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Abstract

We discuss and prove a theorem which asserts that any n-dimensional semi-

Riemannian manifold can be locally embedded in a (n+1)-dimensional space

with a non-degenerate Ricci tensor which is equal, up to a local analytic

diffeomorphism, to the Ricci tensor of an arbitrary specified space. This

may be regarded as a further extension of the Campbell-Magaard theorem.

We highlight the significance of embedding theorems of increasing degrees

of generality in the context of higher dimensional spacetimes theories and

illustrate the new theorem by establishing the embedding of a general class

of Ricci-flat spacetimes.

I. INTRODUCTION

Modern physical theories which regard our spacetime as a hypersurface embedded in a

five-dimensional manifold constitute nowadays a branch of theoretical physics undergoing

quite an active research. On the other hand the idea of an extra fifth dimension is not new

and goes back to the works of Kaluza and Klein carried out around the first quarter of the

twentieth century [1,2]. Kaluza-Klein’s seminal work has inspired theoretical physicists to

generalize their conjecture in the construction of unified theories of the fundamental inter-
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actions of nature. Subsequent developments which assume that the universe contains extra

hidden dimensions include among others eleven-dimensional supergravity and superstring

theories. [3,4]. More recently much attention has been devoted to the so-called Randall-

Sundrum braneworld scenario where the spacetime is viewed as a four-dimensional hyper-

surface embedded in a five-dimensional Einstein space [5]. Non-compactified approaches

to Kaluza-Klein gravity also makes use of embedding mechanisms and have been largely

discussed in the literature [6].

In a sense one could say that all spacetime embedding theories [7] assume, implicitly

or explicitly, a mathematical framework which must provide consistency for the postulates

and basic principles set forth by such theories. In this connection it is of interest to know

whether the embedding theorems of differential geometry are properly taken into account

when constructing higher dimensional models. The analysis of the geometrical structure

underlying some modern embedding theories has recently attracted the interest of some

authors [8–13]. It seems that there is now a quest for embedding theorems with increasing

degrees of generality, i.e., theorems ensuring that arbitrary n-dimensional spacetimes can be

embedable in classes of (n+1)-dimensional spaces the most general as possible.

Two theorems of historical importance which have played a significant role in physical

theories of higher dimensions should be mentioned. The first is the well-known Janet-Cartan

theorem, which asserts that if the embedding space is flat, the minimum number of extra

dimensions needed to analytically embed a n-dimensional Riemannian manifold is d, with

0 ≤ d ≤ n (n− 1) /2. [14].

The second is a little known but powerful theorem due to Campbell [15] the proof of which

was outlined by Campbell and completed by Magaard [16]. The content of the Campbell-

Magaard theorem is that any n-dimensional Riemannian manifold with analytic metric,

locally, can be isometrically embedded into a certain (n+1)-dimensional Ricci-flat manifold.

It is interesting to note that both theorems specify a geometry property to be satisfied by

the embedding space by imposing the restrictions Rµνλρ = 0 in one case and Rµν = 0 in

the other. It is also worth of noting that by relaxing the flatness condition, assumed in the
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Janet-Cartan theorem, and replacing it by the weaker Ricci-flatness condition, the Campbell-

Magaard theorem drastically reduces the codimension of the embedding space to d = 1. This

seems to give support to the mathematical consistency of theories in which the dynamics of

the embedding space is governed by the vacuum Einstein field equations [6]. However, the

view adopted by Randall-Sundrum braneworld model [5] that the embedding space, i.e. the

bulk, should correspond to an Einstein space sourced by a negative cosmological constant

has naturally raised the question of whether Campbell-Magaard theorem could be extended

to include embeddings in arbitrary Einstein spaces. This conjecture was shown to be, in

fact, a theorem the proof of which is given in ref. [13]. Embeddings into spaces sourced by

scalar fields also have been considered and a different extension of the Campbell-Magaard

theorem has been proved [12,17]. In seeking higher levels of generalization one is led to

consider the more general situation of embedding spaces whose Ricci tensor is arbitrary.

