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THE EQUIVALENCE PRINCIPLE AS A

SYMMETRY

Abstract

It is shown that the extra coordinate of 5D induced-matter and membrane

theory is related in certain gauges to the inertial rest mass of a test particle.

This implies that the Weak Equivalence Principle is a geometric symmetry,

valid only in the limit in which the test mass is negligible compared to the

source mass. Exact solutions illustrate this, and show the way to possible

resolutions of the cosmological-constant and hierarchy problems.

1 Introduction

The Weak Equivalence Principle is commonly taken to mean that in

a gravitational field the acceleration of a test particle is independent of the

properties of the latter, including its rest mass. Recently, however, the

extension of 4D general relativity to 5D has led to the isolation of a fifth force,

which exists for both induced-matter theory [1, 2] and membrane theory [3,

4]. These two versions of what used to be called Kaluza-Klein theory allow

dependence on an extra coordinate l, and it is now known that their field
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equations are essentially the same [5]. In both theories, the extra force

per unit rest mass is an acceleration which is inertial in the Einstein sense,

arising from the motion in the fifth dimension with respect to the 4D part

of the manifold which we call spacetime [6]. This extra acceleration has

already been related to the (inertial) rest mass m of a test particle [1, 3] in

certain choices of coordinate frame (or gauge), and in general its presence

represents a technical violation of the 4D WEP. Such violations of the 4D

WEP in N (> 4)D field theory have been mentioned before [7-11; for a short

review see ref. 6, pp. 85-88]. However, the WEP is known from experiments

conducted from the time of Galileo to now to be obeyed with an accuracy

of at least 1 part in 1011 [12]. The purpose of the present work is to clarify

the status of the 4D Weak Equivalence Principle in N (> 4)D extensions of

general relativity. We will do this for 5D; but the extension to higher N

as in 10D superstrings, 11D supergravity and 26D string theory is straight-

forward, and in fact guaranteed by Campbell’s theorem [13-15]. The plan

is as follows: (a) Marshall extant mathematical results [16-22], showing that

they have the consistent physical interpretation that the extra coordinate

l measures the (inertial) rest mass of a test particle m; (b) Illustrate the

cogency of this inference by giving 3 exact l-dependent solutions of the 5D
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field equations which generalize the 4D de Sitter solution of general relativity

as widely used in particle physics [23-27], thereby generalizing the concept of

“the vacuum” and opening a way to a resolution of the cosmological-constant

problem; (c) Use the scalar potential as a classical analog of the Higgs field

[6, 28], leading to an expression for the masses of real particles which avoids

the hierarchy problem; (d) Conclude that the WEP is a geometric symmetry,

valid only in the limit where the mass of a test particle is negligible compared

to the mass of the source, thus supporting new endeavors [29, 30] to look for

violations.

2 The Nature of the Fifth Coordinate

There are 5 degrees of coordinate freedom in an unrestricted 5D Rieman-

nian manifold, of which 4 can be used to remove the potentials of electromag-

netic type, giving the line element dS2 = gABdx
AdxB = gαβ (x

γ , l) dxαdxβ +

ǫΦ2dl2 (A = O, 123, 4; α = O, 123). The signature is + (−−−) ǫ where ǫ =

±1 is not restricted by Campbell’s theorem [13-15], the usual ǫ = −1 ad-

mitting particle-like solutions and ǫ = +1 admitting wave-like solutions [22].

The coordinates are x0 = t for time, x123 = xyz (or rθφ) for space and an ex-
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tra one x4 = l. All will be taken to have physical dimensions of length, and

the constants c, G, h will usually be absorbed by a choice of units. It will

turn out to be useful to defer usage of the fifth degree of coordinate freedom,

though in principle it is available to suppress the scalar potential (Φ) or to

restrict the velocity in the fifth dimension. With regard to velocities, we

wish to make contact with 4D physics couched in terms of ds2 = gαβ dx
αdxβ

and 4-velocites uα ≡ dxα�ds. We will therefore parametize motions in

terms of the elements of 4D proper time ds, a choice which also allows us

to handle null 5D paths with dS = 0 [2, 4]. With this setup, we can make

several observations on the physical nature of the fifth coordinate.

