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The Embedding of General Relativity in Five 
Dimensions 
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We argue tha t  General Relativistic solutions can always be locally em- 
bedded in Ricci-flat 5-dimensional spaces. This is a direct consequence of 
a theorem of Campbell (given here for both  a timelike and spacelike extra 
dimension, together with a special case of this theorem) which guarantees 
tha t  any n-dimensional Riemannian manifold can be locally embedded in 
an (n+l)-dimensional  Ricci-fiat Riemannian manifold. This is of great 
importance in establishing local generality for a proposal recently put 
forward and developed by Weeson and others, whereby vacuum (4+1)- 
dimensional field equations give rise to (3+l)-dimensional equations with 
sources. An important  feature of Campbell 's procedure is tha t  it auto- 
matically guarantees the compatibility of Ganss-Codazzi equations and 
therefore allows the construction of embeddings to be in principle always 
possible. We employ this procedure to construct such embeddings in a 
number of simple cases. 

1. I N T R O D U C T I O N  

T h e r e  h a s  r e c e n t l y  b e e n  a fa i r  dea l  o f  w o r k  o n  a p r o p o s a l  b y  W e s s o n  [24] 

1 Astronomy Unit, School of Mathematical  Sciences, Queen Mary ~ Westfield College, 
Mile End Road, London E1 4NS, UK 

2 Departamento de Fisica, Universidade Federal da Parafba, C. Postal 5008 - J. Pessoa 
-Pb, 58059-970 Brazil 

3 E-maih car~math's.qmw.ac.uk 
4 E-marl: rezaOmaths.qmw.ac.uk 
5 E-marl: rmzOmaths.qmw.ac.uk 
6 Department  of Theoretical Physics, Insti tute of Nuclear Physics, Uzbek Academy of 

Sciences, Ulugbek, Tashkent 702132, Uzbekistan, C.I.S. 

365 

0001-7701/96/0800-0.q65509.50/0 �9 1996 Plenum Publishing Corporation 



366 Romero,  Tavakol and Zalaletdinov 

(see also Refs. 25 and 5, and Ref. 19 for the generalisation of this scheme), 
which gives a prescription for a possible geometrical origin for matter. 
Briefly the idea is that  vacuum (4+1)-dimensional field equations give rise 
to (3+l)-dimensional equations with sources. This is essentially similar to 
the Kaluza-Klein [11,14] scheme, where the fifth dimension is utilised as 
the source of new degrees of freedom to be associated with the electromag- 
netic field. There are, however, differences between the two schemes. The 
scheme of Wesson et al does not at tempt to geometrise the electromagnetic 
field and there is no assumption concerning the compactness of the extra 
dimension. Furthermore, although Wesson initially interpreted the fifth 
dimension as being associated with the rest mass of particles, the theory 
itself can be worked out quite independently of this hypothesis. 

Now a large proportion of the work in this area is concerned with the 
study of the properties, consequences and examples of the scheme. They 
therefore mainly deal with (i) constructing particular examples - -  some 
of physical interest - -  such as the derivation of Friedmann-Robertson- 
Walker (FaW) models, by choosing appropriate embeddings [10] and (ii) 
studying the possible observational consequences of the scheme by, for 
example, looking at the one body problem in this context [23]. In view 
of the interest that  this proposal has attracted, it is also of importance to 
delve somewhat deeper into its mathematical foundations. 

Our main aim in this paper is to ask whether this scheme is gen- 
eral enough to generate all solutions to Einstein's field equations, at least 
locally. 

To answer this question we shall employ an old theorem by Campbell, 
the outline of the proof of which we give in a modern notation compatible 
with that  employed by Wesson and including spacelike as well as timelike 
additional dimensions. We also prove a restricted version of this theorem 
and employ an important property of the Campbell's procedure, namely 
that  the compatibility of Gauss-Codazzi equations are automatically guar- 
anteed, to construct some simple embeddings. 

The organisation of the paper is as follows. In Section 2 we give a 
description of Wesson's procedure. In Section 3 we briefly review some 
results for embedding ca  solutions in flat spaces. Section 4 contains a the- 
orem and a discussion of Campbell's theorem on embedding ca  solutions 
in 5-dimensional Ricci-flat spaces. In Section 5 we give some simple exam- 
ples of applications of Campbell's theorem and, finally, Section 6 contains 
our conclusion. 
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2. WESSON'S P R O C E D U R E  

In this section we briefly describe the mathematical  structure of the 
Wesson's scheme by spelling out its postulates. 