In this paper we shall be concerned with this problem. In section II we state and prove a

theorem which considers embedding spaces with arbitrary non-degenerate Ricci tensor, and,

in a way, would represent a further generalization of Campbell-Magaard’s result. In section

III we illustrate the theorem by establishing the embedding of a general class of Ricci-flat

spacetimes in a given collection of five-dimensional spaces whose Ricci tensor is equivalent

to a specified non-degenerate and non-constant Ricci tensor.

We believe that insofar as five-dimensional embedding theories are metric theories it

appears to be of relevance to allow the embedding spaces to have different geometrical

properties, which must ultimately be determined by the dynamics of the theory in question.

Therefore generalizations of the known embedding theorems might be helpful in building

new higher dimensional models.
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II. EXTENSION OF CAMPBELL-MAGAARD THEOREM: EMBEDDING

SPACES WITH ARBITRARY NON-DEGENERATE RICCI TENSOR

In this section we want to investigate the existence of a local analytic embedding of a

n-dimensional semi-Riemannian manifold (Mn, g) into a class of (n + 1)-dimensional spaces

whose Ricci tensor is equivalent to the Ricci tensor of a (n + 1)-dimensional space arbitrarily

specified.

Definition. Consider a (n+ 1)−dimensional semi-Riemannian space
(

M̃n+1
0 , g̃0

)

and

let Sαβ denote the components of the Ricci tensor in a coordinate system {x′α}. Let
(

M̃n+1, g̃
)

be another (n+ 1)−dimensional semi-Riemannian space with R̃αβ denoting the

components of the Ricci-tensor in a coordinate system {xα} which covers a neighborhood of

a point p ∈ M̃n+1 whose coordinates are x1
p = ... = xn+1

p = 0. Then, we shall say that Sαβ

and R̃αβ are equivalent if there exists an analytic local diffeomorphism f : M̃n+1
0 → M̃n+1 at

p such that

R̃αβ (x
γ) =

∂f
µ

∂xα

∂f
ν

∂xβ
Sµν (x

′κ) , (1)

where x′κ = f
κ (

xλ
)

. In others words, Sαβ and R̃αβ are said to be equivalent if there exists

a analytic function f
µ
= f

µ
(xα) such that: i)

∣

∣

∣

∂f
µ

∂xα

∣

∣

∣
6= 0 at 0 ∈ R

n+1; ii) the condition (1)

holds in a neighborhood of 0 ∈ R
n+1. In this case,

(

M̃n+1
0 , g̃0

)

and
(

M̃n+1, g̃
)

are said to be

“Ricci-equivalent” spaces. 1

Clearly, from the above, the collection Mn+1
g̃0

of all spaces which are Ricci-equivalent to

a given space
(

M̃n+1
0 , g̃0

)

is well defined. Therefore it makes sense to discuss the existence

of the embedding of a given arbitrary n−dimensional semi-Riemannian manifold
(

M̃n, g̃
)

into the class Mn+1
g̃0

. In what follows we shall show that if the Ricci tensor of
(

M̃n+1
0 , g̃0

)

is non-degenerate, i.e., the matrix formed by its components has inverse, then the existence

1Henceforth we shall follow the convention adopted in ref [13] where Latin and Greek indices run

from 0 to n and n+ 1, respectively.
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of the embedding can be ensured.

We should note, however, that (1) defines a notion of equivalence between the covariant

Ricci tensor Sαβ and R̃αβ . This equivalence does not imply that the contravariant Ricci

tensor Sαβ and R̃αβ are also equivalent. In general they are not, unless the diffeomorphism

is an isometry, a condition which is more restrictive than (1).

