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    The foundations of Wesson’s Induced Matter Theory are analyzed. It is shown that the empty, - 

without matter, - 5-dimensional bulk must be regarded as a Weylian space rather than as a 

Riemannian one. Revising the geometry of the bulk, we have assumed that a Weylian connection vector 

and a gauge function exist in addition to the metric tensor. The framework of a Weyl-Dirac version of 

Wesson’s theory is elaborated and discussed. In the 4-dimensional hypersurface (brane), one obtains 

equations describing both fields, the gravitational and the electromagnetic. The result is a 

geometrically based unified theory of gravitation and electromagnetism with mass and current induced 

by the bulk. In special cases on obtains on the brane the equations of Einstein-Maxwell, or these of the 

original Induced Matter Theory.   
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1. INTRODUCTION 

      

   In the present paper, we show that in Wesson’s Space-Time-Matter theory 
(1)

 (STM) 

the 5-dimensional manifold (bulk) is a Weyl space rather than a Riemannian one. 

From the cognitive point of view, the main achievement of the STM, known also as 

the Induced Matter Theory (IMT), is the successful explanation of the geometric 

origin of matter. Therefore, we consider first some points concerning the geometry � 

matter interdependence.  

     Matter and field are basic concepts of classical field theories. They play a 

fundamental role in the general relativity theory 
(2)

, where the Einstein tensor 
ν
µG  is 

expressed in terms of the geometry of space-time, and the matter is represented by its 

momentum-energy density tensor ν
µT .  These two intrinsic concepts are connected by 

the Einstein field equation 

                                           ν
µ

ν
µ π TG 8−= .                                                              (1) 

According to Eq. (1), a given distribution of matter (-sources) determines the 

geometric properties of space-time. One can regard this as the creation of space-time 

geometry by matter. Now, one can read Eq. (1) in the opposite direction, and expect 

for the creation of matter by geometry. The existence of this reverse process would 

fulfill one of Einstein’s dreams. Sixty-six years ago Einstein and Infeld 
(3)

 wrote: 

“Could we not reject the concept of matter and build a pure field physics? … We 

could regard matter as the region where the field is extremely strong.” 

   However, what has brought matter into being? There are many interesting works 

dealing with this problem. In the fifties Wheeler 
(4)

 introduced the concept of 

electromagnetic geons, massive entities created by spatially confined fields. Later 
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Wheeler and Power
 (5)

 introduced the thermal geon. Geons were included by Misner 

and Wheeler also in their Geometrodynamics 
(6)

, which describes gravitation and 

electromagnetism in terms of geometry.  

    During the last 50 years the origin of mass was discussed in many interesting 

works. In 1974 G. ‘t Hooft 
(7)

 showed that in gauge theories in which the 

electromagnetic group is a subgroup of a larger group, like SU(2) or SU(3), massive 

magnetic monopoles  can be created as regular solutions of the field equations. Later, 

Gross and Perry 
(8)

 found in the framework of a 5-dimensional Kaluza-Klein theory 

regular static and stable soliton solutions, which correspond, upon quantization, to 

particles; these solitons include massive magnetic monopoles.  

There must be given attention to classical gauge theories, where the electromagnetic 

or the Yang-Mills field arises from connections on U(1) or SU(2) – principle bundles 

over the space-time manifold {M}, while the gravitational field arises on the GL(4) 

principal frame bundle over {M}. One can adopt the standpoint that all non-

gravitational fields should somehow uniquely determine the gravitational field and its 

mass 
(9)

. Among other interesting theories that appeared in the middle of the eighties, 

there is a successful elegant Yang-Mills field theory of gravitation presented by H. 

Dehnen et al. 
(10)

. This theory is based on a unitary phase gauge invariance of the 

Lagrangian, where the gauge transformations are those of SU(2) x U(1) symmetry of 

the two spinors. In the classical limit this microscopic theory results in Einstein’s 

theory of gravitation.  

   Some years ago in an interesting work C. S. Bohum and F. I. Cooperstock 
(11)

 issued 

from the Lagrangian of quantum electrodynamics. For the case A=0, 0≠ϕ  they 

obtained the stationary Dirac equation and the Poisson equation. These equations lead 

to a Dirac-Maxwell soliton with the mass and charge of the electron. 
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Recently classical models of elementary particles were presented by O. Zaslavskii 
(12)

. 

These are built up by gluing the Reissner - Nordstrǿm metric (or the Kerr – Newman 

black hole) to a static (or rotating) Bertotti- Robinson core. 

    Now, according to classical general relativity the most attractive scenario would be 

creation of massive matter by geometry. However, as it was shown in the nineties by 

Cooperstock et al. 
(13, 14)

 no gravitational geon can exist in general relativity based on 

Riemannian geometry.  Thus, in order to get matter creation by geometry we must 

turn to a more general framework than the four dimensional (4D) Riemannian one. 

There exist various extensions of Einstein’s framework possessing massive matter 

stemming from pure geometry. Some years ago, the present writer proposed an 

integrable Weyl-Dirac theory 
(15)

.  This has to be regarded as a version of the Weyl-

Dirac (W-D) theory, which is an elegant 4D unification of Einstein’s GTR and 

electromagnetism. The enlarged W-D theory is based on Weyl’s geometry 
(16, 17)

 

modified by Dirac’s action principle 
(18)

, and by Rosen’s approach 
(19)

, the latter 

allowing to regard the Weyl vector field as creator of massive particles. It is worth 

noting that a recently proposed Weyl-Dirac Torsional Massive Electrodynamics 
(20) 

possesses massive photons and magnetic monopoles.  