P o s t u l a t e  I .  The fundamental space in which our ordinary 4-dimensional 
spacetime is locally and isometrically embedded may be described by a 
5-dimensional manifold Ms. The line element of this space is given by 
d s  2 = g a b d x a d x  b which can always be put, at least locally, in the form 

d s  2 = g ~ d x ~  dx ~ -t- ~r162 (1) 

where Greek and Latin indices run from zero to 3 and zero to 4 respectively, 
x a -- (x ~, r  are coordinates, g ~  = gaf~(x~), r = r e 2 = 17 and g ~  
is assumed to have signature (+ - - - ) .  

P o s t u l a t e  I I .  The fundamental 5-dimensional space satisfies the vacuum 
field equations 

(5)Rob = 0, (2)  

where (5)R~b is the Ricci tensor in five dimensions, defined by 

c d c d (5)R.b = r~b,c -- r~c,b + Fabrcd -- radrbc, (3) 

and where r~b are the 5-dimensional Christoffel symbols. 
Now consider the hypersurface ~4 defined by the equation r = r = 

constant. This induces the metric (4)ga~(x~) in E4 given by 

(4)gaff(X") ---- g . j3 (  x ~ ,  r  (4) 

From the above definitions it is clear that by substituting r = r in 
(2) one can split up the 5-dimensional field equations in the following way: 

(4)Raf~ --  r 2 r  2 g~fl - gaff 

+ ( 4 ) g ~ g * g ~ _  2 u u~,~u~f,  (5) 

1 . . ~ . .  1 1 . 
= - + r (6)  

7 To be compatible with Wesson's and Campbell's notations, e would need to take values 
-1 and +1 respectively. We should, however, note here that if the extra dimension is 
considered to be timelike, the theory might run into conceptual difficulties concerning 
the existence of observers travelling along closed timelike curves [9]. 
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p~;~ = 0, (7) 

where 
1 p• _ ~ ((4)g~,. g. _ 5~ (a)g.V g. ), (8 / 

[-7r = (4)ga~r is calculated at r = r and where the symbol (*) denotes 
the left action of the operator (0/0r162162 Naturally, using 

(')n = ~ [g;.g*"" + (')(g..g*"")=], 

we can define 
(4)ra/~ ~ (4)Ra B _ 1 (4)R(4)g~f ~ 

which, upon substitution from (5), gives 

(4)Taft = r r 

(9) 

(10) 

2r g ~  - g ~  + (4 )g~ .g~g ; .  _ ~ ( 4 ) ~ . . g ; ~  

+ ~ (%~e[g;~g*"~ + ((%..g*"~)~l �9 (11) 

P o s t u l a t e  I I I .  The energy-momentum tensor which describes the matter 
content of the 4-dimensional Universe will be given by eq. (11). 

Postulates I-III  concern the field equations. To complete the scheme 
one also needs to describe the motion of free-falling test particles and 
light rays. The following postulate is put forward by Wesson [10] for this 
purpose. 

P o s t u l a t e  IV.  The paths corresponding to the motion of free-falling test 
particles and light rays are the geodesic lines in the 5-dimensional funda- 
mental (vacuum) space. 

This is rather a controversial issue which we shall not discuss here, 
since it lies somewhat outside the embedding problem we are concerned 
with in this article. 

We should also add that,  as was pointed out in [19] with the help of 
examples, this procedure does not in general lead to physical T ~ ,  with for 
example a positive energy. 

Of related interest is the investigation by Schmidt [20] concerning the 
generation of minimally coupled scalar fields by higher-dimensional Ricci- 
flat Kaluza-Klein spaces. 

S Equation (7) corresponds to (5)Rc~4 = 0 at r = r and it was put in this special form 
of a 'conservation law' by Wesson (see Ref. 25). 
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3. THE E M B E D D I N G  OF GENERAL RELATIVITY SOLUTIONS IN 
FLAT SPACES 

Before discussing the idea of embedding of GR in 5 dimensions in the 
next section, it is worthwhile to discuss briefly the embedding of solutions 
of GR in flat spaces. 

