism Hn(Mϕ, C1) → Hn(C0, ∂).
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Null-bordism Lemma 2.4. Each admissible set has a null-bordism, i.e. a compact
connected spin 8-manifold W and z ∈ H6(W, ∂) such that ∂W =

spin
Mϕ and (∂z)∩Ck = Ak.

Proof. Look at the segment of (the Poincaré-Lefschetz dual to) the Mayer-Vietoris
sequence:

H5(∂C0) → H5(Mϕ)
Ψ1⊕Ψ2→ H5(C0, ∂) ⊕H5(C1, ∂)

∂1−∂2→ H4(∂C0).

Here the unmarked arrow is induced by inclusion and Ψkx := x ∩ Ck.
Since ∂A1 = ϕ∗∂A0, there is A ∈ H5(Mϕ) such that A ∩ Ck = Ak.16

Since ΩSpin
7 (CP∞) = 0 [KS91, Lemma 6.1], there are a compact spin 8-manifold W

and a class z ∈ H6(W, ∂) such that ∂W =
spin

Mϕ and ∂z = A. �

Let W be a compact spin 8-manifold. Consider the following fragment of the exact
sequence of pair:

H4(∂W )
iW→ H4(W )

jW
→ H4(W, ∂)

∂W→ H3(∂W )

(with any coefficients). Let p1(W ) be the first Pontryagin class of W . Denote

pW := PDp1(W ).

It is known that pW is divisible by 2, see Lemma 2.9.
Denote by ρm the reduction modulo m.

Definition: the Kreck obstruction ηW,z. Take a null-bordism (W, z) of an admis-

sible set X . Denote d := d(∂W z2). Then there is z2 ∈ H4(W ; Zd) such that jW z2 = ρdz
2.

Define

ηW,z := z2 ∩ ρd(z
2 −

1

2
pW ) ∈ Zd.

The proof of the independence of ηW,z on the choice of z2. We have z2 − z2
′

= iW a

for some a ∈ H4(∂W ; Zd). By Lemma 2.5 below there is 1
2
pW ∈ H4(W ) such that

jW
1
2pW = 1

2pW . Then

ηW,z(z2) − ηW,z(z2
′
) = iW a ∩ (z2 −

1

2
pW ) = iW a ∩ (z2 − ρd

1

2
pW ) = 0. �

Lemma 2.5. If (W, z) is a null-bordism of an admissible set X, then ∂W pW = 0 and
d(A2

0) = d(∂W z2).

Proof. Consider the segment of the Mayer-Vietoris sequence

H3(∂C0) → H3(∂W ) → H3(C0, ∂) ⊕H3(C1, ∂) → H2(∂C0).

Since (∂W pW ) ∩ Ck = PDp1(Ck) = 0 and H3(∂C0) = 0, we have ∂W pW = 0.
We have (∂W z2) ∩ Ck = (∂(z ∩ Ck))2 = A2

k. Hence d(A2
0) is divisible by d(∂W z2), and

in the above segment of the Mayer-Vietoris sequence ∂W z2 is mapped to A2
0⊕A

2
1. If A2

0 is
divisible by an integer d, then A2

1 is. Since H3(∂C0) = 0, we obtain that ∂W z2 is divisible
by d(A2

0). This proves d(A2
0) = d(∂W z2). �

16If C0 = Cf0
and C1 = Cf1

, then H5(∂C0) = 0, hence such a class A is unique. This class is called
a joint homology Seifert surface for f0 and f1.
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For an admissible set X by Lemma 2.5 we can define

ηX := ρGCD(A2

0
,24)ηW,z ∈ ZGCD(A2

0
,24).

The proof of the independence of ηX on the choice of (W, z). The independence on the
choice of (W, z) within a cobordism class relative to the boundary is standard. Change of
the cobordism class (relative to ∂W = Mϕ) of W changes ηW,z by adding v2(v2− 1

2
p1(V )),

where V is a closed spin 8-manifold and v ∈ H6(V ). This is divisible by 24 by the smooth
spin case of [KS91, Proposition 2.5]. �

Definition: the Kreck invariant ηu. Assume thatH1(N) = 0. Take two embeddings
f0, f1 : N → S7 such that BH(f0) = BH(f1) = u. By Lemma 2.2 there is a bundle
isomorphism ϕ : ∂Cf0

→ ∂Cf1
. The difference between spin structures on ∂Cf0

is in
H5(∂Cf0

; Z2) = H1(∂Cf0
; Z2) = 0, so we may assume that ϕ is spin. Then by the

Alexander duality and the Agreement Lemma 2.3 the set X = (Cf0
, Cf1

, Af0
, Af1

, ϕ) is
admissible. Define

ηu(f0, f1) := ηX ∈ ZGCD(A2

0
,24).

This is well-defined by the (non-trivial) Framing Theorem 2.7(η).
For u ∈ H2(N) fix an embedding f0 : N → R7 such that BH(f0) = u and define

ηu(f) := ηu(f, f0). (We write ηu(f) not ηf0
(f) for simplicity.)17

The outline of the proof.

Definition of the framing invariant η′X . Take an admissible set X = (C0, C1, A0, A1, ϕ)

such that A2
0 and A2

1 are divisible by 2. Define z2 ∈ H4(W ; Z2) analogously to z2 ∈
H4(W ; Zd) in the definition of ηW,z. Define18

η′X := z2 ∩ ρ2z
2 ∈ Z2.

Almost Diffeomorphism Theorem 2.6. Let X = (C0, C1, A0, A1, ϕ) be an admis-
sible set such that π1(Ck) = H3(Ck) = H4(Ck, ∂) = 0 and H2(∂C0) is free. For some
homotopy 7-sphere Σ there is a diffeomorphism C0 → C1#Σ extending ϕ if and only if

ηX = 0 and, for A2
0 divisible by 2, η′X = 0.

The ‘only if’ part is simple (takeW = C0×I∪ϕ(C1#Σ), where ϕ : C0×1 = C0 → C1#Σ
is given extension) and is not used in the proof of the Classification Theorem 1.1.

Framing Theorem 2.7. Let X = (C0, C1, A0, A1, ϕ) be an admissible set such that
∂C0 is an S2-bundle over a closed 4-manifold N with H1(N) = 0. Then

(η) ηX is independent of the choice of ϕ (preserving Ck, Ak and admissibility).19

(ϕ) If A2
0 is divisible by 2, then we can change ϕ (preserving Ck, Ak and admissibility)

so as to obtain η′X = 0.

Lemma 2.8. If f, f1, f2 : N → R7 are embeddings with the same value of the Boéchat-
Haefliger invariant, u, then ηu(f, f1) + ηu(f1, f2) = ηu(f, f2).

Proof of the injectivity of ηu. By Lemma 2.8 it suffices to prove that

17In general ηu depends on the choice of an orientation on N , but E7(N) by definition does not.
18This is independent on the choice of W, z analogously to ηX using the smooth spin case of [KS91,

Proposition 2.5] (because 12S3−48S2 = 6z4 is divisible by 12, so z4 is divisible by 2 for closed manifolds).
19The change of ϕ is only possible together with certain changes of W, z.
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if BH(f) = BH(f ′) and ηBH(f)(f, f
′) = 0, then f is isotopic to f ′.

In order to prove this assertion construct an admissible set X as in the definition of
the Kreck invariant ηu(f, f ′). Since ηu(f, f ′) = 0, we have ηX = 0.