Let us consider
(

M̃n+1, g̃
)

and choose a coordinate system in which the metric has the

form

ds2 = ḡikdx
idxk + εφ̄2dy2, (2)

where ε = ±1. In these coordinates (1) may be written in the following equivalent form:

R̃ik=R̄ik + εḡjm
(

Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im

)

−
ε

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄ =

∂f
µ

∂xi

∂f
ν

∂xk
Sµν

(

f
α
)

(3)

R̃y
i =

ε

φ̄
ḡjk
(

∇̄jΩ̄ik − ∇̄iΩ̄jk

)

=
ε

φ̄2

∂f
µ

∂y

∂f
ν

∂xi
Sµν

(

f
α
)

(4)

G̃y
y = −

1

2
ḡikḡjm

(

R̄ijkm + ε
(

Ω̄ikΩ̄jm − Ω̄jkΩ̄im

))

=
1

2

ε

φ̄2

∂f
µ

∂y

∂f
ν

∂y
Sµν

(

f
α
)

−
1

2
ḡjm

∂f
µ

∂xj

∂f
ν

∂xm
Sµν

(

f
α
)

, (5)

where

Ω̄ik = −
1

2φ̄

∂ḡik
∂y

, (6)

Gαβ is the Einstein tensor and a bar is used to denote all the geometrical quantities calculated

with the induced metric ḡik on a generic hypersurface Σc of the foliation y = c = const.

Before we state the main theorem we need a few preliminaries.

We begin by defining the tensor

F̃ α
β = G̃α

β −

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν −

1

2
δαβ g̃

γλ∂f
µ

∂xγ

∂f
ν

∂xλ
Sµν

)

. (7)

If we now impose that the functions f
α
satisfy the equation

∇̃α

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν −

1

2
δαβ g̃

γλ∂f
µ

∂xγ

∂f
ν

∂xλ
Sµν

)

= 0, (8)
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then it is easily seen that, as the Einstein tensor Gα
β has vanishing divergence, the tensor

F̃ α
β also is divergenceless for any metric g̃αβ, even those which are not solutions of Eq. (1).

Thus, we are ready to state the following lemma.

Lemma 1. Let the functions ḡik (x
1, ..., xn, y), φ̄ (x1, ..., xn, y) and f

α
(x1, ..., xn, y) be

analytical at (0, ..., 0) ∈ Σ0 ⊂ R
n+1. Assume that the following conditions hold

i) ḡik = ḡki;

ii) det (ḡik) 6= 0;

iii) φ̄ 6= 0.

Suppose further that ḡik and f
α
satisfy the equations (3) and (8) in an open set V ⊂ R

n+1

which contains 0 ∈ R
n+1, and (4) and (5) hold at Σ0. Then, ḡik, φ̄ and f

α
satisfy (4) and

(5) in a neighborhood 0 ∈ R
n+1.

Proof. The key point of the proof is given by the equation ∇̃αF̃
α
β = 0, which can be

written as

∂F̃ y
β

∂y
= −

∂F̃ i
β

∂xi
− Γ̃µ

µλF̃
λ
β + Γ̃µ

λβF̃
λ
µ . (9)

On the other hand, by assumption (3) holds in V ⊂ R
n+1. Then, it can be shown that in V

we have F̃ i
k = −δikF̃

y
y . After some algebra we can deduce that

∂F̃ y
y

∂y
= −εφ̄2ḡij

∂F̃ y
i

∂xj
− 2Γ̃i

iyF̃
y
y +

(

−ε
∂
(

φ̄2ḡij
)

∂yj
− εφ̄2ḡijΓ̃k

kj + Γ̃i
yy

)

F̃ y
i (10)

∂F̃ y
i

∂y
=

∂F̃ y
y

∂xi
+ 2Γ̃y

yiF̃
y
y +

(

Γ̃k
yi + εφ̄2ḡkjΓ̃y

ij − Γ̃µ
yµδ

k
i

)

F̃ y
k . (11)

Since at the hypersurface Σ0 the equations (4) and (5) also hold, it follows that F̃ y
β = 0 at

Σ0 and hence
∂F̃

y
β

∂y

∣

∣

∣

∣

y=0

= 0. It is not difficult to show by mathematical induction that all the

derivatives (to any order) of F̃ y
β vanish at y = 0. As F̃ y

β is analytic we conclude that F̃ y
β = 0

in an open set of Rn+1. Hence, Eqs. (4) and (5), which are equivalent to F̃ y
β = 0, also hold

in an open set of Rn+1 which includes the origin. This proves the lemma.

