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ABSTRACT

Arkani-Hamed, Dimopoulos, and Dvali have proposed that the fundamental
gravitational scale is close to 1 TeV, and that the observed weakness of gravity at
long distances is explained by the presence of large extra compact dimensions. If
this scenario is realized in a string theory of quantum gravity, the string excited
states of Standard Model particles will also have TeV masses. These states will
be visible to experiment and in fact provide the first signatures of the presence
of a low quantum gravity scale. Their presence also affects the more familiar
signatures due to real and virtual graviton emission. We study the effects of
these states in a simple string model.
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1 Introduction

Traditionally, the weakness of gravitational interactions at the scales accessible to particle
physics experiments has been explained by postulating that the Planck scale at which gravity
becomes strong is very high, MPl ∼ 1019 GeV. Below this scale, ordinary quantum field theory
applies, but, when this scale is reached, one can observe the underlying quantum theory that
incorporates quantum gravity. A disappointing feature of the traditional framework is that
the enormously high value of the Planck scale prevents us from observing any effects of
quantum gravity in laboratory experiments in the conceivable future, which means that the
search for the quantum theory of gravity has to proceed without any experimental input.
Recently Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1] have proposed an alternative to
this pessimistic scenario. They have constructed models in which gravity becomes strong at
a scale M of order 1 TeV. They explain the apparent weakness of gravity at lower energies
by the presence of compact dimensions with compactification radius R ≫M−1. We will call
these ‘large extra dimensions’. In this framework, gravity could have significant effects on
particle interactions at the energies accessible to current experiments and observations [2].

So far, almost all work on the phenomenological implications of large extra dimensions has
concentrated on the effects of real and virtual graviton emission. It is the basic assumption
of the model that gravitons can move in the extra dimensions. Then the graviton quantum
states will be characterized by a (quantized) momentum in the extra dimensions. The states
with nonzero momentum are called Kaluza-Klein (KK) excitations; they can be described
equivalently as massive spin-2 particles in 4 dimensions, with mass equal to the higher-
dimensional momentum, which couple to Standard Model particles through a coupling to
the energy-momentum tensor T µν with strength M−1

Pl . The sum over these states leads
gravity to become strong at a scale M ≪ MPl because the spectrum of KK excitations
becomes exceedingly dense as the size R of the compact dimensions is taken to be much
larger than M−1.

Because the low-energy coupling of the KK excitations is model-independent, one can
study processes in which gravitons are emitted into the extra dimensions [3, 4, 5] in the
context of a low-energy effective field theory. For collision energies much less than M , the
cross sections for missing-energy signatures are not sensitive to the details of physics at the
scale M . This fact allows one to obtain model-independent bounds on M . On the other
hand, it means that the simple observation of graviton emission does not give information
about the nature of the fundamental gravity theory.

The approach of low-energy effective field theory can also be applied to processes in which
the KK excitations appear as virtual exchanges contributing to the scattering of Standard
Model particles [3, 6, 7]. In this case, the contribution of low-energy effective field theory is
cutoff-dependent and of the same order as that from possible higher-dimension operators. In
phenomenological analyses, the virtual KK exchange is typically represented as a dimension-
8 contact interaction of the form T µνTµν with a coefficient proportional to 1/M4. The precise
value of this coefficient depends on the underlying model. It is also possible that this model
could predict additional contact interactions with a different spin structure that could also
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be observed as corrections to Standard Model scattering processes. For these reasons, the
virtual exchanges cannot be used to put lower bounds onM . On the other hand, the presence
of high-spin contact interactions can produce impressive signals, and the measurement of the
coefficients of these interactions can give new information on the fundamental theory.

The study of large extra dimensions differs from other phenomenological problems in that
the underlying theory from which the low-energy effective description is derived is a theory of
quantum gravity. This fact may bring in new and unforseen consequences. In particular, the
only known framework that allows a self-consistent description of quantum gravity is string
theory [8]. But string theory is not simply a theory of quantum gravity. As an essential
part of its structure, not only the gravitons but also the particles of the Standard Model
must have an extended structure. This means that, in a string theory description, there will
be additional modifications of Standard Model amplitudes due to string excitations which
might compete with or even overwhelm the modifications due to graviton exchange.

