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Abstract

In this paper we implore several scientific and artistic techniques to visu-
alize and represent the ‘invisible’ fourth and fifth dimensions. For visualizing
the fourth dimension we use an example from multivariable calculus and a
numerical solution of the nonlinear wave equation in (2+1) dimensions. For
representing the fifth dimension we use exterior calculus and Stokes theorem,
with applications to four– and five–dimensional electrodynamics.

1 Introduction

One of the seven celebrated Millennium Prize Problems, posed by the Clay Math-
ematics Institute (Cambridge, Massachusetts) is the famous Poincaré Conjecture.1

If we stretch a rubber band around the surface of an apple, then we can shrink it
down to a point by moving it slowly, without tearing it and without allowing it to
leave the surface. On the other hand, if we imagine that the same rubber band
has somehow been stretched in the appropriate direction around a doughnut, then
there is no way of shrinking it to a point without breaking either the rubber band
or the doughnut. We say the surface of the apple is ‘simply connected’, but that the
surface of the doughnut is not. Almost a hundred years ago, Poincaré knew that a
2D sphere is essentially characterized by this property of simple connectivity, and
asked the corresponding question for the 3D sphere (the set of points in 4D space
at unit distance from the origin). This question turned out to be extraordinarily
difficult, and mathematicians have been struggling with it ever since.

Poincaré largely created the branch of mathematics called algebraic topology.
Using techniques from that field, in 1900, Poincaré analyzed the properties of spheres
in various dimensions. To a topologist, a circle (the rim of a disk, not the disk itself)
is a 1D sphere, or a 1–sphere, denoted by S1. The circle is 1D because it takes only
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by Henri Poincaré relating to an object known as the three–dimensional (3D) sphere, or 3–sphere,
denoted by S3. The conjecture singles out the 3–sphere as being unique among all 3D hyper–
surfaces, or manifolds.
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one number to specify a location on the circle. A 2D sphere, or 2–sphere, denoted
by S2, is the shape of a spherical balloon. Two coordinates (latitude and longitude)
are needed to specify a position on the balloon. The 3–sphere is the 3D analogue of
these, denoted by S3. Similarly, each dimensionality n has an n−sphere, Sn.

The 2–sphere S2 is unique among all possible finite 2D manifolds: every other
such manifold is more complicated and can be made from S2 by performing some
combination of three operations: cutting out pieces, attaching ‘handles’ (a shape
just like the handle on a cup), or incorporating a strange twist, like the twist in a
Möbius band. Mathematicians were keenly interested to know if the n−sphere in
dimensions 3 and up were similarly unique [1].

To tackle this question, Poincaré used a new measure of topological complexity
called homology. Roughly speaking, homology detects how many holes of different
dimensions are enclosed by the n−manifold. Poincaré proved that in each dimen-
sion n the only manifold having the homology of the n−sphere was the n−sphere
itself. The proof was easy to verify in 1D and 2D, where all possible manifolds
were classified (Poincaré contributed to the classification of 2D manifolds). Unfor-
tunately, Poincaré soon devised a second 3–manifold that had the same homology
as the 3–sphere. His ‘proof’ was false.

Undeterred, Poincaré formulated a different measure, called homotopy. Homo-
topy works by imagining that you embed a closed loop in the manifold in question.
The loop can be wound around the manifold in any possible fashion. We then ask,
can the loop be shrunk down to a point, just by moving the loop around, without
ever lifting a piece of it out of the manifold? On a shape like a doughnut the an-
swer is no. If the loop runs around the circumference of the doughnut it cannot be
shrunk to a point – it gets caught on the inner ring. Homotopy is a measure of all
the different ways a loop can get caught.

On an n−sphere Sn, no matter how convoluted a path the loop takes it can
always be untangled and shrunk to a point (the loop is allowed to pass through
itself during these manipulations). Poincaré speculated that the only 3–manifold on
which every possible loop can be shrunk to a point was the 3–sphere itself. This
time Poincaré knew he didn’t have a proof, and he didn’t venture any thoughts
about dimensions higher than 3. In due course this proposal became known as the
Poincaré conjecture. Over the decades, many people have announced proofs of the
conjecture (including the Fields Medalist, Steve Smale), only to be proved wrong2

[1].
In 2003, an apparent periodicity in the cosmic microwave background led to the

suggestion, by J.P. Luminet of the Observatoire de Paris and colleagues, that the
shape of the Universe is a Poincaré homology sphere, that is an n−manifold M hav-
ing the homology groups of an n−sphere.3 During the following year, astronomers
searched for more evidence to support this hypothesis, finding a tentative ‘hint’ from

2A proof of the Poincaré conjecture has finally come, with the work of a young Russian math-
ematician, Grigori Perelman. He could potentially win a $1–million prize from the Clay Insti-
tute. Perelman’s analysis also completes a major research program that classifies all possible 3D
manifolds. Our universe might have the shape of a S3. The mathematics has other intriguing
connections to particle physics and Einstein’s theory of gravity.