    In the Integrable Weyl-Dirac theory 
(15, 21)

, a spatially confined, spherically 

symmetric formation made of pure geometric quantities is a massive entity 
(22)

. At the 

very beginning the matter universe was created by an embryonic egg made of pure 

geometry. After the matter universe was born, the geometry stimulates cosmic matter 

production during the expansion phase and form dark matter and quintessence in the 

accelerating universe 
(21, 23)

. Ten years ago Novello 
(24)

 proposed a different approach 

of Weyl’s geometry the Weyl Integrable Space-Time (WIST) that leads to interesting 

results in cosmology. 
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    Another extension of Einstein’s theory is based on the idea that our 4D space-time 

is a surface embedded in a 4+m (m>0) dimensional manifold. Proceeding from this 

idea Kaluza 
(25)

 proposed a unification of electromagnetism and gravitation in the 

frame of a 4D hypersurface embedded in a 5-dimensional (5D) manifold. Suggesting 

that the fifth dimension has a circular topology Klein 
(26)

 imposed the cylindricity 

condition and completed the Kaluza theory. In the Kaluza-Klein theory, the fifth 

coordinate 4
x  plays a purely formal role and the components of the 5D metric tensor 

do not depend on 4
x . In 1938 Einstein and Bergmann 

(27, 28)
 presented a generalization 

of the Kaluza-Klein theory. In this work the condition of cylindricity (that is 

equivalent to the existence of a 5D Killing vector) is replaced by the assumption that 

with regard to the fifth coordinate the space is periodically closed. In the Einstein - 

Bergmann version the fifth dimension has a physical meaning.  

   The Kaluza-Klein idea of extra dimensions, where ordinary matter is confined 

within a lower dimensional surface, has received an enormous amount of attention 

during the last decades. There must be noted the early works of Joseph 
(29)

, Akama 

(30)
, Rubakov and Shaposhnikov 

(31)
, Visser 

(32)
. The basic works of Randall and 

Sundrum 
(33)

, as well the works of Arkani-Hamed et al 
(34)

, who suggested that 

ordinary matter would be confined to our 4D universe, while gravity would “live” in 

the extended 4+m dimensional manifold, played a key role in the further development 

of Kaluza-Klein theories. A list of relevant papers is given in Rubakov’s recent 

review 
(35)

.    .  

    On a revised Kaluza-Klein approach is based Wesson’s theory 
(1)

, in which the 

physical matter of the 4D space-time is created by the geometry of a 5D bulk. Basic 

concepts and approaches of this remarkable theory as well applications to cosmology 

were developed during the last ten years in collaboration by Liko, Lim, Liu, 
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Overduin, Ponce de Leon, Seahra and Wesson 
(1, 36-50)

. Between important 

achievements of the Induced Matter Theory is the proof of the geometric origin of 

matter, successful cosmological models with a variable cosmological constant, dark 

matter, accelerated universes. Wesson’s framework includes also an induced unified 

theory of gravitation and electromagnetism.  

    Now, comparing Wesson’s IMT with the Weyl-Dirac theory one recognizes similar 

results. Both theories allow getting matter from geometry, as well obtaining 

singularity-free cosmological models. In both theories, Wesson’s IMT and the 

Integrable W-D theory; dark matter and quintessence follow from geometry. Both 

frameworks provide a unified, geometrically based description of gravity and 

electromagnetism. Finally, both, the Weyl-Dirac theory and the Kaluza-Klein one 

originate from attempts of building up unified theories of classical fields. Below it is 

shown that the 5-dimensional empty bulk must be described by Weyl’s geometry.  

    In the present work, the following conventions are valid. Uppercase Latin indices 

run from 0 to 4; lowercase Greek indices run from 0 to 3. Partial differentiation is 

denoted by a comma (,), Riemannian covariant 4D differentiation by a semicolon (;), 

and Riemannian covariant 5D differentiation by a colon (:). Weylian derivative in a 

5D space is written as A∇ , and in 4 dimensions one writes µ∇ . 
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2. EMBEDDING A 4D SPACE-TIME IN A 5D MANIFOLD. THE 

FORMALISM 

     

 This section contains a concise description of the general embedding formalism. The 

notations as well as the geometric construction given below accord to these given in 

recent works of Sanjeev S. Seahra and Paul Wesson (cf. 
(47, 48)

).   

One considers a 5-dimensional manifold { M } (the “bulk”) with a symmetric metric 

BAAB gg = , (A, B = 0, 1, 2, 3, 4) having the signature ( ) ),,,,(sig ε+++−=ABg with 

1±=ε . The manifold is mapped by coordinates { A
x } and described by the line-

element   

                                                 BA

AB dxdxgdS =2  .                                                (2)  

One can introduce a scalar function ( )A
xll =  that defines the foliation of {M} with 4-

dimensional hypersurfaces lΣ  at a chosen l = const, as well the vector A
n  normal to 

lΣ . If there is only one timelike direction in {M}, it will be assumed that A
n  is 

spacelike. If {M} possesses two timelike directions )1( −=ε , A
n  is a timelike vector. 

Thus, in any case lΣ  (the “brane”) contains three spacelike directions and a timelike 

one. The brane (our 4-dimensional space-time) is mapped by coordinates { µ
y }, 

( .3,2,1,0=µ ) and has the metric νµµν hh =  with ( ) ),,,(sig +++−=µνh . The line-

element on the brane is 

                                          νµ
µν dydyhds =2 .                                                          (3) 

It is supposed that the relations ( )A
xyy

νν =  and ( )A
xll = , as well as the reciprocal 

one ( )lyxx
AA ,ν=  are mathematically well-behaved functions. Thus, the 5D bulk 

may be mapped either by { }A
x  or by { }ly ,ν . The normal vector to lΣ  is given by                                                      
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                                                  ;ln A
A

∂Φ= ε                                                        (4) 

with Φ  being the lapse function.  

