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Abstract. DSR is a theory supposed to describe in an effective way the quantum gravitational
fluctuations around flat space-time. I will first recall quickly why and then will argue that a
consistent treatment of DSR should be done from a 5 dimensional perspective. I will provide
arguments coming from a dynamical point of view, then from considering multiparticles states.

Introduction

The semi classical limit in Quantum Gravity (QG) is a hard task to achieve, but of course
extremely important. There have been different proposals [2] but actually no effective progress
since these proposals. It is however important to be able to define such limit as now some
experiments will be given results in a very close future. This is the case for example for the
GLAST and AUGER experiments. Hopefully QG will become real physics where one can do
predictions and actually falsify or confirm them. QG phenomenology is of interest right now,
and we need to have some models to bring in front of the experimentalists when they will present
their results.

As deriving the QG semi classical limit is a hard task, we can proceed in a different way, that
is construct it in an effective way by introducing some QG features in Special Relativity. The
idea is to introduce one (or some) of the Planckian scales[1]: {p, Mp, Ep in such a way that
this is compatible with the symmetries. The clash is of course with the Lorentz symmetries, so
it will be natural to modify or deform these latter'. We then obtain Deformed Special Relativity
(DSR), that has been argued now in a number of different ways to be a natural semi classical
limit of QG [3]. One then tries to understand this new DSR physics. There are actually a couple
of problems that arise, in particular how to describe many particles. This problem can be solved
when actually considering an extra dimension which meaning is to be determined. In fact from
a 5d perspective, the different deformations also appear in a nice unified way.

In the first section I will recall the definition of DSR and its main problems. In the second
section, I will show how the 5d approach solve the different problems. I will also argue about
the meaning of this 5th dimension.

1. Definition of DSR
In general DSR is defined from a momentum perspective. The most natural point of view to
see how DSR arises is from a non linear realization of the Lorentz symmetries, as introduced by

! Note that for Mp, we don’t need to deform the symmetries [8].
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[4]. One wants to introduce some momentum coordinates that are for example energy bounded
by Ep = k. These coordinates p can be obtained from usual coordinates m (that transform

: . u u
linearly) by a non linear map U,. For example we can take p = 1:77;0’ or conversely 7 = - Loy

To proceed to do a deformed Lorentz deformation we undeform to get to the linear coordinates
then proceed to the linear Lorentz transformation then deform back: p’ = U(AU!(p)). If the
deformation is nice enough we can modify the boosts generators in a very compact way, like

here, we have simply N; — N; + 222#p,. Because of the deformation, we obtain a modified
*=

This method doesn’t tell us directly how space-time should be reconstructed. In [5] was
proposed two ways: either send the deformation as such on space time to obtain an energy
dependent metric, or deform adequately space-time.

Physics depends here on the choice of the deformation, as different deformations imply
different dispersion relations, I shall come back on this point in the next section. Kowalski-
Glikman nicely discovered that in fact the different approaches of DSR could be nicely unified
from a geometric perspective [7]. The deformed space of momentum could be seen as different
embedding of R*. This unified in the same way apparently different approaches, like Snyder’s,
but also gave a nice geometric meaning to the proposed addition of momenta.

The de Sitter space is given by P4P4 = —x?, with the 5d metric + — — — —. The different
embeddings are then (respectively Snyder [8], Bicrossproduct basis [9], Magueijo-Smolin (MS))

dispersion relation: m,7" =m
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These 3 deformations reproduce the 3 different kinds of bounds one can put in momentum space:
rest mass, 3d momentum, energy. The Casimir of the deformed symmetries can be read from
the Py coordinates. Note that in the Snyder case there is no modification of the latter (that was
precisely Snyder’s goal)...

This geometric approach also allows to define space-time in a nice way: it is the tangent space
of the de Sitter space. Depending on the different embedding we have different expressions for
the vectors in the tangent space, vectors that are identified with the space-time coordinates.
These vectors are of course some Lie algebra elements or combinations of then as de Sitter space
can be seen as the coset SO(4,1)/SO(3,1). In general there are then non commutative.