If A2
f is divisible by 2, by the Framing Theorem 2.7(ϕ) we can change ϕ so as to obtain

η′X = 0. By the Framing Theorem 2.7(η) ηX will be preserved.
Therefore by the Almost Diffeomorphism Theorem 2.6 ϕ extends to a diffeomorphism

Cf → Cf ′#Σ for a certain homotopy 7-sphere Σ. Hence f is isotopic to f ′ by Lemma
2.1. �

The description of im ηu holds by the second equality of the Addendum 1.3 and the
following two partially known results proved in §3.

Lemma 2.9. Let W be a compact spin 8-manifold. Then pW is divisible by 2 and
(pW /2) ∩ x− x ∩ x is divisible by 2 for each x ∈ H4(W ).

Realization Theorem 2.10. There is an embedding g1 : S4 → R7 such that η0(g1) =
2.

This holds by the injectivity of η0 (proved above) because there exist 12 pairwise non-
isotopic embeddings S4 → S7 [Ha66]. We present an alternative direct proof in §3.

Sections §3 and §4 depend on §2 but are independent of each other.

3. The details of the proof

Proof of the Agreement Lemma 2.3.

Let N0 := Cl(N −B4), where B4 is a closed 4-ball in N . Denote ν = νf .
For a section ξ : N0 → ∂Cf we denote by ξ⊥ the oriented 2-bundle that is the orthogonal

complement to ξ in ν|N0
. Denote by |·, ·| the distance in N such that B4 is a ball of radius

2. By ‘a section ξ : N0 → ∂Cf ’ we would mean ‘a section over N0 of the normal bundle
∂Cf → N ’. For a section ξ : N0 → ∂Cf define a map

ξ : N → S7 − fN0 by ξ(x) =





ξ(x) x ∈ N0

f(x) |x,N0| ≥ 1

|x,N0|f(x) + (1 − |x,N0|)ξ(x) |x,N0| ≤ 1.

A section ζ : N0 → ∂Cf is called unlinked if ζ∗[N ] = 0 ∈ H4(S
7 − fN0) [BH70].

For a map ξ : P → Q between a p- and a q-manifold denote the ‘preimage’ homomor-
phism by

ξ! := PD ◦ ξ∗ ◦ PD : Hi(Q, ∂) → Hp−q+i(P, ∂).

Section Lemma 3.1. If ζ is an unlinked section, then BH(f) = PDe(ζ⊥) = ζ !∂Af .

Proof. Since ζ is unlinked, there is a 5-chain a in S7 − fN0 such that ∂a is represented
by ζN . We may assume that the support of a is in general position to ∂Cf , so 5-chain
a ∩ Cf and 4-chain a ∩ ∂Cf are defined.

Take 5-chain b in S7 represented by the union of segments f(x)ζ(x), x ∈ N . By
Alexander duality Af = [(a + b) ∩ Cf ] = [a ∩ Cf ]. By pushing out of ν−1N0 we may
assume that the support of a intersects ν−1N0 by ζN0. Hence

Af ∩ ν−1N0 = [a ∩ Cf ∩ ν−1N0] = [ζN0] ∈ H4(ν
−1N0, ν

−1∂N0).

Identify the groups H2(N) and H2(N0) by the restriction isomorphism. Then

ζ !∂Af = ζ !(Af ∩ ν−1N0) = ζ ![ζN0] = PDe(ζ⊥) ∈ H2(N).
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Here the last equality holds because the normal bundle of ζ : N0 → ∂Cf is isomorphic to
ζ⊥.

Also

BH(f)
(1)
= ν∗∂(Af ∩Af ) = ν∗(∂Af ∩∂Af ) = ν0,∗(Af ∩ν

−1N0)
2 = ν0,∗[ζN0]

2 (5)
= PDe(ζ⊥).

Here
• (1) follows by Alexander duality, cf. [Sk08’, the Alexander Duality Lemma];
• ν0 := ν|ν−1N0

and the square means intersection square in H4(ν
−1N0, ν

−1∂N0);
• (5) holds because the normal bundle of ζ : N0 → ∂Cf is isomorphic to ζ⊥. �

Proof of the Agreement Lemma 2.3. Denote f = f0. Consider the following fragment
of the Gysin sequence for the bundle ν having trivial Euler class:

0 → H2(N)
ν!

→ H4(∂Cf )
ν∗→ H4(N) → 0.

We see that for each section ζ : N0 → ∂Cf the map

ν∗ ⊕ ζ ! : H4(∂Cf ) → H4(N) ⊕H2(N)

is an isomorphism. By definition of Af we have ν∗∂Af = [N ] = νf1∗∂Af1
.

There exist unlinked sections ζ and ζ1 for f and f1 [HH63, 4.3, BH70, Proposition 1.3,
Sk08’, the Unlinked Section Lemma (a)]. We have e((ϕζ)⊥) = e(ζ⊥) = BH(f) = BH(f1),
where the second equality holds by (the first equality of) the Section Lemma 3.1.

For sections

ξ, η : N0 → ∂Cf1
we have PDe(ξ⊥) − PDe(ζ⊥) = ±2d(ξ, η),

where d(ξ, η) ∈ H2(N) is the difference element [BH70, Lemme 1.7, Bo71, Lemme 3.2.b].
Since H2(N) has no 2-torsion, the previous two sentences together with (the first equal-

ity of) the Section Lemma 3.1 imply that the section ϕζ is unlinked for f1. Hence by (the
second equality of) the Section Lemma 3.1

(ϕζ)!∂Af1
= PDe((ϕζ)⊥) = PDe(ζ⊥) = ζ !∂Af , so ϕ∗∂Af = ∂Af1

. �

Proof of the Framing Theorem 2.7.

Lemma 3.2. Define i : S1 = SU1 → SU3 by i(z) = diag(z, z, 1). Then the homoge-
neous space SU3 /i(S

1) is the total space of the non-trivial S2-bundle over S5 (i.e. the
bundle corresponding to the non-trivial element of π4(SO3) ∼= Z2).

Proof. Since i(S1) ⊂ SU2, the standard bundle SU2 → SU3 → S5 gives a bundle

S2 ∼= SU 2/i(S
1) → SU 3/i(S

1) → S5. (∗)

Here the diffeomorphism is given by a free action of SU2 on CP 1 = S2 whose stabilizator
subgroup is i(S1).

(In order to define such an action, identify SU2 with the group of unit length quater-
nions. Define the Hopf map

h : SU 2 → CP 1 by h(z + jw) := (z : w) for z, w ∈ C and |z|2 + |w|2 = 1.
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The required action is well-defined by uh(v) := h(uv). The action of SU2 on C2 = H is
given by (z + jw)(p+ jq) = zp + wq + j(wp+ zq). Hence z + jw corresponds to matrix(

z w
−w z

)
. Thus the stabilizator subgroup is {z + j0 | z ∈ C} = i(S1).)