The origin of such embeddings seems to have had its roots in the 
idea of relating extra dimensions [1] to elementary particles and also as 
a way of providing a better  geometrical understanding of these solutions 
when viewed as hypersurfaces of higher-dimensional spaces. In addition, 
it should be mentioned that  embeddings give an invariant classification of 
solutions of Einstein's equations (Ref. 15, Ch.32). 

There are, however, two kinds of embeddings which one can consider: 
local and global. Throughout  this paper we shall be concerned with lo- 
cal embeddings only. Global embeddings of Riemannian spaces are much 
more complicated and far less studied than local embeddings (see, however, 
Ref. 3) 

Some important  theorems of relevance to us here, relating to the local 
embeddings of n-dimensional Riemannian manifolds in m-dimensional flat 
spaces (n < m),  are as follows. 

T h e o r e m  I [7]. Any analytic Riemannian n-dimensional space can be 
locally and isometrically embedded in some m-dimensional flat space, with 
n <_ m < n ( n  -4- 1)/2. 

T h e o r e m  I I  [12]. A non-flat n-dimensional solution of vacuum Einstein 
equations cannot be embedded in an (n + 1)-dimensional flat space. 

Theorem II  was first proved by Kasner in 1921 [12] and it explains 
why the Schwarzschild solution cannot be embedded in a 5-dimensional 
flat spacetime, a problem which was also considered some years later by 
Einstein [6]. Therefore, to (minimally) embed Schwarzschild metric in 
a flat space one needs at least six dimensions, a result that  was again 
obtained by Kasner [13]. However, as we shall see below, it is possible to 
embed the Schwarzschild solution in a 5-dimensional Ricci-flat space and 
this is a special case of a theorem to be proved in the next section. 

4. THE E M B E D D I N G  OF GENERAL RELATIVITY IN FIVE DIMEN- 
SIONS 

As can be seen, Theorem I puts an upper bound on the number of 
dimensions one needs in order to embed cR locally in a higher-dimensional 
space, while Theorem II  implies that  GR vacuum solutions cannot be em- 
bedded in 5-dimensional flat space. Nevertheless, local embeddings of cR 



370 Romero, Tavakol and Zalaletdinov 

vacuum solutions in a 5-dimensional Ricci-flat space are always possible 
and this is guaranteed by the following theorem. 

T h e o r e m  I I I .  Any analytic n-dimensional Ricci-flat space can be locally 
embedded in an analytic (n + 1)-dimensional Ricci-flat space. 

The proof of this theorem is straightforward. Suppose the line element 
of the n-dimensional space (to be embedded) is given by 

(n)ds2 = (n)g,~(x~)dx'~dx~, (12) 

where c~,fl,... = 0 , . . . ,  n - 1 in this section. Now, let us construct the 
embedding by defining the line element of the (n + 1)-dimensional space 
to be in the form 

(n+l)ds 2 = (n) g,~( x# )dxa dx~ + edr 2. (13) 

For this special choice of embedding it can be readily shown that  the 
(n + 1)-dimensional Ricci tensor calculated from (13) is given by 

(n+ l )R~  = (n )R~,  (14) 

and 
(n+l)Ro~ n = 0 : (n+l)Rn n . (15) 

Thus, n-dimensional Ricci-flat spaces are embedded through (13) in (n+ l ) -  
dimensional Ricci-flat spaces. It is important to note that  this theorem 
holds irrespective of the signature of the metric of the n-dimensional space 
and the sign of e. The embedding of Schwarzschild solution obtained by 
Wesson [22] is then a direct consequence of this theorem. We should add, 
however, that  Theorems I,II and IV (to be stated in the following) are 
highly non-trivial, whereas the rather trivial Theorem III is included for 
methodical reasons. 

From the point of view of our discussion in this paper, concerning 
the Wesson's procedure, it would be of importance if Theorem III could 
be extended to the case of non-vacuum solutions. The question then is 
whether it is possible to locally embed any arbitrary n-dimensional Rie- 
mannian manifold in some (n+  1)-dimensional Ricci-flat space. Apart from 
being of mathematical interest, this is of fundamental importance in the 
context of Wesson's scheme, since an affirmative answer would imply that  
all solutions of Einstein's equations could in principle be embedded in the 
5-dimensional Ricci-flat spaces. Clearly, an equivalent way of formulating 
the same question is to ask whether any arbitrary (")Taft can be given by 
means of eq. (11) (see Ref. 17). It turns out that  such a theorem exists. 
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T h e o r e m  IV  [2]. Any analytic n-dimensional Pdemannian space can be 
locally embedded in a (n + 1)-dimensional Pdcci-flat space. 