In this paper, we will study the signatures of string theory in a simple toy model with
large extra dimensions. The most important effects in this model come from the exchange of
string Regge (SR) excitations of Standard Model particles. We will show that, in Standard
Model scattering processes, contact interactions due to SR exchange produce their own char-
acteristic effects in differential cross sections. We will also show that these typically dominate
the effects due to KK exchange. In addition, the SR excitations can be directly produced as
resonances. These effects have been discussed previously, but at a more qualitative level, by
Lykken [10], and by Tye and collaborators [11]. The effects of SR resonances have also been
studied some time ago, in the context of composite models of quarks and leptons, by Bars
and Hinchliffe [12].

The dominance of SR over KK effects is a generic feature of weakly-coupled string theory.
It follows from the counting of coupling constants in string perturbation theory [9], which
is illustrated in Figure 1. To model the ADD scenario, we consider open string theories
which contain at low energy a set of Yang-Mills gauge bosons that can be identified with
gauge bosons of the Standard Model. We denote the dimensionless Yang-Mills coupling
by g. Figure 1(a) shows the string generalization of a Standard Model two-body scattering
amplitude at order g2. This amplitude coincides with the Standard Model expectation in
the limit in which the center-of-mass energy is much lower than the string scale MS and, at
higher energy, shows corrections proportional to powers of (s/M2

S). These are the effects of
SR excitations. Figure 1(b) shows the leading string contribution to graviton emission. The
graviton is a closed string state, and thus this process involves the closed-string coupling
constant, which is of order g2; the full amplitude is of order g3. Figure 1(c) shows one
contribution to the one-loop corrections to two-body scattering. This diagram is of order
g4. However, as Lovelace [13] originally showed, this string diagram contains the graviton-
exchange contribution when factorized as indicated in the figure. Thus, the exchange of
gravitons and their KK excitations are suppressed with respect to SR exchange by a factor
g2 in the amplitude.

In this paper, we will flesh out the picture represented by Figure 1 using an illustrative toy
string model. In Section 2, we will present this model, which uses scattering amplitudes on
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Figure 1: Schematic diagrams contributing to scattering amplitudes in a string generalization
of the Standard Model: (a) tree-level 2-body scattering; (b) graviton emission; (c) loop-level
2-body scattering.

the 3-brane of weakly-coupled Type IIB string theory to describe a string version of Quantum
Electrodynamics with electrons and photons. In Section 3, we will apply this model to
compute the cross sections for Bhabha scattering and e+e− → γγ at high energy. In Section
4, we will discuss the phenomenological consequences of those results, both for contact
interactions in high-energy scattering and for the direct observability of SR resonances. We
will find a direct bound on the string scale of MS > 1 TeV. Translated into a bound on the
fundamental quantum gravity scale, this becomes M > 1.6 TeV. This bound is admittedly
model-dependent, but it is also larger than any other current limit by more than a factor of
two for the relevant case of 6 large extra dimensions.

In the remainder of the paper, we will discuss the more familiar signatures of large extra
dimensions in string language. In Section 5, we will study the KK graviton emission process
e+e− → γG. In Section 6, we will discuss the effects of virtual KK graviton exchange through
a detailed analysis of the process of γγ elastic scattering. This analysis will also allow us
to derive the relation between the string scale and the fundamental quantum gravity scale.
In Section 7, we will review the collider limits on large extra dimensions in the light of the
new picture presented in this paper. Section 8 will present our conclusions. A series of
appendices review formulae for the analysis of Bhabha scattering and present some of the
more technical details of the string calculations.

A number of the topics considered in Sections 5 and 6 have recently been considered, from
a slightly different point of view, in a paper of Dudas and Mourad [14]. The phenomenological
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importance of SR resonances in models with a low string scale has been discussed briefly by
Accomando, Antoniadis, and Benakli [15].

2 The model

In this paper, we would like to investigate the simplest model that illustrates the influence of
string Regge (SR) excitations on physical cross sections. Thus, we will be content to study
a simple embedding of the Quantum Electrodynamics of electrons and photons into string
theory. This theory contains only one gauge group and only vectorlike couplings. More
realistic string models with large extra dimensions have been constructed by Kakuzhadze,
Tye, and Shiu [16], Antoniadis, Bachas, and Dudas [17], and Ibanez, Rabadan, and Uranga
[18]. These models are quite complicated. The added structure is inessential to the general
phenomenological picture that we will present in this paper, though there are many model-
dependent details that would be interesting to study.