Since π4(SU3) = 0 (by π4(SU3) ∼= π4(SU) and the Bott periodicity), we have π4(SU3 /i(S
1)) =

0 6= Z2
∼= π4(S

2 × S5). Hence SU3 /i(S
1) 6∼= S2 × S5. Therefore the bundle (*) is non-

trivial. �
20

Proof of the Framing Theorem 2.7. Take a closed 4-ball B4 ⊂ N . Since H1(N) = 0,
the bundle isomorphism ϕ is iniquely defined over Cl(N − B4) by the condition that ϕ
is spin. If we change ϕ on B4, then analogously to [Sk08’, proof of the Independence
Lemma] and by Lemma 3.2 (Mϕ, A0 ∪ϕA1) would change by interior connected sum with
(SU3 /i(S

1), A), where A ∈ H5(SU3 /i(S
1)) ∼= Z. It suffices to consider the case when A

is a generator.
We have SU3 /i(S

1) is N1,−1 defined in [KS91, §1]; the assumption k+ l 6= 0 is not used
for the definition (but required for the positive curvature property). By [KS91, Proposition
2.2] (SU3 /i(S

1), A) =
spin

∂(W, z) for some spin 8-manifold W and z ∈ H6(W, ∂). By

Lemma 3.2 H3(∂W ) = H4(∂W ) = 0. Hence we may identify z2 and pW with elements of
H4(W ) (which elements are denoted by the same letters). In [KS91, proof of Lemma 4.4]
the assumption k + l 6= 0 was not used.21 So by [KS91, (2.4), Lemma 4.4 and bottom of
p. 475] with

k = m = 1, l = −1, n = 0 we have z4 = −1 and N = P = S = 1,

so − z2pW + 2z4 = 48s2(N1,−1) = 2(−P +NS)/N = 0.

Thus change of ϕ together with certain corresponding change of W, z preserves ηX and,
for A2

0 divisible by 2, changes η′X by 1. �

Proof of Lemma 2.8 and the second equality of the Addendum 1.3.

Proof of Lemma 2.8. Assume that (Wk, zk) is a null-bordism of the admissible set
(Cf , Cfk

, Af , Afk
, ϕk).

Take ϕ := ϕ2ϕ
−1
1 . Then X = (Cf1

, Cf2
, Af1

, Af2
, ϕ) is admissible.

Take W := W2 ∪Cf
(−W1). From the Mayer-Vietoris sequence

H6(Cf ) → H6(W, ∂)
Ψ
→ H6(W1, ∂)⊕H6(W2, ∂) → H5(Cf )

we see that Ψ is an isomorphism. Take z := Ψ−1(z1 ⊕ z2). Then (W, z) is a null-bordism
of X .

Consider the maps

(· ∩W1) ⊕ (· ∩W2) : H4(W, ∂) → H4(W1, ∂)⊕H4(W2, ∂) and

i1 ⊕ i2 : H4(W1; Zd) ⊕H4(W2; Zd) → H4(W ; Zd).

20An alternative proof of the non-triviality of the bundle (*). If (*) is trivial, then there is a bundle

S1 → SU3 → S2 × S5 whose first Chern class is a generator of H2(S2 × S5) ∼= Z. Then SU3
∼= S3 × S5

which is a contradiction because π4(SU3) = 0 6= Z2
∼= π4(S3 × S5).

21There is a typographical error in the expression for s3 which should read s3(Nk,l) = (−4P +NS)/6N

and in the expression for P where −6m2n2 should read −6lm2n2; we do not use these corrections.
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Clearly, pWi
= pW ∩Wi and z2

i = z2 ∩Wi. Take z2 := i1z
2
1 ⊕ i2z

2
2 . Since

(i1x1 ⊕ i2x2) ∩ y = x1 ∩ (y ∩W1) + x2 ∩ (y ∩W2) we have ηW,z = ηW1,z1
− ηW2,z2

.

Hence ηu(f1, f2) = ηu(f, f2) − ηu(f, f1). �

Proof of the second equality of the Addendum 1.3. It suffuces to prove that ηu(f#g, f0#g0) =
ηu(f, f0) + η0(g, g0), where u = BH(f0) and g0 : S4 → R7 is the standard embedding.

Assume that (Wf , zf ) is a null-bordism of an admissible set (Cf , Cf0
, Af , Af0

, ϕf ) and
the same for f, f0 replaced by g, g0.

We may assume that ϕf is the identity outside B4 ⊂ N and that νf = νf#g outside
B4 ⊂ N . Then take any spin bundle isomorphism ϕ : ∂Cf#g → ∂Cf0#g0

that is the
identity outside B4.

Identify B4 × S2 and ν−1
f B4 ⊂ ∂Cf by some bundle isomorphism. The same for f

replaced by f0, g, g0. We have

Cf#g = Cf ∪B4×S2 Cg and Cf0#g0
= Cf0

∪B4×S2 Cg0
.

Then (Cf#g, Cf0#g0
, Af , Af0

, ϕ) is an admissible set.
By B5 = B5

+ ∪B4 B5
− we denote the standard decomposition. Take an embedding

B5 × S2 → ∂Wf = Cf ∪ϕf
Cf0

whose image intersects

Cf , Cf0
and ∂Cf

ϕf
= ∂Cf0

by B5
+ × S2, B5

− × S2 and B4 × S2,

respectively. Take the analogous embedding B5 × S2 → ∂Wg. Then take

W := Wf ∪B5×S2 Wg.

Consider the Mayer-Vietoris sequence:

H6(B
5 × S2) → H6(W, ∂) → H6(Wf , ∂) ⊕H6(Wg, ∂) → H5(B

5 × S2, ∂).

Identify ∂W and Cf#g ∪ϕ Cf0#g0
by the easily constructed homeomorphism. We have

∂Af ∩ B4 × S2 = [B4 × x] ∈ H4(B
4 × S2, ∂), and the same for f replaced by f0, g, g0.

Hence
∂zf ∩B5 × S2 = ∂zg ∩B

5 × S2 = [B5 × x] ∈ H5(B
5 × S2, ∂).

Therefore there is a unique z ∈ H6(W, ∂) such that (W, z) is a null-bordism of
(Cf#g, Cf0#g0

, Af , Af0
, ϕ).

Since Hc(B
5 × S2) = Hc(B

5 × S2, ∂) = 0 for c = 3, 4, by the exact sequence of pair
and the Mayer-Vietoris sequence we have orthogonal isomorphisms Ψ and Ψ∂ appearing
in the following commutative diagram:

H4(W ) −−→
Ψ∼=

H4(Wf ) ⊕H4(Wg)
yj

yjf⊕jg

H4(W, ∂) −−−→
Ψ∂

∼=
H4(Wf , ∂) ⊕H4(Wg, ∂)

.

Clearly, Ψ∂z
2 = z2

f ⊕ z2
g and Ψ∂pW = pWf

⊕ pWg
. So we can take z2 := Ψ−1(z2

f ⊕ z2
g),

where Ψ denotes the isomorphism analogous to Ψ with coefficients Zd. Then clearly
ηW,z = ηWf ,zf

+ ηWg,zg
. This implies the required statement. �

22

22We conjecture that ηu1⊕u2
(f1#f2, f ′

1#f ′
2) = ηu1

(f1, f ′
1) + ηu2

(f2, f ′
2), where fk, f ′

k : Nk → R
7 are

embeddings such that BH(fk) = BH(f ′
k
) = uk.
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Proof of Lemma 2.9.

Consider the fibration RP∞ → BSpin → BSO. The 4-line of the cohomology Leray-
Serre spectral sequence of this fibration is the same at the E2 term and at the E∞ term.
The 4-line has Z = H4(BSO) in the (4, 0) position and also a Z2 = H2(BSO; Z2) in
the (2, 2) position. Therefore H4(BSO) maps into H4(BSpin) as a subgroup of index 2.
Hence the pullback, p1 ∈ H4(BSpin), of the universal first Pontryagin class in H4(BSO)
equals to twice the generator of H4(BSpin) ∼= Z. (This fact is also proved in [KS91, proof
of Lemma 6.5].)

Take the map ν : W → BSpin corresponding to the given spin structure on W . We
have pW = PDν∗p1. Hence pW is divisible by 2.