     A 5D quantity (vector, tensor) in the bulk has 4D counterparts located on the 

hypersurfaces. These counterparts may be formed by means of the following system 

of basis vectors, which are orthogonal to An   

                   
νν

y

x
e

A
A

∂

∂
=              with                    0=A

Aen ν .                                      (5)                                              

Thus, the brane lΣ  is stretched on four five-dimensional basis vectors A
eν . Together 

with the main basis { }A

A ne ;ν one can consider its associated one { }A

A ne ;ν , which 

also satisfies an orthogonality condition 0=A

Aneν . The main basis and its associated 

are connected by the following relations:  

                     εεδδ σ
σ

µ
ν

µ
ν =−== A

A

B

AA

BB

A

A

A nnnneeee ;; .                           (6) 

    Let us consider a 5D vector AV  in the bulk {M}. Its 4D counterpart on the brane 

lΣ  is given by 

                                 .; B

BA

A VeVVeV νν
µµ ==                                                  (7) 

On the other hand the 5D vector may be written as  

                ( ) A

S

SAA nnVVeV εµ
µ += ; ( ) A

S

SAA nnVVeV εµ
µ +=  .                        (8) 

Actually, (8) is a decomposition of AV  into a 4-vector µV  and a part normal to lΣ . 

Further, the 5D metric tensor, AB

AB gg ; , and the 4D one, 
µν

µν hh ; , are related by 

               λ
µ

λν
µν

νµµν
νµµν δ=== hhgeehgeeh AB

BAAB

BA with    ;; ,                      (9) 

and  

   C

A

CB

AB

BABAAB

BABAAB ggnnheegnnheeg δεε µν
νµµν

νµ =+=+=  with   ;; .   (10) 

Details may be found in 
(1, 47, 48)

.  
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3. PARALLEL DISPLACEMENT IN WEYL’S GEOMETRY 

      

In the next section parallel displacement on a brane in the IMT will be considered. 

Here we recall the cardinal idea of Weyl 
(16, 17)

. He issued from the dominance of light 

rays for physical experiments. Accordingly, the light cone is the principal 

phenomenon describing the 4D space-time. This idea brought Weyl to regard the 

isotropic interval 02 =ds  as invariant rather than an arbitrary line-element 

βα
αβ dydyhds =2

between two space-time events. Thus, in the 4D Weyl geometry, 

the metric interval between two events as well the length of a given vector is no more 

constant, it depends on an arbitrary multiplier, the gauge function. In order to describe 

the geometry based on the invariance of light-cones Weyl introduced in addition to 

the metric tensor αβαβ hh =  a length connection vector νw . However, in Weyl’s 

theory there was a difficulty in obtaining satisfactory equations for gravitation. 50 

years later Dirac 
(18)

 revived the Weyl theory. Modifying the variational principle, he 

introduced a Lagrangian multiplier, involving the gauge function ( )λyΩ  into the 

action. Dirac’s modification enabled to derive satisfactory equations for gravitation 

and electromagnetism.  

    In Weyl’s geometry the connection is given by 

                              { } µ
λ
νν

λ
µ

λ
µν

λ
νµ

λ
νµ δδ wwwh −−+=Γ ,                                      (11) 

with { }λ
νµ  being the Christoffel symbol. Let us consider a vector undergoing an 

infinitesimal parallel displacement νdy , so that its component µ
V changes by  
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                                                νµ
σν

σµ dyVVd
W

Γ−= .                            (12)              

From (11) and (12) one obtains the following change of the length λσ
σλ hVVV = :  

                                                        
ν

ν dyVwVd
W

= .                                            (13) 

If the vector is transported by parallel displacement around an infinitesimal closed 

parallelogram the total change of its length according to (11) and (13) is 

                                                  
νµ

µν δ ydyWVV
W

=∆ ,                                        (14) 

where  

                                                µννµµν ,, wwW −=                                                  (15) 

is the Weylian length curvature tensor, which in the Weyl-Dirac theory is identified as 

the electromagnetic field tensor. Thus, in this geometry 0≠∆V
W

unless 0=µνW . If a 

vector having the length initialV  has been transported round a closed loop, and arrived 

at the starting point, the new length according to (14) will be                

                               ∫+=
S

dSWVVV µν
µνinitialnew  ,                                                  (16) 

with S  being the area confined by the loop, and νµµν δ ydydS = an element of this 

area. As the loop can be chosen arbitrarily, one has an arbitrary standard of length (or 

gauge) at each point, and one can consider local gauge transformations, called Weyl 

gauge transformations. Under a Weyl gauge transformation (WGT) the length of a 

vector changes as 

                                            VeVV λ=→
~

,                                                          (17) 

 where ( )νλ y  is an arbitrary function of the coordinates; the metric tensor changes as  

                    
µνλµνµν

µν
λ

µνµν hehhhehh
22 ~

;
~ −=→=→ ,                              (18)   

and the Weyl connection vector changes according to 
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                                         ννν
λ
y

ww
∂

∂
+→ ~  .                                                           (19) 

The gauge transformations may be represented by an arbitrary positive function, the 

Dirac gauge function ( )µyΩ  that changes as                                        

                                        Ω=Ω→Ω −λ
e

~
 ,                                                             (20)  

so that λ−=






Ω
Ω
~

ln  and there exists a mutual correspondence between the two 

scalar functions, ( )µyΩ  and ( )νλ y . It must be pointed out that if 0=νw , the Weyl 

space turns into the Riemannian (cf. (11)). If νw  is a gradient vector the Weylian 

length curvature tensor µνW  vanishes (cf. (15)) and according to (16) one obtains an 

integrable space. More on the Weyl- Dirac theory may be found in 
(16 – 19, 21)

. 

 .  