With this motivation, we consider a very simple embedding of QED into Type IIB
string theory. In this theory, there exists a stable BPS object, the D3-brane, which is a
4-dimensional hypersurface on which open strings may end. We will assume that the 10-
dimensional space of the theory has 6 dimensions compactified on a torus with a periodicity
2πR, and that N coincident D3-branes are stretched out in the 4 extended dimensions. The
massless states associated with open strings that end on the branes are described by an
N = 4 supersymmetric Yang-Mills theory with a gauge group U(N). These states include
gauge bosons Aµa, gauginos g̃ai, and complex scalars φa, where a is an index of the adjoint
representation of U(N) and i runs from 1 to 4. We will project this theory down to a U(1)
gauge theory with two massless Weyl fermions and identify the gauge boson and fermions of
that theory with the photon and electron of QED.

We take the parameters of this theory to be the string scale MS = α′−1/2 and the
(dimensionless) Yang-Mills coupling constant g, which we identify with a Standard Model
gauge coupling. (Except for this definition of g, we adopt the conventions of [9]). Note that
MS is directly observable: The SR resonances occur at masses Mn =

√
nMS, for n = 1, 2, . . ..

The gravitational constant and other physical scales in the theory are derivable from
MS and g. However, the relation involves one-loop calculations and is model-dependent,
depending on the full spectrum of the theory. Quite generally in the ADD scenario, the
Newton constant which represents the observed strength of gravity is given in terms of the
fundamental gravitational scale M by the relation [2, 3, 4, 19]

(4πGN)−1 = Mn+2Rn , (1)

where the compact dimensions are taken to be flat and periodic with period 2πR. Our toy
model corresponds to the case n = 6. In Section 6 we will present a simple but model-
dependent computation of the relation between M and string scale MS . We will show that

M

MS
=
(

1

π

)1/8

α−1/4 , (2)

4



where α = g2/4π. Then, for two extreme choices,

α = 1/137 → M/MS = 3.0 ;

α = αs(1 TeV) → M/MS = 1.6 . (3)

In scattering amplitudes involving virtual gravitons, the gravity scale will enter as M−4,
and so the string and gravity effects will be well-separated in size. For future reference, the
tension of the D3-brane is given by [9]

τ3 =
1

8π3
α−1M4

S . (4)

The relations in (3) illustrate the most problematical aspect of our analysis. The naive
string constructions we will use in this paper require all of the Standard Model gauge cou-
plings to be unified at the string scale. Proposals for splitting these couplings to realistic
values using the vacuum expectation value of a string modulus field are given in [17, 18].
However, in this paper we will deal with the Standard Model interactions only one at a time.

The explicit embedding that we will use is the following: Consider the SU(2) subgroup
of U(N) with generators

t+ =
1√
2

(
0 1
0 0

)
, t− =

1√
2

(
0 0
1 0

)
, t3 =

1

2

(
1 0
0 −1

)
. (5)

(In general, we normalize SU(N) generators to tr[ta(tb)†] = 1
2
δab.) We can identify the

left-handed electron e−L , the left-handed positron e+L , and the photon Aµ as

e−L = g̃−1 , e+L = g̃+1 , Aµ = A3
µ , (6)

where the superscript denotes the matrix from (5) which would be used in computing the
Chan-Paton factor. The three generators form a closed operator algebra, and in fact the tree
amplitudes of N = 4 super-Yang-Mills theory which have only these states on external lines
also involve only these states on internal lines. In string theory, we can reduce the massless
sector to this set of states by an appropriate orbifold projection [20]. (For example, in a
U(2) theory, mod out by Z2 × Z3, where Z2 is the center of SU(2) and the internal indices
i are assigned the Z3 phases 1, ζ, ζ, ζ , with ζ = e2πi/3). This gives an explicit prescription
for computing tree-level string corrections to QED amplitudes. The electric charge of the
electron is given by

e = g , (7)

as one can determine from the commutator [t+, t3]. To compute loop corrections, we should
properly extend this theory to a full modular-invariant string construction. Instead, for
simplicity, we will use the content of the original N = 4 supersymmetric theory to compute
the loop diagram studied in Section 6.

Most of our analysis will be carried out at the tree level in string theory. A tree-level
amplitude for a particular process actually depends only on whether that process involves
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open- or closed-string states and is otherwise independent of which weak coupling string
theory it belongs to. Beyond this, it depends only on the correlation function of the vertex
operators associated with the external particles for that process and is independent of the
remainder of the string spectrum. If the tree amplitude for a process involves four particles
from an N = 4 supersymmetric string theory, the amplitude is identical whether the full
theory has N = 4 supersymmetry or is nonsupersymmetric. This identity is explicit when
a nonsupersymmetric model is constructed as an orbifold of a supersymmetric theory and,
in that situation, is a special case of the ‘inheritance’ property of orbifolds. This identity
is also familiar in field theory, where tree-level scattering amplitudes in QCD are computed
by recognizing that they are identical to amplitudes in a supersymmetric generalization of
QCD [21]. Thus, the string corrections to tree-level Standard Model amplitudes that we will
compute in this paper are actually valid for any situation in which the quarks and leptons
come from the untwisted sector of an open string orbifold.