Let w4 ∈ H4(BSpin; Z2) be the pullback of the universal 4-th Stiefel-Whitney class
in H4(BSO; Z2). Since w4 generates H4(BSpin; Z2) and the mod 2 reduction ρ2 :
H4(BSpin) → H4(BSpin; Z2) is onto, we have ρ2(p1/2) = w4. Also w4(W ) = ν∗w4.
Hence ρ2(pW /2) = PDw4(W ). Let us prove that this implies the remaining divisibility
by 2.

IfW is closed, then the required divisibility follows because w4(W ) = v4(W )+Sq1 v3(W ) =
v4(W ). Here the first equality holds by the Wu formula and the second because Sq1 v3(W ) =
Sq1w3(W ) = 0 since W is spin (or else becuase v3(W ) = w3(W ) = 0 since W is spin and
BSpin is 3-connected).

If W has a non-empty boundary, then let Y := W ∪∂W (−W ). Since

pW = pY ∩W, we have (pW /2) ∩W x = (pY /2) ∩Y iY x ≡
mod 2

iY x ∩Y iY x = x ∩W x,

where iY is the inclusion-induced map H4(W ) → H4(Y ). �

Proof of the Realization Theorem 2.10.

Construction of g1 : S4 → R7. By general position, there is an embedding η′′ : S3 →
S2 × D5 whose composition with the projection onto S2 is the Hopf map.23 Take an
embedding ψ : D4 → S2 ×D5 whose image intersects η′′(S3) transversally at exactly one
point of sign +1. Let ψ′ := ψ|∂D4 .

Since each embedding S3 → S7 is unknotted, it extends to an embedding D4 → D8 ⊃
S7. Since D4 is contractible, it has a unique framing. Therefore there is a unique framing
of S3 ⊂ S7 which extends to a framing of some extension D4 → D8. Define this framing
to be the zero framing. This and the isomorphism π3(SO4) ∼= Z ⊕ Z [Mi56] gives a 1–1
correspondence between normal framings on an embedding S3 → R7 (up to homotopy) and
Z ⊕ Z.

Assume that S2 × D5 ⊂ S7 is standardly embedded as a complement to the tubular
neighborhood of the standard S4 ⊂ S7. Take the framing on η′′ corresponding to (0, 0)
and the framing on ψ′ corresponding to (1,−1). Let M be the closed 7-manifold obtained
from S7 by surgery along framed embeddings ψ′ and η′′. Then M is a homotopy sphere
containing the above S4. In the ‘proof of the Realization Theorem 2.10’ below we prove
that M ∼= S7. Let g1 be the composition of the inclusion S4 →M and any diffeomorphism
M → S7.

In this subsection let i : S2 × D5
− → S7 = ∂D8 be the standard embedding. For a

D4-bundle α̃ over S4 denote by e(α̃) ∈ Z the Euler number of this bundle.

23An explicit construction of η′′ [Sk]: Define an embedding η′ : S3 → S2 × D2 by η′(z1, z2) := ((z1 :

z2), z1). The composition of η′ with the projection onto S2 is the Hopf map. Let η′′ be the composition
of η′ and the standard inclusion S2 × D2 → S2 × D5.
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Lemma 3.3. Let W be the 8-manifold obtained by adding 4-handles to S2 × D6 via
embeddings

α1, . . . , αn : S3 ×D4 → S2 ×D5
− ⊂ ∂(S2 ×D6)

with disjoint images. Denote by [α1], . . . , [αn] ∈ H4(W ) the basis corresponding to the
4-handles. Denote by α̃m the D4-bundle over S4 corresponding to αm (i.e. the projection
to S4 from the 8-manifold obtained from D8 by adding a 4-handle along iαm). Then

[αm] ∩ [αl] =

{
lkS7(iαm, iαl) m 6= l

e(α̃m) m = l
and pW ∩ [αm] = p1(α̃m)([S4]).

Proof. Cf. [Sc02].
The equality [αi] ∩ [αj ] = lkS7(αi, αj) for i 6= j follows analogously to [Ma80, 3.2].
For the other equalities we may assume thatm = l = 1 and replaceW by the 8-manifold

W ′ obtained from D8 by adding a 4-handle along embedding α = iα1.
Since every embedding S3 → S7 is isotopic to the standard embedding, there is a 4-

sphere X ⊂ W ′ representing [α] ∈ H4(W
′). Then X is homologous in W ′ to the zero

section X ′ ⊂ ∂W ′ of α̃. Hence νW ′(X) = α̃. Thus the characteristic classes of νW ′(X)
and of α̃ coincide.

We have [α] ∩ [α] = e(α̃) because the self-intersection of a homology class represented
by a submanifold equals to the Euler class of the normal bundle of the submanifold in the
manifold (this is easily proved directly or else deduced from [MS74, Exercise 11-C in p.
134]).

We have pW ′ ∩ [α] = PDp1(τW ′ |X) = PDp1(α̃), where the second equality holds
because τW ′ |X ∼= τX ⊕ νW ′(X) is stably equivalent to νW ′(X) = α̃ since X ∼= S4 is stably
parallelizable. �

Proof of the Realization Theorem 2.10. Let S2×∂D6 = S2×D5
+∪S2×S4 S2×D5

− be the
standard decomposition corresponding to the standard decomposition ∂D6 = D5

+∪S4D5
−.

Let W be the 8-manifold obtained from S2 × D6 by adding 4-handles along the framed
embeddings ψ′ and η′′ into S2 ×D5

−. Let C0 := S2 ×D5
+ ⊂ ∂W . Let C1 ⊂ ∂W be the

7-manifold obtained from S2 ×D5
− by surgery along framed embeddings ψ′ and η′′ into

S2 ×D5
−. Take the identity diffeomorphism ϕ : ∂C0 → ∂C1.

For theW construced both maps of the compositionH6(W, ∂) → H5(∂W ) → H5(Ck, ∂)
(the boundary map and the map x 7→ x∩∂Ck) are isomorphisms. Hence for the generator
zW ∈ H6(W, ∂) we have that ∂zW is a generator of H5(∂W ) and Ak := ∂zW ∩ Ck is a
generator of H5(Ck, ∂). Then X = (C0, C1, A0, A1, ϕ) is an admissible set and W, zW is a
null-bordism of X .

Identify H4(W ) with H4(W, ∂) (and the same for W replaced by W ′ defined below) by
the isomorphism from the exact sequence of pair.

Take a basis x, y of H4(W ) ∼= Z2 with x and y corresponding to the handle attached
by ψ′ and by η′′, respectively. By Lemma 3.3 and [Mi56]

x∩ y = 1, x∩x = pW ∩x = 0, y∩ y = 1+(−1) = 0 and pW ∩ y = 2(1− (−1)) = 4.

Hence pW = 4x.
Denote by W ′ the 8-manifold obtained from D8 by adding 4-handles along framed

embeddings iψ′ and iη′′ into ∂D8. Recall that M = ∂W ′ for the 7-manifold M defined
in the ‘construction of g1’. Analogously to above there is a basis x, y of H4(W

′) ∼= Z2
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in which the intersection form of W ′ has matrix H+, and pW ′ = 4x. Then 4σ(W ′) =
0 ≡

mod 28·32
0 = pW ′ ∩ pW ′ . Hence ∂W ′ ∼= S7 [EK62, §6].

We have z2
W = y. (Indeed, W ≃ S2 ∪ (e4x ∪ e4y), where ≃ means ‘homotopy equivalent

up to dimension 4’. Homotopy classes of the attaching maps for e4x and for e4y equal to
the homotopy classes of η′′ and ψ′. So the attaching maps are homotopic to the Hopf
map and trivial map S3 → S2, respectively. It follows that W ≃ CP 2 ∨ S4. Thus we
obtain the cohomology ring of W up to dimension 4. By duality we obtain the homology
groups of W and relevant intersection products above dimension 3. Hence z2

W ∩ x = 1
and z2

W ∩ y = 0 for a generator zW ∈ H6(W ). By Poincaré duality z2
W = y.)