 

4. PARALLEL DISPLACEMENT IN THE STM THEORY 

 

A vector MV  in the 5D bulk has a 4-dim. counterpart in lΣ , the vector µV . These two 

vectors are related by equations (7) and (8). Let us consider an infinitesimal parallel 

displacement of MV  in the bulk 
2
                       

                                       { } B

S

S

BMM dxVdV =  .                                          (21)  

The change of the length ( )2

1
S

SVV of this vector obviously vanishes. Now, according 

to (7), the induced parallel displacement of µV  is                                                                                           

               ( ) { } BA

BA

BS

BAS

AA

AA

A

A

A dxeVdxVedeVdVeVeddV ,µµµµµµ +=+==  .               (22) 

                                                           
2
 We use the curly brackets { } for both, 5D Christoffel symbols and 4D ones. They may be 

distinguished by the indices: the 5D have uppercase Latin indices, the 4D have lowercase Greek 

indices  
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As the 5D bulk may be mapped either by { }Ax  or by { }ly ,ν  one can write (cf. 
(48)

) 

                                 
dl

x
ldlldyedx

B
BBBB ∂

=+= with,ν
ν  .                    (23)      

Further, the 5D vector B
l  may be written as 

                                     BBB nNel Φ+= ν
ν .                                                           (24) 

In the decomposition (24) the shift vector ν
N  is parallel to lΣ , B

n  stands for the 

normal to 
lΣ , and ( )S

S nlε=Φ is the lapse function. According to (23) and (24) 

                          dlndlNedyedlldyedx
BBBBBB Φ++=+= ν

ν
ν

ν
ν

ν  .                        (25)  

 

Inserting decomposition (25) into the expression for the parallel displacement (22) we 

obtain 

             { }( )( )dlndlNedyeeVVedV BBBA

BA

S

BAS

A Φ+++= ν
ν

ν
νµµµ , .                                   (26) 

One can consider the displacement (26) as consisting of three parts:          

                              µµµµ VdVdVddV
ll ⊥Σ

++=  ,                                                       (27)                 

With { }( ) ν
νµµµ dyeeVVeVd BA

BA

S

BAS

A

l

,+=
Σ

;  { }( ) dlNeeVVeVd
BA

BA

S

BAS

A

l

ν
νµµµ ,+= ; and  

{ }( ) dlneVVeVd BA

BA

S

BAS

A Φ+=
⊥

,µµµ .  The displacement µVd
lΣ

 is located in lΣ . Further, 

µVd
l

 is the displacement along ν
N , and the third term, µVd

⊥
, is normal to the 4D 

brane lΣ . For our purpose, only the term µVd
lΣ

 is relevant and a straightforward 

calculation yields 

{ } ( ) ( )[ ( ) ] ν
µν

σ
σµνσνµ

σ
νσµ

σ
µσν

νσ
νµσµ

ε
dynheheheehehnVdyVVd

L

LLA

AA

LLS

S

l

,,,,
2

−+−++=
Σ

. 

                                                                                                                            (28)                                                                                                                                                               

This may be rewritten as     
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                               { } ( )[ ] ν
µν

σ
νµσµ ε dyCnVVVd S

S

l

−=
Σ

,                                      (29) 

with  

                         { }







−

∂

∂
≡= S

ABSA

BBA

AB

BA
n

x

n
eeneeC νµνµµν :                                 (30)        

standing for the extrinsic curvature of the hypersurface 
lΣ .  

Now let us consider the square of the length λµ
µλ

VVhV ≡2 . Its change under a 

parallel displacement is        

    ( ) νµλ
νλµµλ

µλ
λµ

µλ
λµ

µλ
dyhVVdVVhdVVhVVhd

l

,++=
Σ

.                                 (31) 

Making use of { } { } µσλ
νσ

σλµ
νσ

µλ
ν hhh −−≡, , we obtain from (31) the change of the 

squared length of the 4-vector: 

                                       ( ) ( ) ν
σν

σ
λ

λ ε dyCVnVVVd
S

S
l

2−=
Σ

.                              (32)    

For a moment, let us go back to the 4D Weyl-Dirac geometry. From (13) we have for 

the change of the squared length of a vector  

                                             ν
ν dywVVd

W

22 2= .                                                 (33) 

Although relations (32) and (33) differ one from another, both describe non-integrable 

4D spaces. Thus, in the general case, the 4-brane possesses a non-integrable 

geometry, and only when the original 5D vectors are situated entirely in 
l
Σ  

(i.e. 0=S

S nV ), or when the external curvature vanishes ( 0=µνC ) one has a 

Riemannian brane. 
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5. THE WEYL–DIRAC FORMALISM ON THE BULK 

 

In light of the non-integrable induced geometry on 4D branes, it is justified to 

reconsider the geometry of the bulk. In Wesson’s 5D induced matter theory, one 

regards the bulk as pure geometry without any additional fields. The geometry is 

described by the metric tensor ABg . Thus, the principal phenomenon, which carries 

information is a metric perturbation propagating in the form of a gravitational wave. 

In order to avoid misinterpretations one must assume that all gravitational waves have 

the same speed. Therefore, the isotropic interval 02 =dS  has to be invariant, whereas 

an arbitrary line element BA

AB dxdxgdS =2  may vary. The situation resembles the 4D 

Weyl geometry, where the light cone is the principal phenomenon describing the 

space-time and hence the lightlike interval 02 =ds  is invariant rather than an 

arbitrary line-element βα
αβ dydyhds =2 between two space-time events (cf. Sec. 3).                     