This theorem was given by Campbell in 1926 with its proof later 
completed by Magaard [16] (see also Ref. 8), but very little reference to 
it can be found in the literature. In the light of this and the obscurity of 
the notation used by Campbell, we shall briefly sketch the main lines of 
Campbell's proof, in a notation that  makes transparent its relationship to 
Wesson's work and which includes both timelike and spacelike additional 
dimensions. 

Start with a n-dimensional analytic Riemannian manifold with a met- 
ric given by 

(n) ds2 = (n) g~(x~)dx~ dx~, (16) 

and let the line element of the (n + 1)-dimensional space be defined by 

("+l)ds2 = gaf~(z", r ~ + er ~, r162 2, (17) 

where r is the coordinate assigned to the extra dimension and where g ~  
and r are analytic functions of all the (n + 1) coordinates. Assume that 
ga~, when restricted to a certain hypersurface ~ -- r results in (~)g~, 
i.e. 

g.~(x~,r = (~)g.~(x~). (is) 

Suppose also that  the analogues of eqs. (5)-(7) hold for r = r Clearly, 
this is equivalent to requiring that  the (n+ 1)-dimensional Ricci tensor van- 
ishes in the hypersurface r = ~0. Finally define the functions l-l~(x ~, r 
by the equations 

Og~ = - 2 r  (19) 
0r 

With these definitions eqs. (5)-(7) take the form 

(~)g~(~2~gt~  - 2 ~ a ~ ) r  + er - ~*~ - ~r -- 0, (20) 

(n )g~ (~r  _ ~ i ~  _ r  = 0, (21) 

and 
(n)g"~(gl,~,~ - ~ ; a )  = 0, (22) 

where the functions gla~ and r take values at r = ~bo. Now, suppose that  
one is able to find functions ~a~ which at r = r satisfy the following 
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~ f l ~  _ f12 = - e  (")R, (25) 

where ~ap - ( , 0 g ~ ,  ~ - ( n ) g ~ l ~  and (n )R  = (n)g,V (n)R~v is the 
curvature scalar of the n-dimensional space. Assume further that g ~  and 
~a~ evolve according to (19) and 

0--~-- = r  (n)n~ + a ~ )  + ega~r (26) 

respectively, with g ~ ,  in addition to (18), satisfying the initial conditions 

g ~  --- - 2 r  ~ , r  ~, r (27) 

where ('0R~ is now calculated in terms of ga~(x ,  r  which is also used 
for raising and lowering tensor indices. Then one can prove [2] that (23)- 
(25) also hold for all r in a neighbourhood of r It then follows that 
(19),(24),(25), and (26) would together imply 

(n+l)R~b = 0, (28) 

for any value of r in the neighbourhood of ~b0. In other words, metric 
(17) represents an embedding of the metric (16) in a Ricci-flat (n + 1)- 
dimensional space. 

5. SIMPLE A P P L I C A T I O N S  OF CAMPBELL'S T H E O R E M  

An important feature of Campbell's result is that the procedure em- 
ployed ensures the compatibility of Gauss-Codazzi equations. As a result, 
it makes the construction of embeddings always possible, at least in princi- 
ple. Here we illustrate this scheme with the help of some simple examples. 

(a) Suppose we wish to embed the metric 

ds 2 = dt 2 - t ( d x  2 + dy 2 + dz2), (29) 

corresponding to a spatially flat FLRW model with a radiation equation of 
state p = p /3 ,  in a Ricci-flat space. First, from (29) we calculate (4)Ra~ 



T h e  E m b e d d i n g  o f  G e n e r a l  R e l a t i v i t y  in F i v e  D i m e n s i o n s  373 

and (4)R to obtain (4)R~ = d iag[ (3 /4 t2 ) , - (1 /4 t2 ) , - (1 /4 t2 ) , - (1 /4 t2 ) ]  

and (4)R -- 0. Thus eq. (25) becomes 

f ~ a ~  _ f~2 = 0. (30) 