Then η(g1, g0) = ηW,zW
= 2. �

4. Proof of the ‘if’ part of the Almost Diffeomorphism Theorem 2.6

The Kreck Theorem 4.1. Let
• W be a compact 4l-manifold such that ∂W = C0 ∪C1 for compact (4l− 1)-manifolds

C0, C1 ⊂ R8l with common boundary;
• p : B → BO be a fibration such that πi(p) = 0 for i ≥ 2l and π1(B) = 0;
• ν : W → B is a 2l-connected map such that pν|Ck

is the classifying map of the normal
bundle of Ck and ν|Ck

is (2l − 1)-connected.
Then ν is bordant (relative to the boundary) to a product of ν|C0

with the interval if 24

there is a subgroup U ⊂ H2l(W ) such that
• U ∩ U = 0 and ν∗U = 0 ⊂ H2l(B),
• jk|U is an isomorphism onto a direct summand in Vk := H2l(W,Ck), and
• the quotient j0U × V1/j1U → Z of the intersection pairing ∩ : V0 × V1 → Z is

unimodular.

Proof. Denote K := ker(ν∗ : H2l(W ) → H2l(B)). The form ∩ : K × K → Z is even
because25

x ∩ x = 〈w4l(W ), x〉 = 〈p∗ν∗w4l, x〉 = 〈w4l, p∗ν∗x〉 = 0 mod 2,

where x ∈ K and w4 ∈ H4(BO) is the Stiefel Whitney class. So in [Kr99, p. 725] we can
take µ(x) := x ∩ x/2 for x ∈ K (because 2l is even). We have Wh(π1(B)) = 0 and so an
isomorphism is a simple isomorphism. Hence the hypothesis on U implies that θ(W, ν) is
‘elementary omitting the bases’ [Kr99, Definition in p. 730 and the second remark on p.
732].26 Thus the result follows by the h-cobordism theorem and [Kr99, Theorem 3 and
second remark in p. 732]. �

The Bordism Theorem.

Lemma 4.2. Let Ck be compact connected 7-manifolds such that H3(C0) = H3(C1) =
0, ϕ : ∂C0 → ∂C1 a diffeomorphism and W a compact 8-manifold such that ∂W = Mϕ.
Denote

V0 := H4(W,C0) and let j0 : H4(W ) → V0

24and only if
25In the situation of the Almost Diffeomorphism Theorem 2.6 this form is even by Lemma 2.9.
26In [Kr99, Definition on p. 729] θ(W, ν) was only defined for a q-connected map ν : W → B. (Indeed,

on p. 725 in [Kr99] there is a paragraph beginning ”The objects in l2q(π, ω) are represented ... ”. In
condition (i) V0 and V1 are based. This means in particular that they are stably free. Now for a bordism

(W, ν; M0, M1) we have by definition V0 = Hq(W, M0) and this is only a stably free module if ν : W → B

is q-connected.) If ν is not q-connected, then it is bordant to a q-connected map ν1 : W1 → B and we
can define θ(W, ν) := θ(W1, ν1). This is well-defined by [Kr99, the first sentence in p. 730].
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be the map from the exact sequence of pair. There is a well-defined bilinear map

· : V0 × V0 → Z given by x · x′ := j−1
0 x ∩ x′

which is symmetric and unimodular and where j−1
0 x denotes any element in j−1

0 x.27

Proof. Since H3(C0) = 0, the map j0 is epimorphic.
If y, y′ ∈ j−1

0 x, then we may assume that the support of y−y′ is in C0. Then (y−y′)∩
x′ = (y − y′) ∩C0

∂x′ = 0 because H3(C0) = 0. So · is well-defined.
This form is symmetric because of the symmetry of linking coefficients of 3-cycles in C0.

In order to prove the unimodularity of · take primitive x0 ∈ V0. By Poincaré-Lefschetz
duality there is x1 ∈ V1 such that x1 ∩ x0 = 1. Since H3(C1) = 0, there is y ∈ H4(W )
such that j1y = x1. We have x0 · j0y = x0 ∩ y = x0 ∩ x1 = 1. �

Bordism Theorem 4.3. Let (W, z) be a null-bordism of an admissible set

X = (C0, C1, A0, A1, ϕ) such that π1(Ck) = H3(Ck) = H4(Ck, ∂) = 0.

The pair (W, z) is spin bordant (relative to the boundary) to a product with the interval
if 28 there is a left inverse s of the map

j : V0 → H4(W, ∂)

from the exact sequence of triple (sj = id) such that

σ(W ) = spW · spW = sz2 · spW = sz2 · sz2 = 0.

Beginning of the proof of the Bordism Theorem 4.3. Recall that BSpin = BO 〈4〉 is the
(unique up to homotopy) 3-connected space for which there exists a fibration BSpin →
BO inducing an isomorphism on πi for i ≥ 4. Denote B := BSpin × CP∞. Define
p : B → BO to be the composition of the projection to BSpin and the map BSpin→ BO
inducing an isomorphism on πi for i ≥ 4. Take the map ν : W → B corresponding to the
given spin structure on W and to z ∈ H6(W, ∂) ∼= [W,CP∞].

Since X is admissible and H4(Ck, ∂) = 0, by Poincaré-Lefschetz duality the map
(ν|Ck

)∗ : H2(Ck) → H2(CP
∞) is an isomorphism. This and π1(Ck) = H3(Ck) = 0

imply that the map ν|Ck
is 3-connected. Making B-surgery below the middle dimension

we can change ν relative to the boundary and assume that ν is 4-connected [Kr99, Propo-
sition 4]. This surgery together with the obvious corresponding change of s preserves
σ(W ), spW · spW , sz2 · spW and sz2 · sz2. Hence it suffices to construct U as in the Kreck
Theorem 4.1.

Since BSpin is 3-connected, we have

H4(B) ∼= H4(BSpin) ⊕H4(CP
∞) ∼= Z ⊕ Z.

This isomorphism carries ν∗u to (u∩pW /2, u∩z2) (where a ∈ H2(CP∞) is a generator and
pW is even by Lemma 2.9). So ‘ν∗U = 0 ∈ H4(B)’ is equivalent to ‘U ∩ z2 = U ∩pW = 0’.

Let
Û = {u ∈ V0 | du = msz2 + nspW for some integers d,m, n}.

27Of course ‘geometrically j−1
0 x∩x′ = x∩x′’, but the first intersection assumes values in H0(W ) = Z

while the second one in H0(W, C0) = 0.
28and only if
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(Note that rk Û is 1 or 2.) Since

spW · spW = sz2 · spW = sz2 · sz2 = 0, we have Û · Û = 0.

Since the form · is unimodular, there is

X ⊂ V0 such that Û ⊂ X, rkX = 2 rk Û and ·|X is unimodular.

Then29 V0
∼= X ⊕X⊥ and σ(X) = 0.

The map j0 : H4(W ) → V0 is onto and carries ∩ to ·. Therefore σ(X⊥) = σ(·) =

σ(W ) = 0. Hence there is a direct summand Ũ ⊂ X⊥ such that Ũ · Ũ = 0. Let

U := s∗(Û ⊕ Ũ), where s∗ is given by the following Lemma 4.4.