    We will adopt the ideas of Weyl and Dirac assuming in every point of the bulk the 

existence of a metric tensor ( ) ( )D

BA

D

AB xgxg =  and a vector ( )DA
xw . The 

infinitesimal geometry will be described by a 5D Weylian connection  

                      { } { } A

D

BB

D

A

D

AB

D

BA

D

BA

D

BA

D

BA wwwg δδ −−+=+=Γ ∆ ,             (34)      

with { }D

BA  being the 5D Christoffel symbol. Consider an infinitesimal parallel 

displacement of a given vector A
V . According to (34), one writes for the change of 

the component                 

                                      BA

BD

DA
dxVdV Γ−= ,                                                  (35) 

so that the vector’s length ( ) 2
1

S

SVVV =  will be changed by 

                                      B

B dxwVdV = .                                                           (36) 
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In the Weyl framework, if a vector A
V is transported by parallel displacement round 

an infinitesimal closed parallelogram one finds for the total change of the components 

                                  CBA

BCS

SA
xdxKVV δ=∆ ,                                               (37) 

with A

SBCK  being the curvature tensor formed from A

BSΓ : 

               A

LB

L

SC

A

LC

L

SB

A

BSC

A

CSB

A

SBCK ΓΓ+ΓΓ−Γ+Γ−= ,, .                                 (38)  

From (36) one obtains the change in the length after a displacement round an 

infinitesimal parallelogram (cf. (14)) 

                                   CB

BC xdxVWV δ=∆ ,                                                       (39) 

with ABBAAB wwW ,, −= being the 5-dimensional Weylian length curvature tensor.  

    Just as in the 4D Weyl geometry (cf. Sec. 3), so also in this 5D case one is led by 

equation (39) to an arbitrary standard of length. Thus, one introduces 5D Weyl gauge 

transformations (WGT) with a scalar function ( )A
xλ  and the Dirac gauge function 

( )A
xΩ . Under WGT one has ABABAB gegg

λ2~ =⇒ , ABABAB
gegg

λ2~ −=⇒ , 

Ω=Ω⇒Ω −λ
e

~
and AAAA www ,

~ λ+=⇒ . In the 5D Weylian bulk one has two 

different coordinate covariant derivatives, the Weylian  (cf. Appendix B, below)  

                                   A

BS

SA

B

A

B VVV Γ+≡∇ , ,                                                    (40) 

and the 5D Riemannian one   

                                    { }A

BS

SA

B

A

B VVV +≡ ,:  .                                                       (41) 

Making use of (34) and (41) we can rewrite the length curvature tensor as   

                        ABBAABBAAB wwwwW ::,, −=−=  ,                                           (42) 

and the curvature tensor given by equation (38) as  

( )
( ) ( ) ( ) .

::::::

SB

A

CC

A

B

A

CBSBCS

L

LCS

A

BBS

A

C

BS

A

CCS

A

B

A

CSB

A

BSCBCCB

A

S

A

SBC

A

SBC

wwwwwgwgwwgg

wwwgwgwwRK

δδδδ

δδδ

−+−+−

+−+−+−+=
  (43) 
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In Eq. (43) 
A

SBCR stands for the 5D Riemannian curvature tensor formed from { }A

CB . 

Contracting (43) we obtain  

NM

S

SMN

S

SMNNMMNMN

S

MNSMN wwwwgwgwwRKK 334 ::: −+−−+=≡ .           (44) 

From (44) one can derive 

                          ( )
MNMNNMNMMN WwwKK 55 :: −=−−=−   ,                              (45) 

and also obtain the 5D Weylian curvature scalar                                          

                     S

S

S

SMN

MNS

S wwwRKgK 128ˆ
: +−== ,                                          (46)   

with L

ABL

AB RgR≡ˆ  being the 5-dimensional Riemannian curvature scalar. 

     Following Dirac 
(18)

 we shall derive the field equations in the 5D bulk from a 

variational principle 05

geom
=−∫ xdgLδ , with gL −

geom
 being an in-invariant, i.e. 

invariant under both, coordinate transformations (CT) and Weyl gauge 

transformations  (WGT).  

    One can form the Lagrangian 
geom
L  from the following suitable, geometrically based 

terms. 1) AB

AB
WWΩ  (cf. (42));   2) S

SK
3Ω− (cf. (46));  3) regarding the Dirac gauge 

function ( )A
xΩ , in addition to ABg and Dw , as a dynamical variable one adds a term 

containing its gauge covariant derivatives ( )( )BBAA

AB
wwgk Ω+ΩΩ+ΩΩ ,, , with k 

being an arbitrary constant; 4) finally, one adds the cosmological term ΛΩ5 . The 

nΩ multipliers in 1) – 4) assure WGT invariance of the terms. 

    It is convenient to denote A

B

AB

AA g Ω≡ΩΩ≡Ω ,, ; . Then, making use of the 

above mentioned terms, 1) – 4) and discarding perfect differentials we obtain the 

action integral      
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( ) ( )[ ] xdgkwwkRWWI
S

SSS

SAB

AB

5523 212ˆ −ΛΩ+ΩΩΩ+Ω+ΩΩ−+Ω−Ω= ∫ .   

                                                                                                                                (47)                      

Considering the variation of  (47) with respect to ABg , Dw  and Ω , one obtains the 

field equations. It turns out that in the Awδ -equation will appear a Proca-like term if 

012 ≠−k . As from the quantum mechanical standpoint, such a term may be 

interpreted as representing massive particles, we will assume 12=k . With this 

choice, we have the following action:                   

                 [ ] xdgRWWI
S

S

AB

AB

553 12ˆ −ΛΩ+ΩΩΩ+Ω−Ω= ∫ .                    (48) 

    Now, making use of (A-1) – (A-4) in Appendix A, we obtain the AB
gδ -equation 

              

( ) ,
2

13

6

4

12ˆ
2

1

2

::

22

ΛΩ−Ω−Ω
Ω

−

−ΩΩ
Ω

+






 −
Ω

=− ⋅

AB

S

SABBA

BA

LS

LSAB

S

BASABAB

gg

WWgWWRgR

                (49)                                                                                            

the Ωδ - equation 

            ( ) 05212ˆ3 4

:

2 =ΛΩ+ΩΩ+ΩΩ−Ω− S

S

S

S

AB

AB RWW ,                                (50) 

and the Awδ -equation  

                                         ( ) 0: =Ω B

AB
W .                                                         (51)      