(i) The extra force which appears when the manifold is extended from

4D to 5D has been derived in different ways for induced-matter theory [1, 2]

and brane theory [3, 4]. But a generic and shorter way is as follows. The

relation

gαβ (x
γ , l) uαuβ = 1 (1)

is a normalization condition on the 4-velocities. When multiplied by the

inertial rest mass m of a test particle, it gives the usual relation E2−p2 = m2

where E is the energy and p is the 3-momentum. (Alternatively, pαpα = m2

where pα ≡ muα are the 4-momenta.) There is actually no information in
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(1) about the possibility that m = m (s), which applies for example to the

case of a rocket which loses mass as it burns fuel and so accelerates. The

acceleration in such a case is given by appeal to the law of conservation of

linear momentum (see below). However, we can consider the effect of a

slight change in the 5D coordinates (including l) by differentiating (1) with

respect to s. Doing this and using symmetries under the exchange of α and

β to introduce the Christoffel symbols Γµ
αβ, there comes

2gαµu
α

(

duµ

ds
+ Γµ

βγu
βuγ

)

+
∂gαβ

∂l

dl

ds
uαuβ = 0 . (2)

This reveals that in addition to its usual 4D geodesic motion (the part inside

the parenthesis), a particle feels a new acceleration (or force per unit mass).

It is due to the motion of the 4D frame with respect to the fifth dimension,

and is parallel to the 4-velocity uµ. Explicitly, the parallel acceleration is

P µ = −
1

2

(

∂gαβ

∂l
uαuβ

)

dl

ds
uµ

. (3)

This has no analog in 4D field theory, including Einstein gravity and Maxwell

electromagnetism, where forces are orthogonal to the velocities and obey

F µuµ = 0. (Another way of seeing that an extra force must appear in the

extension from 4D to 5D is to note as in ref. 1 that if FAuA = 0 then

F µuµ = −F 4u4 6= 0.) To investigate (3), we can evaluate it in the canonical
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coordinate system, which is so called because it leads to great algebraic

simplification of the geodesic equation and the field equations (see below) and

has been extensively used [6, 17-19, 22]. Then gαβ (x
γ , l) = (l2�L2) gαβ (x

γ) ,

where L is a length introduced for dimensional consistency, and for vacuum

4D spacetimes is given by L2 = 3�Λ where Λ is the cosmological constant

[17]. The acceleration (3) can now be evaluated and simplified using (1). Its

nature becomes clear in the Minkowski limit, when the motion of the particle

is given by

duµ

ds
= P µ = −

1

l

dl

ds
uµ , (4)

or
d

ds
(l uµ) = 0 . (5)

The last is just the expected law of conservation of linear momentum, pro-

vided l = m.

(ii) The action can be used to confirm this. Let us write the 5D interval in

terms of its 4D and extra parts using a coordinate system which is perturbed

from the pure canonical one noted above. Then with ds2 ≡ gαβdx
αdxβ we
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have

dS2 =
l2

L2
gαβ (x

γ , l) dxαdxβ + ǫΦ 2 (xγ, l) dl2 (6)

L2dS2 = l2ds2 + ǫ (ΦL)2 dl2 . (7)

Clearly the first term on the right-hand side here involves the conventional

element of action mds if l = m. It should be noted that even in 4D the

action should be written
∫

mds to account for the possibility that the mass

changes along the path, and that in 5D the expression (6) is still general. So

the conventional action is the 4D part of a 5D one.

(iii) The 5D geodesic equation minimizes paths via δ
(∫

dS
)

= 0, which

generalizes the equations of motion in 4D and adds an extra component for

the motion in the fifth dimension. The working requires the specification

of a starting gauge, and is generally tedious. (See ref. 6, pp. 132-138

and pp. 161-167 for the cases where electromagnetism is and is not included

respectively, as well as references to other work.) We therefore quote here two

results which are relevant. First, for 5D metrics which are canonical in form,

the fifth force noted above is proportional to dl�ds, and disappears if the

latter is zero, making the 4D part of the motion geodesic in the usual sense.