3Technically, we have the homology group H0(M, Z) = Z = Hn(M, Z) with Hi(M, Z) = {0} for
all other i. Therefore M is a connected manifold, with one non-zero Betti number bn.
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observations by the WMAP satellite supporting the hypothesis [2]. The Poincaré
homology sphere, a spherical 3-manifold also known as Poincaré dodecahedron, is a
particular example of a homology sphere. It is the only homology 3–sphere (besides
the 3–sphere itself) with a finite fundamental group, which is known as the binary
icosahedral group of order 120. This shows the Poincaré conjecture cannot be stated
in homology terms alone.

If we now move to theoretical physics, we recall that Albert Einstein’s rela-
tivity theory was the first 4D theory, formulated initially (in 1905) in the flat 4D
Minkowskian space-time (special relativity) and (ten years later) in the curved Rie-
mannian space-time manifold (see, e.g., [3]). The first generalization of Einstein’s
gravitation theory, happened only five years later, in the form of the 5D Kaluza–
Klein theory. Recently, a lot of publicity has been given to the 11D superstring
theory, with the most prominent proponent, Fields medalist Ed Witten, from the
Institute of Advanced Study at Princeton.

In 1921, a new space–time–matter theory was developed by Theodor Kaluza, who
extended general relativity to a 5D space-time, unifying the two fundamental forces
of gravitation and electromagnetism. The resulting equations can be separated out
into further sets of equations, one of which is equivalent to Einstein field equations,
another set equivalent to Maxwell’s equations for the electromagnetic field and the
final part an extra scalar field now termed the ‘radion’. In 1926, Oskar Klein pro-
posed that the fourth spatial dimension is curled up in a circle of very small radius,
so that a particle moving a short distance along that axis would return to where
it began. The distance a particle can travel before reaching its initial position is
said to be the size of the dimension. This extra dimension is a compact set, and
the phenomenon of having a space-time with compact dimensions is referred to as
compactification (see, e.g., [4]).

This idea of exploring extra, compactified, dimensions is of considerable interest
in the experimental physics and astrophysics communities. A variety of predictions,
with real experimental consequences, can be made (in the case of large extra di-
mensions/warped models). For example, on the simplest of principles, one might
expect to have standing waves in the extra compactified dimension(s). If an extra
dimension is of radius R, the energy of such a standing wave would be E = nhc/R
with n an integer, h being Planck’s constant and c the speed of light. This set of
possible energy values is often called the Kaluza–Klein tower.

In this paper, we will explore various means of visualizing/representing the
4D/5D geometry.

2 Visualizing the Fourth Dimension

In this section we will give several examples of visualizing the forth dimension.
Consider the following practical problem in multivariable calculus.4

Question: Suppose you are out bush-walking and because of the thick bush, you
are forced to walk along the gulley formed by the intersection of the two hills given

4This is an assignment question in multivariable calculus formulated by Dr. Nicholas Buchdahl
at School of Mathematical Sciences, the University of Adelaide.
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by the equations: z = 3−x2−2y2 and z = 5−3(x−1)2−(y−2)4. If the temperature
T at the point (x, y, z) is given by function T (x, y, z) = 17+3x2−2y2+3z (in degrees
centigrade), at the point (0, 1, 1), what will be the rate at which the temperature
changes if you head up the gulley (at unit speed)?

Solution: I am forced to walk along a gully formed by the intersection of two hills,
given by the equations z = 3 − x2 − 2y2 and z = 5 − 3(x − 1)2 − (y − 2)4, at unit
speed. First, let the first hill be defined by

z = 3− x2 − 2y2 = f(x, y)

and the second by

z = 5− 3(x− 1)2 − (y − 2)4 = g(x, y).