It is worth noting that contracting (49) one obtains equation (50), so that actually, the 

latter does not fix the 5D Dirac gauge function, and one is free to choose an arbitrary 

function ( )A
xΩ . (There is however, a “natural” restriction, 0>Ω  on the gauge 

function.) Thus, one is left with only two field equations, (49) and (51).                                       

     One can consider in the bulk the Einstein gauge 1=Ω , then from (49) and (51) 

follow the very simple equations 

             Λ−






 −=− ⋅
AB

LS

LSAB

S

BASABAB gWWgWWRgR
2

1

4

1
2ˆ

2

1
,                        (52) 
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                                              ( ) 0: =B

AB
W .                                                        (53) 

 

 

6. THE EQUATIONS ON THE 4D BRANE 

     

In order to obtain equations of gravitation in the 4D brane we can make use of (49) 

and of the Gauss-Codazzi equations. The latter may be found in textbooks on 

differential geometry as well in works of Seahra and Wesson 
(47, 48)

. The 5D 

Riemannian curvature tensor 
ABCDR is related to the 4D one αβγδR  by the Gauss 

equation                       

                   βγδααβγδδγβα ε ][2 CCReeeeR
DCBA

ABCD += ,                                          (54) 

where αβC  is the extrinsic curvature of the 4D brane lΣ  in the 5D bulk (cf. (30). 

There is also the Codazzi equation 

                         [ ]γβαγβα ;2CeeenR
CBAM

MABC = .                                                       (55)                     

Following 
(47, 48)

 we denote   

                             
BANM

MANB eennRE βααβ ≡ ,                                                        (56) 

and introduce the contracted  quantity (cf. (A-5))                            

                            NM

MN nnREhE −=≡ λσ
λσ .                                                       (57)   

Then from  (54) we obtain 

                     [ ]αβσλ
λσ

αββααβ ε ][2 CChEReeR AB

BA −+=  ,                                    (58) 

                              [ ]σλνµ
µνλσε ][2ˆ CChhERR −+=  ,                                           (59) 

with λσ
λσ

RhR ≡  being the 4D curvature scalar, and MN

MN
RgR ≡ˆ  - the 5D one. 

From (49), (50) one obtains the 5D Ricci tensor 
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.
33

13

3

16

6

12

2

::

22

ΛΩ+






 Ω+Ω
Ω

−

−






 ΩΩ−ΩΩ
Ω

+






 −
Ω

= ⋅

ABS

SABBA

S

SABBA

NS

NSAB

S

BASAB

g
g

gWWgWWR

            (60) 

In addition to the notations given in (56), (57), we introduce the following:  

LSBA

BLAS nneeWWB βααβ ≡ , and LSAB

BLAS nngWWBhB ≡= λσ
λσ .  (cf. (A-5))      (61)                      

We also recall that A

B

AB

AA g Ω≡ΩΩ≡Ω ,, ; . Finally, substituting expression (60) 

and its contraction, AB

AB
RgR ≡ˆ , into equations (58, 59) and making use of (A-6) – 

(A-12) we obtain the 4D Einstein equation 
total

8
2

1
αβαβαβαβ π TRhRG −=−≡  ,       

          ( ) ( )( )

( )[ ] ,
2

1
2

336

2

128

2

][

;;2

22

ΛΩ−−+−

+−Ω
Ω

+Ω−Ω
Ω

−ΩΩ
Ω

+

+






 −
Ω

−
Ω

−=

αβ
λ
β

σ
α

λσ
αβσλνµ

µν
αβαβ

αβαβ
σ
σαββαβα

αβαβαβαβ

δδε

ε

επ

hhhCChEhE

CChnh

BBhMG

S

S
                 (62)     

with 






 −= ⋅λ
βαλ

λσ
λσαβαβ π

WWWWhM
4

1

4

1
 being the energy-momentum density 

tensor of the 4D electromagnetic field, and with λσ
λσ

ChC ≡ .  

    On the right-hand-side of the gravitational equation (62) one discovers some 

interesting terms. The first line in addition to αβM includes an induced by the bulk 

term that involves BSALWW  of the bulk. This term may be interpreted as a relict of 

the 5D Weylian energy. The second line contains derivatives of the Dirac gauge 

function, where the third term of this line is induced by the bulk. In the third line 

appears the induced energy-momentum density tensor of the ordinary STM theory, as 

well a cosmological term.  
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    Let us turn to the 5D Maxwell equation (51), ( ) 0: =Ω B

AB
W . From this we obtain 

the following 4D Maxwell equation (For details cf. (A-13) – (A-17) in the Appendix.) 

( ) 















Ω

Ω
++−+

Ω

Ω
−= CASAS

CA

C

AA

AS

S WWenCheheWnWW :;

α
βλ

βλααλβαββαβ
β ε . (63)                    

From (63) one has the 4D electromagnetic current vector αβ
β

α

π ;
4

1
WJ = , which 

includes a gauge depending term and an induced term. By symmetries one has                                                 

                                                   0

;

=








Ω

Ω

α

αββ
W ,                                              (64) 

so that from the current conservation law we have the condition  

( ) 0;: =















Ω

Ω
++− α

α
βλ

βλααλβ εε CABAB

CA

C

BAA

AS

S WWennCheheWn  . (65) 

In the Einstein gauge, 1=Ω , one has from (62) and (63) the simple equations 

          

( )[ ] ,
2

1
2

2

1
28

2

][ ΛΩ−−+−

+






 −−−=

αβ
λ
β

σ
α

λσ
αβσλνµ

µν
αβαβ

αβαβαβαβ

δδε

επ

hhhCChEhE

BBhMG

                    (66) 

and (cf. (A-17)) 

            ( )[ ]AS

CA

C

AA

AS

S WenCheheWnW :;

α
βλ

βλααλβαβ
β ε +−=  .                                (67) 

In absent of the fifth dimension ( 0=ε ) and in the Einstein gauge 1=Ω , one is left 

with  

                       ,
2

1~
where;