Our tree amplitudes are model-independent in another way. An alternative string con-
struction of the ADD scenario would be to consider Type IIA string theory with 5 dimensions
large and one dimension small. Then the ADD scenario would arise if the Standard Model
particles were bound to a D4-brane wrapped around the small dimension. Similarly, one
could consider n large and (6−n) small dimensions, with a D(9−n)-brane wrapped around
the small dimensions. If the small dimensions are smaller than 1/TeV, all external states
would necessarily carry zero momentum in these directions. Then actually the tree ampli-
tudes derived in this paper would apply for any value of n. We should also note that while
we assume the toroidal compactification of the extra dimensions here, we expect the results
for scattering of open strings on the D brane in Sections 3 and 4 to remain valid for models
with a warp factor in the bulk [22], provided that the bulk curvature is sufficiently small
near the brane.

3 Stringy corrections to e+e− → γγ and Bhabha scat-

tering

In this section, we will use our toy model to compute the effects of TeV scale strings on
Bhabha scattering and γγ production in e+e− collisions. We will compute the leading-order
scattering amplitudes in string theory, using the external states described in the previous
section.

Tree amplitudes of open-string theory are given as sums of ordered amplitudes multiplied
by group theory Chan-Paton factors [9]. We consider amplitudes with all momenta directed
inward. Let the ordered amplitude with external states (1, 2, 3, 4) be denoted g2A(1, 2, 3, 4).
Then the full scattering amplitude A(1, 2, 3, 4) is given by

A(1, 2, 3, 4) = g2A(1, 2, 3, 4) · tr[t1t2t3t4 + t4t3t2t1]

+ g2A(1, 3, 2, 4) · tr[t1t3t2t4 + t4t2t3t1]

+ g2A(1, 2, 4, 3) · tr[t1t2t4t3 + t3t4t2t1] . (8)
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Figure 2: Nonzero 4-point ordered tree amplitudes of Yang-Mills theory. Wavy lines represent
gauge bosons; straight lines represent fermions. The sign for each line is the helicity, directed
inward.

To compute QED amplitudes with fixed external states, we would substitute for each ti the
appropriate matrix from (5) (or, for outgoing states, the Hermitian conjugate matrix).

The field theory tree amplitudes of Yang-Mills theory can be cast into the same form [21],
and it is useful to consider that case first. Only a subset of the possible 4-point ordered
amplitudes are nonzero; those amplitudes are given in Figure 2. In this figure, a wavy external
line denotes a gauge boson, and a straight external line denotes a fermion. The sign denotes
the helicity (for states directed inward). The diagrams are presented with the s-channel
vertical and the t-channel horizontal. Actually, the four amplitudes involving fermions can
be derived from the two with only gauge bosons by the use of N = 1 supersymmetry Ward
identities, and these identities also imply the vanishing of the ordered amplitudes for helicity
combinations not shown in the figure. The two 4-gauge boson amplitudes are related by
N = 2 supersymmetry. This is an example of the model-independence discussed at the end
of the previous section.

It is straightforward to check that these formulae give the familiar QED tree amplitudes.
For example, for e−Le

+
R elastic scattering, only the first line of (8) has a nonzero Chan-Paton

factor and we find

A(e−Le
+
R → e−Le

+
R) = −2e2

u2

st
= 2e2u

(
1

s
+

1

t

)
, (9)

with g = e. For e+e− annihilation to γγ, all three terms contribute and we find, for example,

A(e−Le
+
R → γLγR) = −e2

√
u

t

[
u

s
+
t

s
− 1

]
= 2e2

√
u

t
. (10)
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(a) (b)
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Figure 3: Schematic illustration and world-sheet diagram of the scattering process involving
four open strings on a D-brane.

The generalization of the formulae in Figure 2 to string states on a D-brane is known to
be quite simple [23, 24] : All of the amplitudes shown in the figure are multiplied by the
common factor

S(s, t) =
Γ(1 − α′s)Γ(1 − α′t)

Γ(1 − α′s− α′t)
. (11)

This factor is essentially the original Veneziano amplitude [25]. Before we apply this result,
it will be useful to sketch its derivation.