Snyder : z, = % 4 = %(XMP4 — X4P,), Bicrossproduct : zo = %JM, x; = Jia+ Jio (4)
Note that in the MS case, this approach doesn’t reproduce the Rainbow space-time metric
proposal, but in the bicrossproduct basis case, it does reproduce the (non commutative) space-
time as constructed from the Heisenberg double [7].

After having introduced in a symmetry consistent way a fundamental constant, and defined
the associated space-time, we need to see what happens when considering many particles.
Following the geometrical approach we see that a momentum is given by a group element in
the coset SO(4,1)/50(3,1), to add 2 momenta we can use the present group structure. This is
very similar to the Special Relativity case where one uses the coset structure of the hyperboloid
to define the relativistic addition of the speeds. Due to the coset structure, this addition is in
general non commutative but also non associative. The bicrossproduct basis is actually ”the”
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one where the addition is associative, but still non commutative. On the algebraic level this is
equivalent to the existence of a coassociative coproduct and a quantum group structure.
0

Bic. : plop) = p)+p3, pl@ph = pﬁ—ke*%pé; Snyder : P an gty Jan — 0" (P1.02) Juw i(P1©P2)" Jap

(5)
For the Snyder case, the addition is non commutative and non associative, this being encoded in
a Lorentz transformation (which is similar to the Thomas precession). Momenta addition being
non commutative and even non associative is a problem: we need to label particles in order to
consider the multiparticles state, so that it seems that we are loosing the permutation symmetry
between the particles. This is an annoying problem but even more annoying is the following
problem: we embedded the momentum space in the de Sitter space to input the universal bound,
when defining the addition we stayed on this de Sitter space which means that the resulting
momentum is still bounded by the same quantity. This is contradicting with everydays life: we
expect large composite bodies to have mass or energies bigger than the Planckian scales: this is
the soccer ball problem or saturation problem.

2. 5d approach to DSR

In this section I would like to describe how a 5d approach can solve the different problems. First
I would like to argue how on the dynamical level a 5d point of view can be natural, then I will
show how actually the 5d approach really solves the problems, and finally I would like to give a
physical interpretation to this fifth dimension.

2.1. 5d from dynamics

We have seen that the different DSR arise by considering the de Sitter space. In fact this space
can be seen as embedded in a 5d Minkowski space of coordinates Pa by PyPA = —k2. Tt
requires few imagination to see that this could some kind of mass shell condition. Let us take
this idea seriously, we consider therefore a 10 dimensional phase space (X 4 PA) with the usual
symplectic structure {X 4, Pg} = nap. We have a DSR particle given by the action

Spsr = /dXAPA — M (PaP + K?) — Ao(Py — m?). (6)

Ai is the Lagrange multiplier implementing the constraint. The second constraint is to encode
that we are dealing with a particle which mass will be a function of the parameter M, as we saw
that P4 was actually containing the information on the particle mass. In usual Special Relativity
we have the action

Ssr = / dz"p, — Mpup" + K2). (7)

The physics is then given when doing different gaugefixings. A gaugefixing is defined as an extra
constraint C, such that {C,H} # 0. For example we can introduce the extra constraint zy = t,
which encodes the fact that we choose x¢ as the time. In this gauge we recover the hamiltonian

po = +1/m?2 + P2, which in the limit ¢ — oo is the usual galilean hamiltonian. There are many
other choices of gaugeﬁxing which can be physically interpreted as a different clocks. In any case
the general observables of the theory are given by the combinations of the Dirac observables
(Pu, Juv), that is functions that commute with the constraints.