~
8 Λ≡ΛΛ−−= αβαβαβ π hMG                                        (68) 

and with 

                                           0; =αβ
βW .                                                                   (69) 

    For cosmology the case 0=ABW , but with an arbitrary positive Dirac gauge 

function may be of interest. Here, from (62) one has  
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( ) ( )( )

( ) .
2

1

2

1

3

2

136 2

;;2
















 −+






 −−−+

+−Ω
Ω

+ΛΩ−Ω−Ω
Ω

−ΩΩ
Ω

=

νσµλ
µν

αββσαλ
λσ

αβαβαβαβ

αβαβαβ
σ
σαββαβααβ

ε

ε

CChhCChChCCEhE

CChnhhG S

S

(70) 

If we for a moment assume that 0=ε , we obtain from (70) the equation 

               ( ) ΛΩ−Ω−Ω
Ω

−ΩΩ
Ω

= 2

;;2 2

136
µν

σ
σµννµνµµν ggG  .                            (71) 

This may be regarded as describing a universe filled with the Dirac gauge function 

and a cosmological term. 

 

 

7. DISCUSSION    

     

In the present paper, we have discussed Wesson’s Induced Matter Theory (cf. 
(1, 47, 48)

) 

and proposed a Weyl-Dirac version of this theory.  

    Suppose one carries out an infinitesimal parallel displacement of a vector AV  in 

the 5D Riemannian bulk { }M . Then, the change in the length ( )2

1

S

S
VV  obviously 

vanishes. However, considering the induced parallel displacement of the 4D 

counterpart A

A
VeV αα =  in the 4D hypersurface (brane), one discovers that its length 

( )2

1

σ
σ
VV changes (cf. (32)), so that the brane is no longer a Riemannian space. The 

mentioned change is induced by the bulk and involves the external curvature of the 

4D brane.  

    This non-integrability of the induced 4D geometry justifies revising the geometry 

of the bulk. It is shown in the present paper that the pure geometric 5D bulk is a 

Weylian space rather than a Riemannian one. Therefore, we have built up a Weyl-

Dirac formalism on the bulk. The 5D manifold {M} is mapped by coordinates 



  22

{ }N
x and in every point exist the Weylian connection vector A

w , the Dirac gauge 

function Ω , and the symmetric metric tensor ABg . The three fields ABg , A
w and 

Ω  are integral parts of the geometric framework, and there are no additional fields or 

particles in {M}. In the bulk, two field equations, for ABg  and A
w , are derived from 

a geometrically based action, whereas the Dirac gauge function Ω may be chosen 

arbitrarily. Making use of the Gauss-Codazzi equations we obtained the equations in 

the 4D hypersurface (brane), one for the gravitational field (cf. (62)) and another 

describing the µw -field, the latter being a generalization of the Maxwell equation (cf. 

(63)). The sources in both equations consist of two parts: the first is located in the 

brane and it depends on the gauge function and on the 4D Maxwell field tensor, the 

second is induced by the bulk.  

    Some interesting cases may be noted: 

    1. If the external curvature of the brane vanishes ( ( ) 0
:

=≡
AB

BA
neeC βααβ ) one has 

from equation (62)               

          

( ) [ ] ,
2

13

6

2

128

2

;;

222

ΛΩ−−+Ω−Ω
Ω

−

ΩΩ
Ω

+






 −
Ω

−
Ω

−=

αβαβαβ
σ
σαββα

βααβαβαβαβ

ε

επ

hEhEh

BBhMG

                           (62a)     

and (63) may be written as 

            







Ω

Ω
++

Ω

Ω
−= ASCAS

CA

C

S WWennWW :;

ααββαβ
β ε  .                           (63a)                       

Further, we can turn to the Einstein gauge ( 1=Ω ), then      

      [ ] ΛΩ−−+






 −
Ω

−
Ω

−= 2

22 2

1

2

128
αβαβαβαβαβαβαβ ε

επ
hEhEBBhMG .    (62b) 

If in addition we impose the four conditions: 0: =AS

CA

C

S Wenn
α , we are left with 
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                                          0; =αβ
βW .                                                                (63b) 

Equation (63b) describes electromagnetic radiation in a free of sources 4D space-time. 

In cosmology (62b), (63b) present a universe filled with radiation and induced matter.   

     2. If the 5-dimensional Weylian vector is a gradient vector (
( )

A

N

A
x

xf
w

∂

∂
= ) one has 

in the bulk an Integrable Weyl-Dirac geometry. Then on the 4D brane there is no 

electromagnetism, whereas the gravitational field is given by equation (70). In the 

latter one can recognize three sources, the first formed from the Dirac gauge function, 

the second including the cosmological term, the third being induced by the bulk. This 

case, which presents a universe filled with matter and a cosmic scalar field, may be of 

great interest for constructing cosmological models. If in addition one turns to the 

Einstein gauge ( 1=Ω ), he gets the equation of the ordinary STM theory (cf.  
(47, 48)

).  

    The proposed Weyl-Dirac version of Wesson’s IMT is justified from the 

geometrically cognitive point of view (cf. sec. 4, 5). This modified IMT opens new 

possibilities of building up geometrically based unified theories of gravitation and 

electromagnetism. It also may be very useful for obtaining theoretical scenarios that 

involve dark matter and quintessence, as well for singularity-free cosmological 

models. These problems will be considered in subsequent works.  

Finally, it must be pointed out that in the proposed framework one is faced by the 

non-integrability of length, which causes difficulties in fixing measuring standards. 