It should be noted in passing that the conventional geodesic equation is a

statement about accelerations (not forces) caused by the motion of reference
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frames, so this result means that 4D geodesic motion is a special case of 5D

motion, which latter is inertial in the Einstein sense. Second, for 5D metrics

which are independent of x0 = t, there is a constant of the motion which is

the analog of the 4D particle energy. When the metric is l-factorized as in

the canonical case, electromagnetic terms are absent and the 3-velocity v is

projected out, this constant is

E =
l

(1− v2)
1

2

. (8)

One does not have to be Einstein to see that this gives back the conventional

4D energy provided l is identified with the particle rest mass m.

(iv) The field equations for 5D relativity are commonly taken in terms of

the Ricci tensor to be RAB = 0 (A = 0, 123, 4); and by Campbell′s theorem

[13-15] these contain those of general relativity, which in terms of the Einstein

tensor and the energy-momentum tensor are Gαβ = 8πTαβ (α = 0, 123).

Here Gαβ is constructed as usual from the 4D, l-independent parts of the

4D Ricci tensor and scalar. However, Tαβ is an effective or induced source,

constructed from the l-dependent parts of these quantities and the scalar

field (g44 = ǫΦ2). As such, the latter includes parts which can be identified

with conventional matter and parts which by default refer to the “vacuum”.

We will return to the latter concept below, but here we note that the general
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expression for the source can be written down after some lengthy algebra.

With the metric in the general form dS2 = gαβ (x
γ , l) dxαdxβ + ǫΦ2dl2, it is

8πTαβ =
Φ,α;β
Φ

−
ǫ

2Φ2

{

Φ,4 gαβ,4

Φ
− gαβ,44 + gλµgαλ,4gβµ,4

−
gµνgµν,4gαβ,4

2
+

gαβ

4

[

g
µν
,4gµν,4 + (gµνgµν,4)

2]
}

. (9)

Here a comma denotes the partial derivative with respect to x4 = l and a

semicolon denotes the usual 4D covariant derivative. The expression (9)

is known to give back the conventional matter content of a wide variety of

4D solutions [6], but in order to bolster the physical identification of l we

note a generic property of it. For gαβ,4 = 0, (9) gives 8πT ≡ 8πgαβTαβ =

gαβΦ,α;β�Φ ≡ Φ−1
�Φ; but the extra field equation R44 = 0, which we will

examine below, gives �Φ = 0 for gαβ,4 = 0. Thus T = 0 for gαβ,4 = 0,

meaning that the equation of state is that of radiation when the source

consists of photons with zero rest mass. This is as expected.

(v) Algebraic arguments for l = m can be understood from the physical

perspective by simple dimensional analysis. The latter is actually an ele-

mentary group-theoretic technique based on the Pi theorem, and one could

argue that a complete theory of mechanics ought to use a manifold in which

spacetime is extended so as to properly take account of the three mechanical

bases M, L, T. Obviously, this has to be done in a manner which does not
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violate the known laws of mechanics and recognizes their use of the three

dimensional constants c, G and h. The canonical metric of induced-matter

theory, as employed in several instances above, clearly satisfies these crite-

ria [1, 2]. But the warp metric of brane theory leads to similar results [3,

4]; and it has indeed been argued that the two theories are essentially the

same one, expressed in different ways [5]. This leads to an important point:

the physical identification of x4 = l requires a choice of 5D coordinates or

gauge. To illustrate this, consider a 5D metric given by

dS2 =

(

L

l

)2a

gαβ (x
γ) dxαdxβ −

(

L

l

)4b

dl2 . (10)

Here a, b are constants which can be constrained by the full set of 5D field

equations RAB = 0 [22]. There are 3 choices: a = b = 0 gives general

relativity embedded in a flat and physically innocuous extra dimension; a =

−1, b = 0 gives the pure-canonical metric already discussed; while a = b = 1

gives a metric which looks different but is actually the canonical one after

the coordinate transformation l → L2�l. We see that the last two cases

describe the same physics but in terms of different choices of l. Temporarily

introducing the relevant constants, these are

lE =
Gm

c2
, lP =

h

mc
(11)
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in what may be termed the Einstein and Planck gauges. These represent

convenient choices of x4 = l, insofar as they represent parametizations of the

inertial rest mass m of a test particle which fit with known laws of 4D physics

such as the conservation of momentum (see above: the fifth force conserves

lEu
µ or l−1

P uµ). However, 5D relativity as based on the field equations

RAB = 0 is covariant under the 5D group of transformations xA → xA
(

xB
)