The question which now arises is: do Eqs. (3) and (8) admit solution? To answer this

question we first note that (3) can be expressed in the following form
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∂2ḡik
∂y2

= −2εφ̄2

(

∂f
µ

∂xi

∂f
ν

∂xk
Sµν

(

f
α
)

)

+
1

φ̄

∂φ̄

∂y

∂ḡik
∂y

−
1

2
ḡjm

(

∂ḡik
∂y

∂ḡjm
∂y

− 2
∂ḡim
∂y

∂ḡjk
∂y

)

−2εφ̄

(

∂2φ̄

∂xi∂xk
−

∂φ̄

∂xj
Γ̄j
ik

)

− 2εφ̄2R̄ik. (12)

Second, let us rewrite Eq. (8) in the form

∂

∂xα

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν −

1

2
δαβ g̃

γλ∂f
µ

∂xγ

∂f
ν

∂xλ
Sµν

)

+

+Γ̃α
ασ

(

g̃σγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν

)

− Γ̃σ
αβ

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xσ
Sµν

)

= 0. (13)

We now isolate the terms which contain second-order derivatives of f
α
with respect to y in

the equation above. Putting β = n + 1 we obtain

ε

φ̄2

∂2f
µ

∂y2
∂f

ν

∂y
Sµν = −

1

2

∂f
µ

∂y

∂f
ν

∂y

∂

∂y

(

ε

φ̄2
Sµν

)

+
1

2

∂

∂y

(

ḡjk
∂f

µ

∂xj

∂f
ν

∂xk
Sµν

)

−
∂

∂xj

(

ḡjk
∂f

µ

∂xk

∂f
ν

∂y
Sµν

)

−Γ̃α
ασ

(

g̃σγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν

)

+ Γ̃σ
αβ

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xσ
Sµν

)

. (14)

For β = i we have

ε

φ̄2

∂2f
µ

∂y2
∂f

ν

∂xi
Sµν = −

∂f
µ

∂y

∂

∂y

(

ε

φ̄2

∂f
ν

∂xi
Sµν

)

−
∂

∂xj

(

ḡjk
∂f

µ

∂xj

∂f
ν

∂xi
Sµν

)

+
1

2

∂

∂xi

(

g̃σγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν

)

−Γ̃α
ασ

(

g̃σγ
∂f

µ

∂xγ

∂f
ν

∂xβ
Sµν

)

+ Γ̃σ
αβ

(

g̃αγ
∂f

µ

∂xγ

∂f
ν

∂xσ
Sµν

)

. (15)

Clearly, the right-hand side of (14) and (15) does not contain second-order derivatives

of the functions f
α
and ḡik with respect to y. Therefore, they are of the form

∂2f
µ

∂y2
∂f

ν

∂xβ
Sµν = Qβ

(

f
λ
,
∂f

λ

∂xσ
,

∂2f
λ

∂xσ∂xi
, ḡik,

∂ḡik
∂xσ

)

. (16)

(Of course Qβ also depends on φ̄ and its derivatives, however this fact is not relevant for

our present reasoning). Thus, assuming that
∣

∣

∣

∂f
µ

∂xα

∣

∣

∣
6= 0 (we shall see later on that this

assumption can always be made) we can write

∂2f
µ

∂y2
Sµν =

∂xβ

∂f
νQβ

(

f
λ
,
∂f

λ

∂xσ
,

∂2f
λ

∂xσ∂xi
, ḡik,

∂ḡik
∂xσ

)