Now, the normal to a surface defined by h(x, y) at the point (x0, y0, z0) can be
written as

n = 〈hx(x0, y0), hy(x0, y0),−1〉

Note that this result can be obtained from the equation for the tangent plane at
(x0, y0, z0),

z − z0 = hx(x0, y0)(x− x0) + hy(x0, y0)(y − y0).
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Therefore, the normal to the first hill at (0, 1, 1) is

v1 = (fx, fy,−1)
∣∣
(x,y)=(0,1)

= (−2x,−4y,−1)
∣∣
(x,y)=(0,1)

= (0,−4,−1)

And the normal to the second is

v2 = (gx, gy,−1)
∣∣
(x,y)=(0,1)

= (−6(x− 1),−4(y − 2)3,−1)
∣∣
(x,y)=(0,1)

= (6, 4,−1)

Hence, the direction (or the opposite direction of) that I would be travelling in
would be

u =

∣∣∣∣∣∣
i j k
0 −4 −1
6 4 −1

∣∣∣∣∣∣ = (4 + 4)i + (−6 + 0)j + (0 + 24)k = (8,−6, 24).

This vector is pointed in the correct direction as its z-component is positive. There-
fore, my (unit) instantaneous velocity when I am at the point (0, 1, 1) would be

û =
(8,−6, 24)

‖(8,−6, 24)‖
=

(8,−6, 24)√
82 + 62 + 242

=
1

26
(8,−6, 24) =

1

13
(4,−3, 12).

The temperature of the atmosphere surrounding the two hills is given by the
function

T (x, y, z) = 17 + 3x2 − 2y2 + 3z,
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see Figures 1 and 2.
So the rate at which the temperature changes as I head up the gulley is given

by,

(DûT )(0, 1, 1) = û · (∇T )(0, 1, 1)

=
1

13
(4,−3, 12) · (6x,−4y, 3)

∣∣
(x,y,z)=(0,1,1)

=
1

13
(4,−3, 12) · (0,−4, 3)

=
1

13
(0 + 12 + 36)

=
48

13
degrees centigrade per unit time.

Now, consider the (2+1)D sinus–Gordon equation

utt = uxx + uyy − sin u, (1)

for the scalar field u = u(t, x, y) (e.g., temperature).
Suppose the initial conditions are given by

u(0, x, y) = e−(x2+y2), ut(0, x, y) = 0,

and boundary conditions are given by

u(t,−10, y) = u(t, 10, y), u(t, x,−10) = u(t, x, 10).

The numerical solution for this boundary value problem in MathematicaTM for
t ∈ [0, 10], x ∈ [−10, 10] and y ∈ [−10, 10] is given in Figure 3, representing the
time–sequence of 3D plots.
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Figure 1: The level sets of the temperature function above from dark blue repre-
senting 10◦C to red representing 60◦C.

3 Representing the Fifth Dimension

In this section we will represent the fifth dimension of the Kaluza–Klein theory
using geometrical formalism of exterior differential p−forms, with p = 1, 2, ..., 5 (see
Appendix, as well as [6, 7, 8]).

3.1 From Green to Stokes

Recall (see, e.g., [5]) that the standard Green’s theorem in the Cartesian (x, y)−plane
reads: Let D be a simple region in the (x, y)−plane with the oriented curve C+ = ∂D
as its boundary; also suppose P, Q : D → R are differentiable (and continuous)
functions of class C1; then the following formula (connecting a line integral with a
double integral) is valid∮

∂D

Pdx + Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

In other words, if we define two new geometrical objects

1–form : A = Pdx + Qdy, and

2–form : dA =

(
∂Q

∂x
− ∂P

∂y

)
dxdy,

(where d denotes the exterior derivative, see next subsection), then we can reformu-
late the Green’s theorem as ∫

∂D

A =

∫
D

dA.
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Figure 2: The level sets of the temperature function above set againsts the graphs
of the two hills.

3.2 Exterior p−Forms in R5

In general, given a 5D coframe {dxi} ∈ R5, the following p−forms can be defined
(using the Einstein’s summation convention for summing upon repeated indices):

1–form – generalizing the Green’s 1–form Pdx + Qdy,

A = Ai dxi.

For example, in the 4D electrodynamics, A represents the electromagnetic
potential.

2–form – generalizing the Green’s 2–form
(

∂Q
∂x

− ∂P
∂y

)
dxdy

B = dA, with components

B = ∂jAi dxj ∧ dxi, or

B =
1

2
Bij dxi ∧ dxj, so that

Bij = −2∂jAi = ∂iAj − ∂jAi = −Bji .

For example, in the 4D electrodynamics, B represents the electromagnetic
field 2–form called Faraday, or the Liénard–Wiechert 2–form, satisfying the
two Maxwell’s equations:

dB == 0, d∗B == 4π∗J,

where J is the charge–current 1–form, while ∗ denotes the Hodge star operator
(see Appendix), so that ∗B represents the dual electromagnetic field 2–form
called Maxwell (see [3]).
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Figure 3: Time-sequence of spatial plots of solutions u = u(t, x, y) of the (2+1)D
sinus–Gordon equation (1).