,

which is wider than the 4D group xα → xα
(

xβ
)

. Therefore 4D quantities

Q (xα, l) will in general change under a change of coordinates that includes

l. This implies that we can only recognize m in certain gauges.

The import of the preceding comments (i)-(v) is major for the Weak

Equivalence Principle. In gauges like those of Einstein or Planck, or ones

close to them, the dependence of the ordinary 4D metric of spacetime on the

extra coordinate l = m will in general cause the acceleration of a test particle

to depend to a degree (determined by the solution) on the rest mass of the

latter. This is a clear violation of the WEP. Even in other gauges, l and

its associated potential Φ must be connected with the concept of particle (as

opposed to source) mass. We will formalize this using the field equations

below, but here we point out that such a dependency can be expected on

physical grounds: a test particle of mass m in the field of a source mass M
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only has a negligible effect on the metric in the limit m�M → 0. The

effects that follow from m�M 6= 0 have traditionally been handled in areas

such as gravitational radiation by considering the “back reaction” of the test

particle on the field of the source [28]. This is clearly an approximation to

the real physics, and must break down when m�M is significant. In other

words, the WEP as viewed from 5D is a geometric symmetry which must

break down at some level.

3 Vacua in 5D

To illustrate the argument that the 4D WEP is a symmetry of a 5D metric,

it is natural to look at solutions of the field equations that represent a test

particle in an otherwise empty space. Many l-dependent solutions of the

field equations are known, including ones for cosmology and the solar system

which are in agreement with observations [6]. However, the class of solutions

which represents empty 3D space has not been much studied. There are

technical and conceptual reasons for this. Technically, the field equations

RAB = 0 involve in general 15 nonzero components of the Ricci tensor. Even

if we look for static non-electromagnetic solutions, it is still not easy to find
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ones of the desired type, which should have 3D spherical symmetry and be

(r, l)-dependent. Conceptually, the idea of a vacuum in 5D is blurry. Even

in 4D, Rαβ = 0 admits solutions which are empty of ordinary matter but

have 4D curvature, the prime example being the de Sitter solution in which

spacetime is curved by the cosmological constant Λ, or alternatively by a

vacuum fluid with density and pressure given by ρv = −pv = Λ�8π. This

solution has been extensively used in models of the origin of the classical

universe based on quantum effects, such as tunneling [23, 24]. In 5D, the

equations RAB = 0 admit solutions which are apparently empty, but whose

4D subspaces may be curved and contain “ordinary” matter as determined

by the embedded Einstein equations Gαβ = 8πTαβ (see above). A clever

but only partially successful way to sidestep these issues is to look for 5D

solutions which are not only Ricci-flat with RAB = 0 but also Riemann-

flat with RABCD = 0 [25-27]. We will present 3 such solutions below, but

wish to make a cautionary remark based on the contents of the preceding

section: The physical application in 4D of any l-dependent solution in 5D

depends on the choice of gauge. The solutions which follow are all equivalent

to a flat 5D (Minkowski) manifold, but the 5D coordinate transformations

which must exist between them are for technical reasons unknown, and their
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different forms describe different 4D physical vacua.