Lemma 4.4. Under the assumptions of Lemma 4.2 for each left inverse s of j a right
inverse s∗ : V0 → H4(W ) of j0 is well-defined by

s∗x ∩ y = x · sy for each y ∈ H4(W, ∂).

The map j1s
∗ : V0 → V1 is an isomorphism carrying the product ∩ : V0 ×V1 → Z to ·, i.e.

x · x′ = j1s
∗x ∩ x′ for each x, x′ ∈ V0.

30

Proof. Define a homomorphism x : H4(W, ∂) → Z by x(y) := x · sy. Now the existence
and uniqueness of such an element s∗x follows by Poincaré-Lefschetz duality.

Clearly, s∗ is a homomorphism.
We have

j0s
∗x · x′ = s∗x ∩ x′ = s∗x ∩ jx′ = x · sjx′ = x · x′ for each x, x′ ∈ V0.

Since the form · is unimodular, j0s
∗x = x.

We have x · x′ = s∗x ∩ x′ = j1s
∗x ∩ x′. (Cf. the end of the proof of Lemma 4.2.)

The map s∗ is injective. For x, x′ ∈ V0 if

j1s
∗x = j1s

∗x′, then x ∩ a = j1s
∗x ∩ a = j1s

∗y ∩ a = y ∩ a for each a ∈ V1.

Hence by Poincaré-Lefschetz duality x = y. Thus j1s
∗ is injective. So it is an isomor-

phism. �

Completion of the proof of the Bordism Theorem 4.3: checking of the required properties

of U . Clearly, Û is a direct summand in X .

Let U ′ := Û ⊕ Ũ . Then

j0U = U ′, U ′ · U ′ = U ′ · sz2 = U ′ · spW = 0

and U ′ is a direct summand in V0.
By Lemma 4.4

U∩U = U∩jj0U = s∗U ′∩jU ′ = U ′·sjU ′ = U ′·U ′ = 0, U∩x = U ′·sx = 0 for x ∈ {z2, pW }

and j0|U is an isomorphism onto the direct summand U ′ ⊂ V0.

29Since both V0 and X ⊂ V0 are unimodular, we have X ∩ X⊥ = 0 and rk X⊥ = rk V0 − rk X. Then

V0 = X ⊕ X⊥.
30The second statement holds for each right inverse of j0, not necessarily the one obtained from s.
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Since U ⊂ im s∗, by Lemma 4.4 j1|U is monomorphic.
Since U ′ ⊂ V0 is a direct summand, we have V0

∼= U ′⊕U ′′ (additive) for some U ′′ ⊂ V0.
Suppose that j1s

∗u′ = j1s
∗u′′ for some u′ ∈ U ′ and u′′ ∈ U ′′. By excision H4(∂W,C1) ∼=

H4(C0, ∂) = 0, so by the exact sequence of pair the inclusion-induced map H4(C1) →
H4(∂W ) is surjective. Hence for the inclusion-induced maps

i : H4(∂W ) → H4(W ) and ik : H4(Ck) → H4(W ) we have im i = im i1.

Analogusly im i = im i0. Hence

s∗u′ − s∗u′′ ∈ im i1 = im i0, so u′ − u′′ = j0(s
∗u′ − s∗u′′) = 0, hence u′ = u′′ = 0.

Thus j1U ∩ j1s
∗U ′′ = 0. Therefore by dimension considerations V1

∼= j1U ⊕ j1s
∗U ′′

(additively). So j1U is a direct summand.
The pairing ∩ : j0U × V1/j1U → Z is isomorphic to the pairing ∩ : U ′ × j1s

∗U ′′ → Z

and (by Lemma 4.4) to the pairing · : U ′ × U ′′ → Z. Since the form · : V0 × V0 → Z is
unimodular and U ′ · U ′ = 0, the latter pairing is unimodular. �

Proof of the ‘if ’ part of the Almost Diffeomorphism Theorem 2.6.

Beginning of the proof. Take a null-bordism (W, z) of X given by the Null-bordism
Lemma 2.4. The idea is to modify (W, z) and apply the Bordism Theorem 4.3. Define
B, p and a 4-connected map ν : W → B as in the beginning of the proof of the Bordism
Theorem 4.3.

Since H3(C0) = 0, we can take the product · given by Lemma 4.2.
By excision H4(∂W,C0) ∼= H4(C1, ∂) = 0. Then, by the exact sequence of a triple, j is

injective.
Take x ∈ V0. We have x′ · x = y ∩ x = y ∩ jx for each x′ ∈ V0 and y ∈ j−1

0 x′. If
jx is divisible by an integer d, then x′ · x is divisible by d for each x′ ∈ V0. Hence the
unimodularity of · implies that jx is primitive for each primitive x ∈ V0. So there exists
a left inverse s of j (because ν is 4-connected and so TorsH4(W, ∂) = TorsH3(W ) = 0).

Denote d := d(∂W z2). Recall the definition of pW ∈ H4(W ) and z2 ∈ H4(W ; Zd) from
the definition of ηX in §2. Since j0pW = spW , we have pW ∩ pW = spW · spW . Since

j0z2 = ρdsz
2, we have z2 ∩ pW = ρdsz

2 · spW ∈ Zd and z2 ∩ z2 = ρdsz
2 · sz2 ∈ Zd.

Denote η̂W,z,s = sz2 · (sz2 − s
pW

2
) ∈ Z. Thus ηX = ρdη̂W,z,s.

31

Analogously for A2
0 divisible by 2, η′X = ρ2(sz

2 · sz2).

For completion of the proof we need two lemmas. Let W be a compact spin 8-manifold
such that ∂W pW = 0. Define pW

2 ∈ H4(W ) analogously to pW . (It is clear that the

intersections below do not depend on the choice of pW

2 , which choice is in H4(∂W ).) By
Lemma 2.9

σ(W ) ≡
mod 8

pW

2
∩
pW

2
so αW :=

4σ(W )− pW ∩ pW

32
is an integer.

Lemma 4.5. For each of the four quadruples

(1, 0, 0, 0), (0, 28, 0, 0), (0, 0, 2, 0), (0, 0, 0, 12)

31Note that ρd(pW ∩ z2) = z2 ∩ ρdpW = ρd(spW · sz2) but pW ∩ z2 6= spW · sz2 = s∗j0pW ∩ z2.
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there is a closed compact spin 8-manifold W and z ∈ H6(W ) such that the quadruple
QW,z := (σ(W ), αW , z4, z4 − z2 1

2
pW ) coincides with the given quadruple.32

Lemma 4.6. Let (W, z) be a null-bordism of an admissible set X such that H3(Ck) =
H3(W ) = H5(W, ∂) = 0 and H2(∂C0) is free. Let s be a left inverse of j. By connected
sum of W with a null-bordant closed 3-connected 8-manifold and certain corresponding
change of z, s one can change

• sz2 · sz2 by adding an odd number, provided A2
0 is not divisible by 2.

• η̂W,z,s by adding 2d/GCD(d, 2), where d := d(∂W z2), and preserving ρ2(sz
2 · sz2).

The lemmas are proved in the next subsection (Lemma 4.5 is known).

Completion of the proof of the ‘if ’ part of the Almost Diffeomorphism Theorem 2.6.
Take a 3-connected parallelizable 8-manifold E8 whose boundary is a homotopy sphere
and whose signature is 8. Then pE8

= 0. The boundary connected sum of ν with a

constant map E8 → CP∞ changes αW by 1 and preserves the 4-connectedness of ν.33

Thus we may assume that αW = 0.