. (17)
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If we suppose that Sµν is invertible, i.e., there exists (S−1)
νλ

such that

Sµν

(

S−1
)νλ

= δλµ, (18)

then (8) can be put into the canonical form

∂2f
µ

∂y2
= P µ

(

f
λ
,
∂f

λ

∂xσ
,

∂2f
λ

∂xσ∂xi
, ḡik,

∂ḡik
∂xσ

)

, (19)

where each P µ is analytic with respect to its arguments provided that
∣

∣

∣

∂f
µ

∂xα

∣

∣

∣
6= 0, |ḡik| 6= 0

and φ̄ 6= 0.

It easy to see that the Cauchy-Kowalewski theorem (see Appendix) can be applied to

the equations (19) and (12), which are equivalent to (3) and (8), respectively. According to

the above-mentioned theorem, if an analytic function φ̄ 6= 0 is chosen, then there exists a

unique set of analytic functions ḡik and f
α
that are solutions of (3) and (8) satisfying the

initial conditions

ḡik
(

x1, .., xn, 0
)

= gik
(

x1, .., xn
)

(20)

∂ḡik
∂y

(

x1, .., xn, 0
)

= −2φ̄
(

x1, .., xn, 0
)

Ωik

(

x1, ..., xn
)

(21)

f
α (

x1, .., xn, 0
)

= ξα
(

x1, .., xn
)

(22)

∂f
α

∂y

(

x1, .., xn, 0
)

= ηα
(

x1, .., xn
)

, (23)

where gik, Ωik, ξ
α and ηα are analytic functions at the origin 0 ∈ R

n, and the following

conditions hold: i)
∣

∣

∣

∂f
µ

∂xα

∣

∣

∣

0
6= 0; e ii) |gik| 6= 0. (Incidentally, we can easily verify that the

condition (i) is satisfied by simply choosing: ξi = xi; ξn+1 = 0; ηi = 0 and ηn+1 = 1. With

this choice,
∣

∣

∣

∂f
µ

∂xα

∣

∣

∣

0
= 1.)

We now are ready to state the following theorem.

Theorem 1 Let Mn be a n-dimensional semi-Riemannian manifold with metric given

by

ds2 = gikdx
idxk,
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in a coordinate system {xi} of Mn. Let p ∈ Mn, have coordinates x1
p = ... = xn

p = 0. Then,

Mn has a local isometric and analytic embedding (at the point p) in a (n+1)-dimensional

space
(

M̃n+1, g̃
)

whose Ricci tensor is equivalent to the symmetric, analytic and non-

degenerate tensor Sµν if and only if there exist functions Ωik (x
1, ..., xn) (i, k = 1, .., n),

ξα (x1, .., xn), ηα (x1, .., xn) (α = 1, ..., n+1) and φ (x1, .., xn) 6= 0 that are analytic at 0 ∈ R
n,

such that

Ωik = Ωki (24)

gjk (∇jΩik −∇iΩjk) =
1

φ
ηµ

∂ξν

∂xi
Sµν (ξ

α) (25)

gikgjm (Rijkm + ε (ΩikΩjm − ΩjkΩim)) = −
ε

φ2
ηµηvSµν (ξ

α) + gjm
∂ξµ

∂xj

∂ξν

∂xm
Sµν (ξ

α)

(26)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ξ1

∂x1 · · · ∂ξn+1

∂x1

...
...