The following solutions may be confirmed by hand or computer to satisfy

RAB = 0 and RABCD = 0:

dS2 =
l2

L2

{(

1−
r2

L2

)

dt2 −
dr2

(1− r2�L2)
− r2dΩ2

}

− dl2 (12)

dS2 =
l2

L2







[

(

1−
r2

L2

)1/2

+
αL

l

]2

dt2 −
dr2

(1− r2�L2)
− r2dΩ2







−dl2 (13)

dS2 =
l2

L2







[

(

1−
r2

L2

)1/2

+
αL

l

]2

dt2 −
dr2

(1− r2�L2)

−

(

1 +
βL2

rl

)2

r2dΩ2

}

− dl2 . (14)

Here dΩ2 ≡
(

dθ2 + sin2 θdφ2
)

, so all 3 solutions are spherically symmetric

in 3D. The first is a 5D canonical embedding of the 4D de Sitter solution

provided the identification L2 = 3�Λ is made (see above). However, in

general L measures the size of the potential well associated with x4 = l, as

shown by the de Sitter form (12). Solutions like (12)-(14) depend in general

on two dimensionless constants α, β. We have examined the properties of

(12)-(14) extensively, but here note only their generic features. These can
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be appreciated by combining (12)-(14) in the following form:

dS2 =
l2

L2

{

A2dt2 −B2dr2 − C2r2dΩ2
}

− dl2 (15)

A ≡

(

1−
r2

L2

)1/2

+
αL

l
, B ≡

1

(1− r2�L2)1/2
, C ≡ 1 +

βL2

rl
.(16)

The 4D subspaces defined by these solutions are curved, with a 4D Ricci

scalar 4R which by Einstein’s equations is related to the trace of the 4D

energy-momentum tensor by 4R = −8πT . The general expression for 4R for

any 5D metric of the form dS2 = gαβdx
αdxβ + ǫΦ2dl2 as used before is:

4R =
ǫ

4Φ2

[

g
µν
,4 gµν,4 + (gµν gµν,4)

2]
. (17)

The special expression for (15), (16) is:

4R = −8πT = −
2

L2

[

1

AB
+

2

ABC
+

1

C2
+

2

C

]

. (18)

This shows that stress-energy is concentrated around singular shells where

one of A, B or C is zero. The equation of state is in general anisotropic

(T 1
1 6= T 2

2 ). If one replaces 1�L2 in (18) by its de Sitter limit Λ�3, it

becomes obvious that the meaning of the cosmological “constant” requires a

drastic rethink. The effective Λ is in general a function of r and l, opening

a way to a resolution of the cosmological-constant problem. Indeed, there is
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no such thing as “the vacuum” in 5D physics, but rather structured vacua.

4 Particle Masses in 5D

A common view, notably from inflationary quantum theory, is that parti-

cles are intrinsically massless, gaining masses from the Higgs field [28]. This

view is in principle compatible with the recent demonstration that particles

which move on null paths in 5D can move on timelike paths in 4D, both for

induced-matter theory [2] and brane theory [4]. The scalar field g44 = ǫΦ2

of 5D relativity can be suppressed by use of one of the 5 degrees of coor-

dinate freedom (see above); but solutions are known for both solitons and

cosmologies where Φ contains significant physics, and it has been suggested

that Φ is the classical analog of the Higgs field [6]. There are in fact several

ways to define the mass of a particle in 5D. Here, we wish to give a short

account of one which is mathematically straightforward [16, 22] and builds

on the physical identification of the extra coordinate arrived at in section 2.

There we saw that m = l for metrics of the canonical form with |g44| = 1.

For metrics which are of other forms, we can define an effective mass by

m ≡

∫

|Φ| dl =

∫

|Φ (dl�ds)| ds . (19)
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This is in line with how proper distance is defined in 3D. In practice, Φ would

be given by a solution of the 5D field equations, and dl�ds would be given

by a solution of the extra component of the 5D geodesic equation (or directly

from the metric for a null 5D path and a particle at rest in 3D). We note that

a potential problem with this approach is that Φ may show horizon-like be-

haviour. An example is the Gross/Perry/Davidson/Owen/Sorkin monopole,

which in terms of a radial coordinate r which makes the 3D part of the met-

ric isotropic has g44 = −Φ2 = − [(1− a�2r)� (1 + a�2r)]2β�α where a is

the source strength and α, β are dimensionless constants constrained by the

field equations to obey α2 = β2 + β + 1 [ref. 6 p. 70]. This problem may

be avoided by restricting the physically-relevant size of the manifold [6, 28].