3–form

C = dB ( = ddA ≡ 0), with components

C = ∂kB[ij] dxk ∧ dxi ∧ dxj, or

C =
1

3!
Cijk dxi ∧ dxj ∧ dxk, so that

Cijk = −6∂kB[ij].

4–form

D = dC ( = ddB ≡ 0), with components

D = ∂lC[ijk] dxl ∧ dxi ∧ dxj ∧ dxk, or

D =
1

4!
Dijkl dxi ∧ dxj ∧ dxk ∧ dxl, so that

Dijkl = −24∂lC[ijk].

5–form

E = dD ( = ddC ≡ 0), with components

E = ∂mD[ijkl] dxm ∧ dxi ∧ dxj ∧ dxk ∧ dxl, or

E =
1

5!
Eijklm dxi ∧ dxj ∧ dxk ∧ dxl ∧ dxm, so that

Eijklm = −125∂mD[ijkl].

6–form

F = dE ( = ddD ≡ 0), with components

F = ∂nE[ijklm] dxn ∧ dxi ∧ dxj ∧ dxk ∧ dxl ∧ dxm, or

F =
1

6!
Fijklmn dxi ∧ dxj ∧ dxk ∧ dxl ∧ dxm ∧ dxn, so that

Fijklmn = −720∂mE[ijklm].
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Any 6–form F in R5 is zero.
For example, the Lorentz–force equation in the Kaluza–Klein’s 5D space–time–

matter reads in components
ṗi = eFiju

j,

where the overdot denotes derivative with respect to its own time τ , p = pidxi is
the 5–momentum 1–form, and u = ui∂/∂xi is the 5–velocity vector of the particle
in case. This component equation expands into the following set of momentum
equations

ṗ1 = eF11u
1 + eF12u

2 + eF13u
3 + eF14u

4 + eF15u
5,

ṗ2 = eF21u
1 + eF22u

2 + eF23u
3 + eF24u

4 + eF25u
5,

ṗ3 = eF31u
1 + eF32u

2 + eF33u
3 + eF34u

4 + eF35u
5,

ṗ4 = eF41u
1 + eF42u

2 + eF43u
3 + eF44u

4 + eF45u
5,

ṗ5 = eF51u
1 + eF52u

2 + eF53u
3 + eF54u

4 + eF55u
5.

3.3 Stokes Theorem in Subspaces of R5

In the 5D Euclidean space R5 we have the following particular Stokes theorems
related to the subspaces of R5:

The 2D Stokes theorem: ∫
∂D2

A =

∫
D2

B.

The 3D Stokes theorem: ∫
∂D3

B =

∫
D3

C.

The 4D Stokes theorem: ∫
∂D4

C =

∫
D4

D.

The 5D Stokes theorem: ∫
∂D5

D =

∫
D5

E.

4 Appendix: Exterior Differential Forms

The exterior differential forms are a special kind of antisymmetrical covariant tensors.
Such tensor–fields arise in many applications in physics, engineering, and differential ge-
ometry. The reason for this is the fact that the classical vector operations of grad, div,
and curl as well as the theorems of Green, Gauss, and Stokes can all be expressed concisely
in terms of differential forms and the main operator acting on them, the exterior derivative
d. Differential forms inherit all geometrical properties of the general tensor calculus and
add to it their own powerful geometrical, algebraic and topological machinery (see Figures
4 and 5). Differential p−forms formally occur as integrands under ordinary integral signs
in R3:
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• a line integral
∫

P dx + Qdy + R dz has as its integrand the one–form
ω = P dx + Qdy + R dz;

• a surface integral
∫∫

A dydz + B dzdx + C dxdy has as its integrand the
two–form α = A dydz + B dzdx + C dxdy;

• a volume integral
∫∫∫

K dxdydz has as its integrand the three–form
λ = K dxdydz.

Figure 4: Basis vectors and 1–forms in Euclidean R3−space: (a) Translational case;
and (b) Rotational case.

By means of an exterior derivative d, a derivation that transforms p−forms into (p +
1)−forms, these geometrical objects generalize ordinary vector differential operators in R3:

• a scalar function f = f(x) is a zero–form;
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• its gradient df , is a one–form5

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz;

• a curl dω, of the one–form ω above, is a two–form

dω =
(

∂R

∂y
− ∂Q

∂z

)
dydz +

(
∂P

∂z
− ∂R

∂x

)
dzdx +

(
∂Q

∂x
− ∂P

∂y

)
dxdy;

• a divergence dα, of the two–form α above, is a three–form

dα =
(

∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
dxdydz.