We can see that in 5d we can have the same kind of structure, different kinds of gaugefixing
provide the different kinds of DSR that one can have. Indeed after gaugefixing one looks at the
Dirac bracket that describes the symplectic structure on the reduced phase space. The Dirac
bracket is then defined as

@0l = 0.0}~ (0.0) (e ) O 107 (g ) €k @)
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The gaugefixing we are considering actually fixes only the 5d mass shell condition, we leave the
other one untouched. A possible gaugefixing is C; = X4P4 — T = 0 and the resulting Dirac
bracket encode provides the Snyder symplectic form, as it can be easily calculated. A choice
of proper coordinates on the reduced phase space is (z,,p,) that commute with both Hs4 and
C: {x,, Hsa} = {zu,C1} = {pp, Hsa} = {Pu,C1} = 0. Their Dirac bracket with any phase space
function is exactly equal to their Poisson bracket with that same function. It is easy to see that
the coordinates x,,p, as defined previously in the Snyder deformation actually commute with
the constraint and the gaugefixing and are therefore a right choice. They are Dirac observables
of the 5d theory (we didn’t touch yet the extra constraint fixing the mass). We can then reduce
the action to the 8 dimensional space and study the new action for the relativistic particle
leaving in a Snyder like space and look at the modified physics.

z-p
K2 —p

g A . .
XAP% — &up" —py 5P 9)
In fact to have a good action we need to have the correct canonical variables. We can do a

change of variable x,, — ), = z,, + pulﬁfi;pp% such that at the same time the symplectic form is

canonical but also the action get reduced to the trivial action a'c;p“.

We can proceed in the same way for the bicrossproduct basis. In this case the gaugefixing is
given by Co = )](38:5.% —T. Once again the coordinates (x,,p,) that commute with both Hs4 and
C are the ones previously given in the previous section. There are once again Dirac observables

and we can reduce the action to

XaPA — py iy + pi i po. (10)

Again we can also find a change of variables that identify the canonical variables but also
trivialize the action.

To examine the physics, we need to consider the second constraint Py — M, where P, would
have been expressed in each case in terms of the p. We leave the further details of this analysis in
[10]. In both cases, Snyder and bicrossproduct basis, the physical meaning of these trivializing
coordinates is to be determined. It might happen that there are merely convenient tools but
that physics is truly defined in terms of the non commutative ones [10].

We have seen here that the different DSR, (except the MS one as space-time there is a different
construction) arise from a 5d action. We shall see now how this 5d point of view naturally solve
the soccer ball problem.

2.2. 5d as solving the problems
Before talking about the main problem of DSR, let me recall what happens in Special Relativity.
A (spinless) particle can be seen as a representation of the Poincaré group, through the Casimir
p?> = m?. When considering two particles, one has the tensor product of two representations
and therefore the mass of the two particle state is given by a representation consistent with the
two initial ones, just like for example a spin 1 is a possible outcome of having two spin 1/2.
At the same time the momentum of the two particle state is simply given by the trivial sum
Phot = P + Db

Now following the point of view that a particle in DSR should be seen from a 5d perspective,
this means that we are not considering a particle as a representation of the Poincaré group
IS0(3,1) anymore but as a representation of the Poincaré de Sitter group, 150(4,1). This
means that a particle is not described by the mass m, but by its cutoff .

When considering a two particles state, we need to look at tensor product of representations
and we obtain therefore a new cutoff associated with the two particles state. On the other hand,
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"scattering” or momenta addition is not described in terms of the modified sum in (5), but by
the usual simple addition [11]
A A A

This should be compared once again to the Special Relativity case: one deforms the speed
addition but the relativistic speeds add in a trivial way and are the physical objects carrying
a representation of the Poincaré group. The deformed addition corresponds to a change of
reference frame. So in DSR when moving to the 5d approach, we are actually adding some extra
symmetry transformations due to the extra dimension. The momenta addition that we defined
earlier on the de Sitter space is the analog of the modified speed addition: it is not a scattering
(which is described in (11)) but a change of reference frame. We don’t need then to worry about
the non associativity or non commutativity. In fact the scattering (11) can be also seen from a
4d perspective. We can define the new addition by undeforming the p’s to P do the addition of
these linear quantities, then transform back: pl, = Usw(Pls;) = Use (U1 (pY) + U1 (ph)).Note
that the embedding U,, depends on the representation of the particle (), so that when deforming
back Pyt = Py + P, we need to take into account the new representation (e.g. 2x), and have
Usi. This addition (including the s rescaling) was in fact proposed by hand by Magueijo and
Smolin in [4], but the from the 5d perspective is rigorously justified. Note that now this addition
is also commutative and associative! We killed two birds with one stone.