For a null-bordism W, z of an admissible set X such that H3(Ck) = 0 and a left inverse
s of j denote QW,z,s := (σ(W ), αW , sz2 · sz2, η̂W,z,s). For a closed spin 8-manifold W0 and
z0 ∈ H6(W0) we have QW#W0,z⊕z0,s⊕id = QW,z,s + QW0,z0

. Since z is primitive, z ⊕ z0
is primitive. So we may spin surger W#W0 and assume that the map ν′ : W#W0 → B
corresponding to z⊕z0 and the ‘connected sum’ spin structure on W#W0 is 4-connected.
So by Lemma 4.5 we may change the quadruple QW,z,s by any of the four quadruples of
Lemma 4.5, and ν would remain 4-connected.

Thus we may assume that σ(W ) = αW = 0.

Connected sum of ν with the constant map from a null-bordant 3-connected 8-manifold
does not change σ(W ), αW and the property that ν is 4-connected.

If A2
0 is not divisible by 2, then by Lemmas 4.6 and 4.5 we may assume that σ(W ) =

αW = sz2 · sz2 = 0.

If A2
0 is divisible by 2, then ρ2(sz

2 ·sz2) = η′X = 0, hence by Lemma 4.5 we may assume
that σ(W ) = αW = sz2 · sz2 = 0.

Since ηX = 0, by Lemmas 4.6 and 4.5 we may assume that σ(W ) = αW = sz2 · sz2 =
η̂W,z,s = 0. Then we are done by the Bordism Theorem 4.3. �

Diffeomorphism Theorem 4.7. Let X = (C0, C1, A0, A1, ϕ) be an admissible set
such that π1(Ck) = H3(Ck) = H4(Ck, ∂) = 0 and H2(∂C0) is free. Denote αX :=
ρ28αW ∈ Z28 for some null-bordism (W, z) of X.34 There is a diffeomorphism C0 → C1

extending ϕ if and only if

αX = 0, ηX = 0 and, for A2
0 divisible by 2, η′X = 0.

The ‘only if’ part is simple (take W = C0 × I ∪ϕ C1, where ϕ : C0 × 1 = C0 → C1 is
given extension). We essentially proved the ‘if’ part in the course of the proof of the ‘if’
part of the Almost Diffeomorphism Theorem 2.6.

32We can avoid using (0, 0, 2, 0) by using the Framing Theorem 2.7(ϕ) and changing the structure of
the proof of the injectivity of ηu.

33An alternative proof is obtained by replacing E8 by a 3-connected 8-manifold X ≃ S4 whose
boundary is a homotopy sphere, σ(X) = 1 and pX = 6 [Mi56].

34The independence of αX of W is essentially known. Note that αX is also independent of ϕ because

σ(W ) − 4p2
W = −27 · 7s1(N1,−1) = 0 in the notation of the subsection ‘Proof of the Framing Theorem

2.7’.
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Conjecture 4.8. Let (W, z) be a null-bordism of an admissible setX = (C0, C1, A0, A1, ϕ)
such that

π1(Ck) = H3(Ck) = H3(∂C0) = H4(Ck, ∂) = p1(Ck) = 0,

H2(∂C0) is free and the map hz : W → CP∞ corresponding to z is 4-connected. Then
(W, z) is spin bordant (relative to the boundary) to a product with the interval if and only
if

σ(W ) = pW ∩ pW = 0 and z2 ∩ pW = z2 ∩ z2 = 0 ∈ Zd.

Proof of Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. Recall that σ(HP 2) = 1 and p2
1(HP

2) = 4 [Hi53], cf. [Mi56,
Lemmas 3 and 4]. So for (HP 2, 0) the quadruple is (1, 0, 0, 0).

Take a 3-connected parallelizable 8-manifold E8 whose boundary is a homotopy sphere
and whose signature is 8. Then p1(E8) = 0. For (28E8 ∪ D8, 0) the quadruple is (28 ·
8, 28, 0, 0).

Take (S2)4 and the class z which is the sum of four summands, each represented by

a product of three 2-spheres and a point. Then z4 = 24. Denote H+ :=

(
0 1
1 0

)
. As

a quadratic form H4((S
2)4) ∼= H+ ⊕ H+ ⊕ H+, so σ((S2)4) = 0. Since (S2)4 is almost

parallelizable, we have p(S2)4 = 0. Thus for ((S2)4, z) the quadruple is (0, 0, 24, 12).
By [KS91, Proposition 2.5] there is a closed spin 8-manifold W and z ∈ H6(W ) such

that S1 = S2 = 0 and S3 = 1. In the notation of [KS91, spin case of (2.4)]

S1 = αW /28, S2 = z2(z2 −
1

2
pW )/12 and 2S3 = 8S2 + z4.

Hence for (W, z) the quadruple is (a, 0, 2, 0). �

Lemma 4.9. Assume that (W, z) is a null-bordism of an admissible set X.
(p) s′pW = spW for each left inverses s, s′ of j.
(z) Suppose that H3(C0) = H3(W ) = H5(W, ∂) = 0 and H2(∂C0) is free. For x ∈ V0

there is a left inverse s′ of j such that s′z2 = sz2 + x if and only if x is divisible by
d := d(∂W z2).

Proof of (p). Denote by ∂0 : H4(W, ∂) → H3(∂W,C0) the boundary homomorphism.
The class (∂pW ) ∩ C0 = PDp1(C0) = 0 goes to ∂0pW under the excision isomorphism
H3(C1, ∂) → H3(∂W,C0). Thus ∂0pW = 0. Hence pW ∈ im j which implies (p). �

Proof of (z). Since H3(C0) = 0, the map j0 is onto, hence im j = im(jj0) = ker ∂W .
Since H2(∂C0) is free and H3(Ck) = 0, by the Mayer-Vietoris sequence for ∂W = C0 ∪C1

we obtain that H3(∂W ) is free. This and H3(W ) = H5(W, ∂) = 0 imply that H4(W, ∂) ∼=
V0⊕H3(∂W ). Identify these isomorphic groups by the isomorphism j⊕(∂W |ker s)

−1. Then
z2 is identified with sz2 ⊕ ∂W z2. The ‘only if’ part follows because s′(sz2 ⊕ 0) = sz2,
so s′z2 = sz2 + s′∂W z2. The ‘if’ part follows because ∂W z2/d ∈ H3(∂W ) ⊂ H4(W, ∂)
is primitive, so for each x1 ∈ V0 there is a left inverse s′ of j such that s′(z2/d) =
s(z2/d) + x1. �

Proof of the Twisting Lemma 4.6. First we prove the second assertion. By [Mi56] there
is a D4-bundle over S4 whose Euler class is 0 and whose first Pontryagin class is 4. The
double of this bundle is an S4-bundle S4×̃S4 over S4 whose first Pontryagin class is 4.
We have H4(S

4×̃S4) ∼= Z ⊕ Z with evident basis. In this basis pS4 e×S4 = (4, 0) and the

intersection form of S4×̃S4 is H+.
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Denote W ′ := W#S4×̃S4. Identify H6(W, ∂) with H6(W
′, ∂). Identify H4(W

′, C0)
with V0 ⊕H+ as groups with quadratic forms. Clearly,

∂W ′ = ∂W, ∂W ′z = ∂W z and η̂W ′,z,s⊕id = η̂W,z,s.

By (the ‘if’ part of) Lemma 4.9(z) there is a left inverse

s′ : H4(W
′, ∂) → H4(W

′, C0) such that s′(z2 ⊕ (0, 0)) = sz2 ⊕ (0, d).