Now, although visually intuitive, our Euclidean 3D space R3 is not sufficient for thor-
ough physical or engineering analysis. The fundamental concept of a smooth manifold,
locally topologically equivalent to the Euclidean nD space Rn, is required (with or with-
out Riemannian metric tensor defined on it). In general, a proper definition of exterior
derivative d for a p−form β on a smooth manifold M , includes the Poincaré lemma:

d(dβ) = 0,

and validates the general Stokes formula∫
∂M

β =
∫

M
dβ

where M is a p−dimensional manifold with a boundary and ∂M is its (p−1)−dimensional
boundary, while the integrals have appropriate dimensions.

A p−form β is called closed if its exterior derivative is equal to zero,

dβ = 0.

From this condition one can see that the closed form (the kernel of the exterior derivative
operator d) is conserved quantity. Therefore, closed p−forms possess certain invariant
properties, physically corresponding to the conservation laws.

A p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By Poincaré lemma, exact
forms prove to be closed automatically,

dβ = d(dα) = 0.

Similarly to the components of a 3D vector v defined above, a one–form θ defined on
an nD manifold M can also be expressed in components, using the coordinate basis {dxi}
along the local nD coordinate chart {xi} ∈ M , as

θ = θi dxi.

5We use the same symbol, d, to denote both ordinary and exterior derivation, in order to avoid
extensive use of the boldface symbols. It is clear from the context which derivative (differential)
is in place: exterior derivative operates only on differential forms, while the ordinary differential
operates mostly on coordinates.
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Figure 5: Fundamental two–form and its flux in R3: (a) Translational case; (b) Rota-
tional case. In both cases the flux through the plane u∧v is defined as

∫ ∫
u∧v

c dpidqi

and measured by the number of tubes crossed by the circulation oriented by u ∧ v.

Now, the components of the exterior derivative of θ are equal to the components of its
commutator defined on M by

dθ = ωij dxi dxj ,

where the components of the form commutator ωij are given by

ωij =
(

∂θi

∂xi
− ∂θi

∂xj

)
.

The space of all smooth p−forms on a smooth manifold M is denoted by Ωp(M). The
wedge, or exterior product of two differential forms, a p−form α ∈ Ωp(M) and a q−form
β ∈ Ωq(M) is a (p+ q)−form α∧β. For example, if θ = aidxi, and η = bjdxj , their wedge
product θ ∧ η is given by

θ ∧ η = aibjdxidxj ,

so that the coefficients aibj of θ ∧ η are again smooth functions, being polynomials in the
coefficients ai of θ and bj of η. The exterior product ∧ is related to the exterior derivative
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d : Ωp(M) → Ωp+1(M), by

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ

Another important linear operator is the Hodge star ∗ : Ωp(M) → Ωn−p(M), where
n is the dimension of the manifold M . This operator depends on the inner product (i.e.,
Riemannian metric) on M and also depends on the orientation (reversing orientation will
change the sign). For any p−forms α and β,

∗ ∗ α = (−1)p(n−p)α, and α ∧ ∗β = β ∧ ∗α.

Hodge star is generally used to define dual (n− p)−forms on nD smooth manifolds.
For example, in R3 with the ordinary Euclidean metric, if f and g are functions then

(compare with the 3D forms of gradient, curl and divergence defined above)

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz,

∗df =
∂f

∂x
dydz +

∂f

∂y
dzdx +

∂f

∂z
dxdy,

df ∧ ∗dg =
(

∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y
+

∂f

∂z

∂g

∂z

)
dxdydz = ∆f dxdydz,

where ∆f is the Laplacian on R3. Therefore the three–form df ∧ ∗dg is the Laplacian
multiplied by the volume element, which is valid, more generally, in any local orthogonal
coordinate system in any smooth domain U ∈ R3.

The subspace of all closed p−forms on M we will denote by Zp(M) ⊂ Ωp(M), and the
sub-subspace of all exact p−forms on M we will denote by Bp(M) ⊂ Zp(M). Now, the
quotient space

Hp(M) =
Zp(M)
BpM

=
Ker

(
d : Ωp(M) → Ωp+1(M)

)
Im (d : Ωp−1(M) → Ωp(M))

is called the pth de Rham cohomology group (or vector space) of a manifold M . Two
p−forms α and β on M are equivalent, or belong to the same cohomology class [α] ∈
Hp(M), if their difference equals α− β = dθ, where θ is a (p− 1)−form on M .

For more technical details on differential forms and related Hodge–de Rham theory,
see [6, 7, 8].
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