∂ξ1

∂xn · · · ∂ξn+1

∂xn

η1 · · · ηn+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 (27)

Proof. Let us start with the necessary condition. If (Mn, g) has an embedding in
(

M̃n+1, g̃
)

, then it can be proved that there exists a coordinate system in which the metric

of the embedding space has the form [13]

ds2 = ḡikdx
idxk + εφ̄2dy2, (28)

where the analytic functions ḡik (x
1, ..., xn, y) and φ̄ (x1, ..., xn, y) are such that

φ̄ (x1, ..., xn, y) 6= 0 and that ḡik (x
1, ..., xn, 0) = gik (x

1, ..., xn) in an open set of Rn which

contains the origin. Given that the Ricci tensor of the embedding space
(

M̃n+1, g̃
)

is, by

assumption, equivalent to Sµν , then the equations (3), (4), (5) and (8) are satisfied in a

neighborhood of 0 ∈ R
n+1 for some functions f

µ
. In particular, the equations (4) and (5)

hold for y = 0. Therefore, if we define Ωik, ξ
α , ηα by the relations (21), (22) and (23), and

take φ (x1, .., xn) = φ̄ (x1, ..., xn, 0) then the Eqs.(24), (25), (26) and (27) are satisfied.

Let us turn to the sufficiency. Suppose there exist functions Ωik (x
1, ..., xn) , ξα (x1, .., xn),
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ηα (x1, .., xn) and φ (x1, .., xn) 6= 0 which satisfy (24), (25), (26) and (27). Choose an ana-

lytic function φ̄ (x1, ..., xn, y) 6= 0 such that φ̄ (x1, ..., xn, 0) = φ (x1, .., xn) . By virtue of the

Cauchy-Kowalewski theorem there exists a unique set of analytic functions ḡik (x
1, ..., xn, y)

and f
α
(x1, ..., xn, y) satisfying the equations (3), (8) and the initial conditions (20), (21),

(22) and (23). Since, by assumption, the initial conditions satisfy the equations (24), (25)

and (26) then ḡik, φ̄ and f
α
satisfy (4) and (5) at y = 0. It follows from lemma 1 that ḡik, φ̄

and f
α
satisfy (1) in an open set of Rn+1 which contains the origin. Further we can say that

f
α
is a diffeomorphism since by virtue (27) we have

∣

∣

∣

∂f
µ

∂xα

∣

∣

∣
6= 0. Therefore, we conclude that

the (n+1)-dimensional manifold whose line element (28) is formed with the solutions ḡik

and φ̄ is a space whose Ricci tensor is equivalent to Sµν , and the embedding of the manifold

(Mn, g) is given by y = 0. This completes the proof.

We now need to show that once the functions gik are given the system of equations (24),

(25), (26) and (27) always admits solution for Ωik. For simplicity we take ξi = xi; ξn+1 = 0;

ηi = 0 e ηn+1 = 1. With this choice the condition (27) is readily satisfied. The equations

(24), (25) and (26) constitute a set of n partial differential equations (25) plus a constraint

equation (26) for n (n+ 1) /2 independent functions Ωik. Except for n = 1, the number of

unknown functions is greater than (or equal to (n=2)) the number of equations. Then, out

of the set of functions Ωik we pick n functions Ω1k (k ≥ 2) and Ωr′n to be regarded as the

unknowns2. The next step is to write (25) in a suitable form for application of the Cauchy-

Kowalewski theorem (first-order derivative version) to ensure the existence of the solution.

For the sake of brevity we shall omit the detailed proof and refer the reader to references

[13,16] where a similar procedure is carried out. Then it can be shown that after solving

2The r′ index has the following meaning. We assume, for the sake of the argument, that we are

using a coordinate system in which g11 6= 0 and g1k = 0, k = 2, ..., n. Hence, there exists at least

an index r′ > 1 such that gr
′n 6= 0, since |gik| 6= 0.