We have obtained a rescaling of the cutoff when considering many bodies, and this is what was
expected from the soccer ball problem: the cutoff is of gravitational origin, it is the Schwarzschild
mass associated with the given size of the system (we assume it spherical symmetric and spinless,
neutral). We can consider objects that are Planck like size but when considering a bunch of
them, they form a composite object which maximum mass has to be renormalized roughly like
the number of particles, since the Schwarzschild mass behaves linearly with the size of the
system.

2.8. Fifth dimension as mass

As we have introduced an extra dimension, we need to provide an physical interpretation to
it. We have seen that P, is basically giving the mass, so it is natural to say that this extra
dimension should be related to the mass. This is our suggestion: the fifth dimension is the
mass. The idea is not new [12]: one can construct some Kaluza-Klein theory where the 5d
dimension is not compactified, but is the mass. When considering GR on this space we can
naturally construct in an intrinsic way both matter and gravitational degrees of freedom [12].
In fact we can deduce this from a hand-wavy argument analog to the derivation of space-time.

In this case we have v2 = % < 2 — ds? = 2dT? — dL2. Consider now the Schwarzschild

ratio that tells us that % < 5—22 = g% — dS? = dL? — g?dM?. If the mass is considered as an
extra dimension (X4 = M) it is natural to have it changing, which might be at first a disturbing
feature. It is not so much in fact when considering the effective rest mass (identified with the

energy) of a Schwarzschild black hole: Brown and York calculated the effective energy contained

in a shell of size R [13]:
M(R):R<1—,/1—2£f>, (12)

where m is the ADM mass. We see that due to gravity, there is a renormalization of the mass.
Usually we neglect the feedback of the particle on space-time, but here we are taking into account
in an effective way these effects. To be careful at the two particles state, one should actually
look at how two Schwarzschild -like metrics merge in one representing the two particles as one
coarse-grained object. DSR from this point of view gives a first effective approximation of this
phenomenon.
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One should also notice that in fact quantum gravitational effects could be seen in a variation
of the mass. Indeed just consider the Newtonian approximation, we have a renormalization
of the Newton constant G(k) in terms of the scale one is working. Instead of putting
this renormalization into the Newton constant we can put it into the mass, which becomes
then a variable: G(fQ)m — GTQ(k). Finally we should also notice that we can also make a
gaugefixing in the 5d action, illustrating this mass-variable physics. For this one chooses

C3 = X4 —T. We have then the dynamics (without considering the 4d mass shell condition)

4 i . .
g——~t—dX° —p4 L dX" _ pp If there is no change in rest mass, we recover
2 ds ’ 2 ds ’

(o%5) Vi)’

ds ds
the usual relativistic speed, but if there are changes in X4, we obtain corrections. Note that as a

final comment that the fluctuations of the mass would slightly violate the equivalence principle,
as the existence of a 5d force would have a non trivial effect at the 4d level. If this can be more
rigorously related to DSR, we could see here some new phenomenology to DSR.

Conclusion

I have presented the general ideas behind DSR and its general definition. If it used to have some
problems, the 5d perspective shed a lot of light on how to solve these problems. We have now
a general framework that at least is not right away contradicting with the common sense as the
soccer ball problem was. We need to push the link with the notion of space-time mass to get a
better understanding of the involved physics. Note that this might enlarge a lot the application
of DSR as the space-time-mass approach can be seen as related to the Randall-Sundrum model
[14], but also to a unified point of view of the renormalization group and effective description of
quantum gravity [15]. We leave this for further studies but certainly the following developments
will be very exciting!
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