In the model described in Section 2, the electron and photon states are massless states of
open strings ending on the D3-brane. These states are described by the quantum theory of
fluctuations of an open string in which the string fields have Neumann boundary conditions
in the µ = 0–3 directions and Dirichlet boundary conditions in the µ = 5–10 directions. The
string world surface has the topology of a disk, as shown in Figure 3(a). The scattering
amplitudes are evaluated by mapping this surface onto a circle in the complex plane, as in
Figure 3(b), and then into the upper half plane. External open string states are represented
by operators, called ‘vertex operators’, placed on the boundary, and group theory matrices
ta, the Chan-Paton factors. When the boundary is mapped to the real line, the vertex
operators appear in a given order 1,2,3,4, and their correlation function gives the ordered
amplitude A(1, 2, 3, 4) which appears in (8). By summing over all orderings, one builds up
the complete formula for A(1, 2, 3, 4).

The explicit formula for the 4-point ordered amplitude is [9, 26]

A(1, 2, 3, 4) =
1

α′2X
2
∫ 1

0
dx

〈
4∏

i=1

Vqi
(xi, ki)

〉
, (12)

where Vqi
(xi) is the vertex operator of the state i. The operators are placed on the real axis

at xi = 0, x, 1, X, with X to be fixed and sent to ∞. The index qi denotes the superconformal
charge, which for the disk amplitude is constrained by

∑
i qi = −2.

A good way to account for the boundary conditions on the real line is to perform the
‘doubling trick’, which represents left-moving fields on the world-sheet by fields in the upper
half plane and right-moving fields by their continuation to the lower half plane. Explicitly,
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let us split the worldsheet boson field into its holomorphic and antiholomorphic parts:

Xµ(z, z) = Xµ(z) +X
µ
(z). (13)

The boundary conditions imposed on X(z) and the worldsheet fermion field ψ(z) on the real
line are then

Xµ(z) = ±Xµ
(z), ψµ(z) = ±ψµ

(z), (14)

where the plus sign corresponds to µ = 0−3 (Neumann boundary conditions), and the minus
sign to µ = 5 − 10 (Dirichlet boundary conditions.) The fields X(z) and ψ(z) are originally
defined only on the upper half-plane, C+. We extend the definitions of these fields to the full
plane by identifying

Xµ(z) = ±Xµ
(z) , ψµ(z) = ±ψµ

(z) , z ∈ C−, (15)

where the plus and minus signs again correspond to the Neumann and Dirichlet boundary
conditions. With these definitions, the correlation functions of these fields are given by

〈Xµ(w)Xν(z)〉 = −α
′

2
gµν ln |w − z|,

〈ψµ(w)ψν(z)〉 = gµν(w − z)−1, (16)

for any µ and ν.
The open string vertex operators are built from the worldsheet boson and fermion fields

Xµ and ψµ, the spin field Θα, and the superconformal ghost field φ. We work in the space-
time metric (−,+, . . . ,+), and define the conventional Mandelstam variables by s = −2k1·k2,
t = −2k1 · k4, and u = −2k1 · k3. Then, for photons, the vertex operators with q = −1 and
q = 0 take the form

Vµ
−1(x, k) = (2α′)1/2e−φψµei2k·X(x),

Vµ
0 (x, k) = 2(i∂Xµ + α′k · ψψµ)ei2k·X(x) . (17)

These expressions are referred to, respectively, as the ‘−1 picture’ and the ‘0 picture’. The
factor of 2 in the exponentials compensates for the replacement of the full Xµ(z, z) by its
holomorphic part in (13). For fermions, the vertex operator with with q = −1/2 (‘−1/2
picture’) is

Vα
−1/2(x, k) = 21/2α′3/4

e−φ/2Θαei2k·X(x). (18)

Note that for open strings, the momenta and polarization tensors are required to be parallel
to the D-brane, so all the fields that appear in the vertex operators (17) and (18) have
Neumann boundary conditions. It is then not surprising that the result (11) is identical to
the corresponding result in type I string theory.

The correlators required for the calculation are given by (16) and
〈
e−φ(w)e−φ(z)

〉
= (w − z)−1,

〈Θα(w)Θβ(z)〉 = Cαβ(w − z)−5/4, (19)

9
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Figure 4: Factorization of the open-string amplitude to produce a pole in (k1 + k2)
2 and a

three-gluon vertex.

where Cαβ is the charge conjugation matrix. Explicitly evaluating the expressions (12) with
these vertex operators and correlators, one finds the expressions in Figure 2 multiplied by
the form factor (11), as promised.