There are, however, ways of overcoming this obstacle, so that one can define a unique 

measuring standard. Suitable procedures are developed in a forthcoming paper. 
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APPENDIX A 

 

1) Below we give variations of various terms in the action (48). The first term:  

( ) ( ) ( )

.
4

1
2

4 :

ABLS

LSAB

M

BAM

AB

ABAB

AB

AB

AB

ggWWgWW

wgWgWWgWW

δ

δδδ

−






 −Ω+

+−Ω−Ω−=−Ω

⋅
        (A-1)                                                                                                                                

The variation of the second term in (48) yields  

( )
( ) ( ) .33ˆ

2

1

ˆ3ˆ

:

2

:

23

23

AB

S

S

ABBAABAB gggRgR

gRgR

δ

δδ

−







ΩΩ−ΩΩ+







 −Ω+

+Ω−Ω=−Ω

             (A-2)        

For the third term we obtain 

                   

( ) ( )[ ]

.
2

1

2 :

ABS

SABBA

S

SS

S

S

S

ggg

gg

δ

δδ

−






 ΩΩ−ΩΩΩ+

+Ω−ΩΩ−ΩΩ=−ΩΩΩ

                (A-3)                                                          

Finally, varying the cosmological term we obtain 

                   ( ) AB

AB ggggg δδδ −ΛΩ−Ω−ΛΩ=−ΛΩ 545

2

1
5 .             (A-4) 

From (56) one has: 

( ) NM

MN

NMAB

AMNB

BAABNM

MANB nnRnngRnngnnRhE −≡−=−= ελσ
λσ  .  (A-5) 

2) Below are given some simple relations, which were used in the process of deriving 

the 4D Einstein equation (62).  

For any tensor having two indices one has βααβ
BA

AB
eeTT =  multiplying this by NM

ee βα  

one obtains the following decomposition of AB
T : 

              ( ) BA

LS

SL

S

ASBBASBAAB
nnnnTnnTnTeeTT −++= εβα

αβ  ,                (A-6) 

and for an antisymmetric  tensor this gives 

                       ( ) S

ASBBASBAAB
nnWnWeeWW ++= εβα

αβ
 ,                              (A-7) 
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                   ( )S

BS

AA

SB

S

B

A

B

A nnWnnWeeWW
⋅⋅⋅⋅ ++= εβ

αβ
α  .                             (A-8) 

From (A-7), (A-8) one obtains 

                   BA

L

SL

BSA

S

BAS

BA
eennWWWWWWee βα

σ
βασβα ε .+= ⋅⋅ ,                      (A-9)                   

                    L

SLA

SA

AB

AB nnWWWWWW εβα
αβ 2+= .                                    (A-10) 

Two more relations are 

                       ( )2

L

L

S

S
nΩ+ΩΩ=ΩΩ εσ

σ ,                                                    (A-11) 

                      σλ
σλσ

σ ε ChnS

SS

S Ω+Ω=Ω ;: .                                                      (A-12) 

 

3) In order to get from (51) its 4D counterpart we prove first the following simple 

relation: 

                                          αββα WeeW
BA

AB = .                                                      (A-13) 

Generally    

          ( ) ( ) ( )
ABBA

BAS

SABBA

BA
nneenwwwwwee ::;;:: −+−=− βααββαβα ε          (A-14) 

The last term in (A-14) may be rewritten as ( )( )βααβε CCnw
S

S −  and it vanishes as 

βααβ CC = . Thus, (A-13) is right. 

Now, let us consider the Riemannian (cf. (41)) derivative of a 5D vector A
V .  

By a straightforward calculation one obtains 

               ( ) ( ) λγ
αλα

γγ
α ε ChnVVVee S

S

C

AC

A += ;: .                                            (A-15)  

The enlargement of (A-15) for AB
W  is 

 ( ) [ ] λγ
βλααλβαβ

γγ
βα ε CheWheWnWWeee A

AS

B

SB

SC

ABC

BA ++= ;: .     (A-16)   
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It is interesting that the structure of (A-16) resembles that of the Gauss equation (54). 

Finally, multiplying (A-16) by γ
βδ we obtain the 4D Maxwell equation in the Einstein 

gauge (67) 

              ( ) AB

CA

C

BAA

AS

S WennCheheWnW :;

α
βλ

βλααλβαβ
β εε +−=                     (A-17) 

From this one easily obtain the Maxwell equation  (63) with arbitrary gauges.  

 

 

APPENDIX B 

 

In this section we consider some details concerned with Weylian differentiation. 

There is a simple relation between the 5D and 4D Weylian connections              

α
γ
ββ

γ
α

γ
αβ

γ
βα δδδδ wwwhwwwgeee A

C

BB

C

A

C

ABC

BA −−=−− )(  .                (B-1) 

For a given 5D vector AV  the 5D Weylian derivative (cf. (34), (40), and (41)) is 

                     ( )A

S

BB

S

A

S

ABSBAAB wwwgVVV δδ −−−=∇ :  ,                                (B-2) 

and for the 4D counterpart 
A

A
VeV αα ≡  one has the 4D Weylian derivative  

                    ( )α
σ
ββ

σ
α

σ
αβσβααβ δδ wwwhVVV −−−=∇ ;  .                                  (B-3) 

By a straightforward procedure, one obtains the following relation: 

                 ( ) ( )[ ]R

R

S

SAB

BA
nwhCnVVVee αβαβαββα ε −+∇=∇  .                             (B-4) 

Thus, in addition to the 4D Weylian derivative appears a term induced by the bulk. 

One can however consider the following somewhat artificial and questionable 

approach. Let us take the projection tensor C

A

C

A

C

ABAABAB nnhnngh εγε −=−= ;  

(cf. 
(47, 48)

). Instead of AV  we consider its 5D projection C

C

AVh . With this modified 

vector we obtain 
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                                     ( ) βαβα ;:
VVhee

AC

C

A

BA =  ,                                                   (B-5) 

and  

                                   ( ) αββα VVhee C

C

AB

BA ∇=∇ .                                                    (B-6) 

Here the effect of the bulk is eliminated. This is not astonishing, as we have taken the 

projection on the hypersurface instead of the vector itself.  
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