10



(25) for Ω1k (k ≥ 2) and Ωr′n we obtain

∂Ωr′n

∂x1
=

1

gr′n (δr′n − 2)






− grs

r,s>1
Ω1s,r + 2 grsΩrs,1

1<r<s

r,s 6=r′,n

+grr Ωrr,1
r>1
r 6=r′

+ (29)

+gr
′r′Ωr′r′,1 (1− δr′n)− grs

r,s>1

(

Ωtr
t≤r

Γt
s1+ Ωrt

r<t
Γt
s1 − Ω11Γ

1
sr− Ω1t

t<1
Γt
sr

)

+
1

φ
S1y

(

xi
)

]

where no sum over r′ is implied, and

∂Ω1k

∂x1
= g11

[

− grs
r,s>1

(

Ωsk,r
s≤k

+ Ωks,r
k<s

−2 Ωrs,k
r<s

)

− g11Ω11,k − grr Ωrr,k
r>1

(30)

−grs
(

Ωtr
t≤r

Γt
sk+ Ωrt

r<t
Γt
sk− Ωtk

t≤k

Γt
sr− Ωkt

k<t

Γt
sr

)

+
1

φ
Sk y

(

xi
)

]

, k ≥ 2.

where Ω11 must be substituted by

Ω11 =
1

2g11 grs
r,s>1

(

Ωrs
r≤s

+ Ωsr
s<r

)

[

2g11 grs
r,s>1

Ω1rΩ1s

− grsgtu
r,s,t,u>1

[(

Ωrs
r≤s

+ Ωsr
s<r

)(

Ωtu
t≤u

+ Ωut
u<t

)

−

(

Ωru
r≤u

+ Ωur
u<r

)(

Ωst
s≤t

+ Ωts
t<s

)]

−ε

(

R−
ε

φ2
Syy

(

xi
)

+ gjmSjm

(

xi
)

)



 . (31)

Finally, if we choose the functions Ωik (i ≤ k, i > 1, (i, k) 6= (r′, n)) , φ 6= 0 as being

analytic at the origin, and since Sµν (x
i) are also analytic, then in view of the Cauchy-

Kowalewski theorem the system of equations (29) and (30) admits a solution that is analytic

at the origin. Therefore, given arbitrary analytic functions gik (x
1, ..., xn) the existence of

the functions Ωik (x
1, ..., xn) (i, k = 1, .., n), ξα (x1, .., xn), ηα (x1, .., xn) which satisfy (24),

(25), (26) and (27) is ensured, so Theorem 1 applies.

It should be mentioned that in the case where Sµν = 0, Eq. (8) holds for any func-

tions f
α (

xβ
)

; hence all the results derived above applies when the space
(

M̃n+1
0 , g̃0

)

has a

vanishing Ricci tensor. Therefore, we can state the following theorem:

Theorem 2. Let Mn be a n-dimensional semi-Riemannian manifold with metric given

by

11



ds2 = gikdx
idxk,

in a coordinate system {xi} of Mn. Let p ∈ Mn, have coordinates x1
p = ... = xn

p = 0.

Consider a (n+1)-dimensional semi-Riemannian space
(

M̃n+1
0 , g̃0

)

whose Ricci tensor is

either non-degenerate or null. If gik are analytic functions at 0 ∈ R
n, then (Mn, g) has a

local isometric and analytic embedding (at the point p) in a (n+1)-dimensional space which

is Ricci-equivalent to
(

M̃n+1
0 , g̃0

)

.

Therefore, we conclude that if the space
(

M̃n+1
0 , g̃0

)

is a solution of the Einstein equations

for some source, then Theorem 2 guarantees that there exists a space which satisfies the

“same” Einstein equations up to a coordinate transformation (see Eq. (1) ), in which the

spacetime (Mn, g) can be embedded

III. A SIMPLE APPLICATION OF THEOREM 2

Up to this point we have considered the Ricci tensor only through its covariant compo-

nents R̃αβ . However, it is not difficult to realize that all the previous results we have obtained

are still valid if the mixed R̃α
β or contravariant components R̃αβ are considered instead.

In what follows we illustrate Theorem 2 in its Ricci-tensor mixed-components version.