We have pW ′ = pW ⊕ (4, 0). By Lemma 4.9(p), s′pW ′ = (s⊕ id)pW ′ = spW ⊕ (4, 0). So

sz2·sz2 = s′z2·s′z2 and ηW ′,z,s′−ηW,z,s = (0, d)∩[(0, d)−(2, 0)] = (0, d)∩(−2, d) = −2d.

In this paragraph assume that d is even. We have H4(HP
2#(−HP 2)) ∼= Z⊕Z with evi-

dent basis. In this basis pHP 2#(−HP 2) = (2,−2) and the intersection form of HP 2#(−HP 2)

is diag(1,−1). Analogously to the above with S4×̃S4 replaced by HP 2#(−HP 2) we may
change ηW,z,s by

(0, d) ∩ [(0, d)− (1,−1)] = (0, d) ∩ (−1, d+ 1) = −d2 − d.

The difference s′z2 · s′z2 − sz2 · sz2 = (0, d)∩ (0, d) = −d2 is divisible by 2. Hence we may
change η̂W,z,s by GCD(2d, d2 + d) = d and preserve ρ2(sz

2 · sz2).
Now let us prove the first assertion. Since A2

0 is not divisible by 2, d is odd. Hence in
the above example change of sz2 · sz2 is by an odd integer d2. �

5. Remarks (omit in the submitted version)

The following properties from the definition of the admissibility are not necessary:
H3(∂C0) = 0, p1(C0) = p1(C1) = 0 and d(A2

0) = d(A2
1) for the Null-bordism

Lemma 2.4,
d(A2

0) = d(A2
1) for the definition of ηW,z,

d(A2
0) = d(A2

1) and p1(C0) = p1(C1) = 0 for the definition of η′X and the Bordism
Theorem 4.3,
p1(C0) = p1(C1) = 0 for the Framing Theorem 2.7,
d(A2

0) = d(A2
1) and H3(∂C0) = 0 for Lemmas 4.6 and 4.9.

Remarks to the construction of a 1–1 correspondence between normal framings on an
embedding S3 → R7 (up to homotopy) and Z ⊕ Z. Surgery on a framed embedding
b : S3 ×D4 → S7 gives a 8-manifold Eb which is the total space of a D4-bundle Eb → S4.
The boundary ∂Eb is the total space of an S3-bundle ξb : Eb → S4. The map b 7→ ξb is a
1–1 correspondence [Wa62, Lemma 1]. Take the 1–1 correspondence between S3-bundles
over S4 and Z ⊕ Z constructed in [Mi56]. This gives an alternative construction of the
above 1–1 correspondence.

The map assigning to b the diffeomorphism class of the total space Eb is a bijection. The

inverse is given by E 7→ (
2aE ∩ aE − pE ∩ aE

4
,
2aE ∩ aE + pE ∩ aE

4
), where aE ∈ H4(E)

is the generator and we use the above 1–1 correspondence between the set of framings
and Z ⊕ Z.35

35The map assigning to b the diffeomorphism class of the total space ∂Eb is not a bijection (although

the restriction of such a map gives a 1–1 correspondence between unlinked framed embeddings and dif-
feomorphism classes of total spaces of trivial Euler class bundles) [CE03].

Framed embeddings b corresponding to pairs (a,−a) are characterized by being unlinked (i.e. such that

the linking coefficient of b(S3 × 0) and b(S3 × x) is zero.
An isotopy F from an embedding S3 → S7 to the standard embedding is not necessarily unique up to

isotopy (of isotopies relative to the ends). So apriori we cannot just take as the ’zero’ framing the image of

the standard framing of the standard embedding under such an isotopy F . However, the above argument
shows that we can.
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An alternative proof of the Agreement Lemma.

The Agreement Lemma is an analogue of [Sk08’, the Agreement Lemma]. For H1(N) 6=
0 this analogue is more complicated because embeddings N0 → R7 are not necessarily
isotopic.

A section ξ : N0 → ∂Cf is called faithful if ξ!∂Af = 0. When H2(N) has no torsion,

this is equivalent to the triviality of the composition H2(N0)
ξ∗
→ H2(∂Cf )

i∗→ H2(Cf ).

Faithfulness is not equivalent to unlinkedness because in general ADf |N0
ξ∗ 6= f |!N0

ADξ.
The Agreement Lemma is implied by the following result.

Faithful Section Lemma. (a) A faithful section exists. It is unique on 2-skeleton of
N up to fiberwise homotopy. [HH63, 4.3, BH70, Proposition 1.3].

(b) Under the assumptions of the Agreement Lemma ϕ maps a faithful section to a
faithful section.

Part (a) is implied by the following result.

Difference Lemma. d(ξ, η) = ξ!∂Af − η!∂Af .

This follows because

(ξ! − η!)∂Af = (ξ! − η!)∂Af ∩ ν−1N0 = (ξ! − η!)[ζN0] = d(ξ, ζ)− d(η, ζ) = d(ξ, η).

Proof of the Faithful Section Lemma (b). Recall the equality on ±2d(ξ, η) from the
proof of the Agreement Lemma in §3. Let ζ be an unlinked section for f . Then for a
faithful section ξ for f we have

PDe(ζ⊥) − PDe(ξ⊥) = 2d(ζ, ξ) = 2(ζ ! − ξ!)∂Af = 2ζ !∂Af = 2PDe(ζ⊥).

Here the first equality holds by the equality on ±2d(ξ, η);
the second equality holds by the Difference Lemma,
the third equality holds because ξ is faithful,
the fourth equality holds by (the second equality of) the Section Lemma.
Since H2(N) has no 2-torsion, together with the equality on ±2d(ξ, η) this implies that
a section ξ : N0 → ∂Cf is faithful if and only if PDe(ξ⊥) = −PDe(ζ⊥).
Now the lemma follows by the Section Lemma because e((ϕξ)⊥) = e(ξ⊥). �

We conjecture that BH(f) − BH(f ′) = 2Wf ′(f) for the Whitney invariant Wf ′(f)
[Sk08, §2]. For simply-connected N the proof is analogous to [Sk08’, §3].

The following assertion is proved analogously to [Sk08’, the Difference Lemma (c)]
(where A0 is defined).

If f = f ′ on N0 and ξ : N0 → ∂Cf is a section both for f and f ′, then W (f)−W (f ′) =

A0(ξ∗ − ξ
′

∗)[N ], where ξ
′
is constructed from ξ and f ′.

This assertion gives an alternative proof of the following statement used in the proof
of the Agreement Lemma: if BH(f) = BH(f ′) and H1(N) = 0, then any isomorphism
maps an unlinked section of f to that of f ′.36

36If a section ξ : N0 → ∂Cf is strongly unlinked, then it is faithful. If N is simply-connected, then the

converse also holds because N0 ≃ ∨S2
i . If a section ξ : N → ∂Cf is strongly unlinked, then its restriction

to N0 is both faithful and unlinked, hence BH(f) = 0 by the italicized assertion in the proof of the
Faithful Section Lemma (b). The same assertion implies that for simply-connected N the existence of a

strongly unlinked framing of ν0 is equivalent to BH(f) = 0 (and hence to the compressibility of f). Here

the simply-connectedness assumption is essential: take an embedding (S1 × S3)1#(S1 × S3)2 such that
(x×S3)1 and (x×S3)2 are linked, then for any section ξ : N0 → ∂Cf we have ξ∗in∗ 6= 0 ∈ H3(N0). If ν

is trivial, then the obstruction to extending a section ξ : N0 → ∂Cf to N is (ξ!∂Af )2 ∈ Z. Thus unlinked
or faithful section on N0 extends to N if and only if BH(f) = 0.)
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