Another potential problem is that real particles may have Φ = Φ (xγ , l) so

complicated as to preclude finding an exact solution. This problem may be

avoided by expanding Φ in a Fourier series:

Φ (xγ , l) =

+∞
∑

n=−∞

Φ(n) (xγ) exp (i n l�L) . (20)

Here L is the characteristic size of the extra dimension, which by (17) is

related to the radius of curvature of the embedded 4-space which the particle

inhabits. It should be noted that in both modern versions of 5D relativity,

namely induced-matter theory and brane theory, the extra dimension is not
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compactified [1-5]. Thus we do not expect a simple tower of states based on

the Planck mass, but a more complicated spectrum of masses that offers a

way out of the hierarchy problem.

Underlying the comments of the preceding paragraph is the field equation

R44 = 0 which governs Φ. The full set of field equations RAB = 0 contains

15 components. These can be reduced by tiresome algebra for the general

metric noted before, namely dS2 = gαβ (x
γ , l) dxαdxβ + ǫΦ2 (xγ , l) dl2, which

only uses 4 of the 5 degrees of coordinate freedom to remove the potentials

(g4α) of electromagnetic type. The result is sets of 10, 4 and 1 equations [6].

The first set comprises the Einstein equations Gαβ = 8π Tαβ, with Tαβ given

by (9). The second set comprises the conservation equations

P
β
α;β = 0 (21)

P β
α ≡

1

2Φ

(

gβσgσα,4 − δβαg
µνgµν,4

)

. (22)

These are usually easy to satisfy in the continuous fluid of induced-matter

theory as developed by Wesson and others, and are related to the stress in

the surface (l = 0) of membrane theory with the Z2 symmetry as developed

by Randall and Sundrum (see ref. 5 for a discussion of both). The remaining
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field equation is the scalar relation

�Φ = −
ǫ

2Φ

[

g
λβ
,4gλβ,4

2
+ gλβgλβ,44 −

Φ,4g
λβgλβ,4

Φ

]

. (23)

Here as before �Φ ≡ gαβΦ,α;β and some of the terms on the right-hand side

are present in the energy-momentum tensor of (9). In fact, one can rewrite

(23) for the static case as Poisson’s equation with an effective source density

for the Φ-field. In general, (23) is a wave equation with a source induced

by the fifth dimension. This supports the series expansion (20), and implies

that the inertial rest mass of a particle as defined by (19) arises from the

scalar field.

5 Conclusion

Gravity in general relativity is a force which is encoded in the Christoffel

symbols as coupled to the 4-velocities, and is inertial in the sense that it

arises from the motion of a particle with respect to a 4D frame of reference or

manifold which is not flat. The fifth force of induced-matter and membrane

theory is similar [1, 3]. The normalization condition for the 4-velocities

(1) shows that ordinary 4D geodesic motion is augmented by a fifth force

(per unit mass) or acceleration (2), which while it depends on the velocity

20



in the fifth dimension has the unique property of acting parallel to the 4-

velocity (3). This force depends in general on x4 = l, the fifth coordinate of

the particle, and therefore violates the Weak Equivalence Principle, at least

technically. However, it is compatible with the principle of conservation of

linear momentum (5), which leads to the identification of l with the (inertial

rest) mass of the test particle m. Other aspects of 4D gravity support this.

The presence of x4 = l in exact solutions of the 5D field equations (12)-(14),

which would otherwise be called empty, lead to the realization that there are

5D vacua with structure. A definition for the rest mass m, analgous to that

of proper distance and valid for any 5D metric (19), is compatible with the

identification of the scalar field of classical 5D relativity with the Higgs field

of particle physics, its field equation (23) describing a wave with a source.

The above conclusions clearly open ways to resolving well-known problems

that arise from mismatches of classical and quantum physics, notably the

cosmological-constant and hiearchy problems.

The WEP, however, is rendered particularly transparent. It is a geo-

metric symmetry, valid only in the limit in which the metric is independent

of x4 = l, that is the limit where the mass of a test particle is negligible

compared to other terms such as the mass of the source. New techniques to
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measure departures from the WEP are technically challenging [28-30]. But

if the 4D world is part of one with 5 or more dimensions, violations of the

WEP must exist.
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