Consider the five-dimensional semi-Riemannian space
(

M̃5
0 , g̃0

)

with a metric given by

5ds2 = (y + 1)
4

5

(

−dt2 + dx2 + dy2 + dz2
)

+
24

25
εdy2. (32)

If we calculate the mixed components of the Ricci Sµ
ν tensor for this metric we obtain

Sµ
ν = diag

(

1

4
,
1

4
,
1

4
,
1

4
,−1

)

ε

(y + 1)2
. (33)

We can view (32) as a five-dimensional analogue of the Friedmann-Robertson-Walker

cosmological metric for radiation, with an energy density given by ρ (y) = − ε

(y+1)2
(as

measured by observers ∂y).

Consider now a four-dimensional space (M4, g) with a vanishing Ricci tensor, i.e., a

vacuum solution of the Einstein field equations. Let us consider the question of embed-

ding (M4, g) into the collection M5
g̃0

of five-dimensional spaces that are Ricci-equivalent to

12



(

M̃5
0 , g̃0

)

. In order to work with a mixed Ricci tensor we redefine the Ricci-equivalence

property by the equation

R̃µ
ν =

∂f̄µ

∂xα

∂xβ

∂f̄ v
Sα
β . (34)

To find the embedding we begin with the ansatz

ḡik
(

x1, ..., x4, y
)

= u (y) gik
(

x1, .., x4
)

(35)

φ̄
(

x1, ..., x4, y
)

= 1 (36)

f̄α
(

x1, ..., x4, y
)

= xα, (37)

where gik is the metric of (M4, g) and u(y) is a function such that u(0) = 1.

From Lemma 1 we can show that (34) is equivalent to the ordinary differential equation

u′ =
4

5

u

(y + 1)
. (38)

Therefore, after integrating (38) we conclude that (M4, g) has a local embedding in the

space

5ds2 = (y + 1)
4

5

(

gikdx
idxk

)

+
24

25
εdy2, (39)

whose Ricci tensor is the same as Sµ
ν , given by (33). Finally, it is worth mentioning that

although the spaces (32) and (39) are Ricci-equivalent they are not isometric. This can

simply be verified since the Weyl tensor Wµνλρ calculated from (32) vanishes while (39)

may have Wµνλρ 6= 0 for some gik (choose, for example, gikdx
idxk to be the line element of

Schwarzschild spacetime).

IV. FINAL COMMENTS

The restriction of the Ricci-tensor being non-degenerate, as required by Theorem 2,

certainly imposes a limitation on the set of possible sources of the embedding space. For ex-

ample, we would have to leave out of consideration solutions of the Einstein equations such as

13



cosmological models sourced by dust-type perfect fluid. We feel that although a great number

of solutions of physical interest have non-degenerate Ricci-tensor, e.g. Friedman-Robertson-

Walker models sourced by incoherent radiating perfect fluids, it seems indisputable that a

theorem in which the condition of non-degeneracy is relaxed would be most welcome.

V. APPENDIX

Theorem (Cauchy-Kowalewski). Let us consider the set of partial differential

equations:

∂2uA

∂ (yn+1)2
= FA

(

yα, uB,
∂uB

∂yα
,
∂2uB

∂yα∂yi
,

)

, A = 1, ..., m (40)

where u1, .., um are m unknown functions of the n+1 variables y1, ..., yn, yn+1, α = 1, ..., n+1,

i = 1, .., n, B = 1, ..., m. Also, let v1, ..., vm, w1, ..., wm, functions of the variables y1, ..., yn,

be analytic at 0 ∈ R
n. If the functions FA are analytic with respect to each of their arguments

around the values evaluated at the point y1 = ... = yn = 0, then there exists a unique solution

of equations (40) which is analytic at 0 ∈ R
n+1 and that satisfies the initial condition

uA
(

y1, ..., yn, 0
)

= vA
(

y1, ..., yn
)

(41)

∂uA

∂yn+1

(

y1, ..., yn, 0
)

= wA
(

y1, ..., yn
)

, A = 1, ..., m. (42)
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