The simplest choice of ~23~ which would trivially satisfy both (24) and 
(30) is ~a~ --- 0. Then, eqs. (19) and (26) read 

c3g,~ _ 0 (31) 
or 

and 
1 = (4)R  (32) 

Clearly (31) together with the initial condition (18) implies that  g ~  -- 
(4)g~. Thus, we only have to solve (32). Contracting the indices a and 
/3, this equation results in 

D e  = 0. (33) 

Now since Ra~ depends only on the variable t, we assume that r = r 
and (33) thus becomes 

d( t3 /2r  
d---~ - 0, (34) 

which has the general solution 

r = at  -1 /2  + b, (35) 

where a and b are arbitrary constants. Taking a = 1 and b = 0, which 
ensures tha t  (35) is a solution of (32), this finally gives the 5-dimensional 
metric 

ds 2 = dt 2 - t ( d x  2 + dy 2 + dz  2) + e t - l d r  2, (36) 

which is a solution with a shrinking fifth dimension, previously obtained 
by Wesson [24] and also in a different context by Chodos et al. [4]. 

(b) As a second example we consider the embedding (in 5-D Ricci-flat 
space) of de S~.tter metric 9 

~ts 2 = dt 2 _ e2V/ ' f f~ t (dx  2 + dy  2 + dz2) ,  (37) 

9 The embedding of the de Sitter spacetime was already known to de Sitter himself 
[21]. 
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where A is the cosmological constant. 
Now taking r = 1 very much simplifies (26) and (19). Again, calcu- 

lating (4)R and (4)R~ from (37) we obtain 

(4) R = -4A (38) 

and 
(4)R  = (39) 

which substituted in (26) give 

0r = + (40) 

For the case where the extra dimension is spacelike (e = -1)  this equation 
is satisfied by the functions 

fl B = - r  (41) 

at ~b = r = +vf3-/A. Integrating (19) subject to the initial conditions 
(18) we obtain 

A 
gab = -~ r �9 (42) 

It is easily verified that  the functions (41) satisfy the conditions (24) and 
(25). Finally, we write the 5-dimensional metric of the Ricci-flat embed- 
ding space as 

r 
(5)ds2 = A ~  dt 2 - h - ~  e2Y '~S t (dx  2 + dy 2 + dz 2) - d e  2, (43) 

which induces the metric (37) on the hypersurfaces ~b = ~0 = ~x/3x/~ �9 We 
should point out that  an equivalent solution was also obtained by Ponce 
de Leon [18]. 

(c) As a final example, let us consider the embeddings of vacuum solutions 
of Einstein's field equations. From eqs. (24)-(26) we conclude that  the 
trivial choice 

g/.~ = r = O, (44) 

is a solution. This leads to the embedding 

(S)ds 2 = (4)gc,~dxC'dx~ - -  er162 2, (45) 

with the function r satisfying (44). 
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6. CONCLUSION 

Historically, the question of embedding of cR in higher dimensional 
flat spaces goes ,back to the work of Kasner in 1921. Recently, however, 
Wesson and others have developed a scheme in which the embedding space 
is a 5-dimensional Ricci-flat space. Here by employing Campbell's theo- 
rem we have argued that  all solutions of GR can be locally embedded in 
a 5-dimensional Ricci-flat space. This is of great importance for the pro- 
posal recently put  forward by Wesson, in that  it is given a large degree of 
generality, by showing a local equivalence between c~ and 5-dimensional 
vacuum Kaluza-Klein equations. We have also given a less restricted the- 
orem showing that  all Ricci-flat n-dimensional Riemannian spaces can be 
embedded in ( n+  1)-dimensional Pdcci-flat spaces. Mathematically, Camp- 
bell's theorem implies that  if the embedding space is Ricci-flat (rather than 
flat), then the compatibility of Gauss-Codazzi equations are automatically 
guaranteed. We use this fact to construct some simple embeddings. 

The equivalence referred to here is local. However, based on the usual 
global results (where the embedding space is Riemann-flat; Ref. 3), one 
would not expect this equivalence to hold globally. The question then is 
what is the global status of Wesson's procedure. This together with the 
application of these ideas to lower dimensional gravity are under consid- 
eration and we shall report on them in due course. 
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