A check on the normalization of the 0 picture operator is given by the operator product
relation

ǫ2 · V−1(x, k2) ǫ1 · V0(0, k1) ∼

−α′x2k1·k2α′−1 {ǫ1 · ǫ2(k1 − k2)µ + 2ǫ1 · k2ǫ2µ − 2ǫ2 · k1ǫ1µ} Vµ
−1(0, k1 + k2) + ∆ ,(20)

where ∆ is a total derivative in x. A similar relation holds for V0(x, k2)V0(0, k1). When
inserted into (8), these relations give the correct factorization to a pole in (k1 + k2)

2 and the
three-gluon vertex, as shown in Figure 4. The relative normalization of V0 and V−1 is given
by the picture-changing relation [9]. Then comparison of the four-point amplitudes to those
of Yang-Mills theory gives the normalization of (12).

To compare string amplitudes to Standard Model amplitudes, we are typically interested
in the limit in which s, t, u are much less than the string scale MS = α′−1/2. In this limit,

S(s, t) =

(
1 − π2

6

st

M4
S

+ · · ·
)
. (21)

It is interesting that, in the toy model, the leading corrections are proportional to M−4
S ,

corresponding to an operator of dimension 8. This is a consequence of the fact that the first
higher-dimension operator with N = 4 supersymmetry appears at dimension 8 [27]. It is
likely that in more general string models in which quarks and leptons appear from twisted
sectors of the orbifold, the first string corrections would be proportional to M−2

S .
Now we can apply the form factor (11) to representative QED processes. For Bhabha

scattering, only the first Chan-Paton factor is nonzero, and so we find

A(e−Le
+
R → e−Le

+
R) = −2e2

u2

st
S(s, t) ,

10



A(e−Le
+
R → e−Re

+
L ) = −2e2

t

s
S(s, t) ,

A(e−Le
+
L → e−Le

+
L ) = −2e2

s

t
S(s, t) , (22)

and the same results for the parity-reflected processes. In general, all helicity amplitudes
for Bhabha scattering are given by their field theory expressions multiplied by S(s, t). This
form factor has SR poles in the s- and t-channels. A u-channel pole cannot appear, because
the open string contains no states with electric charge ±2.

For e+e− → γγ, the result is more complex. The string form factor appears in all three
possible channels, and we find

A(e−Le
+
R → γLγR) = e2

√
u

t

[
u

s
S(s, t) +

t

s
S(s, u) − S(t, u)

]
. (23)

The other nonzero helicity amplitudes are derived from this one by parity reflection and
crossing. In particular, the amplitude for production of γRγR remains zero. The amplitude
(23) contains massive SR poles in all three channels.

4 String phenomenology at colliders

The expressions for stringy corrections that we have derived allow one to search for signals of
string theory in collider experiments. In this section, we will discuss these explicit signatures
of string theory. We begin by considering effects visible as contact interactions well below
the string scale. We will then discuss direct observation of the string Regge excitations.

4.1 Contact interactions

Both two-photon production and Bhabha scattering have been studied at LEP 2 at the
highest available energies. We consider first the case of two-photon production. Deviations
from the Standard Model cross section have been analyzed by the LEP experiments in terms
of Drell’s parametrization [28]

dσ

d cos θ
=

dσ

d cos θ

∣∣∣∣
SM

·
(

1 ± 2ut

Λ4
±

)
. (24)

For the case of e+e− → γγ, it is actually a general result that the first correction due
to a higher-dimension operator comes from a unique dimension-8 operator. This operator
is proportional to the cross term in T µνTµν , where T µν is the energy-momentum tensor of
QED. Thus, Drell’s parametrization (24) should apply to any model of new physics at short
distances.

To compare our string theory results to this expression, insert (21) into (23); this gives

A(e−Le
+
R → γLγR) = −2e2

√
u

t

[
1 +

π2

12

ut

M4
S

+ · · ·
]
. (25)
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Squaring this expression, and noting that the correction is invariant to crossing t ↔ u, we
can identify

Λ+ =
(
12/π2

)1/4
MS . (26)

The OPAL collaboration [29] has reported a limit Λ+ > 304 GeV from measurements at
183 and 189 GeV in the center of mass. The ALEPH, DELPHI, and L3 collaborations have
reported similar constraints [30, 31, 32]. The OPAL result corresponds to a limit

MS > 290 GeV , 95% conf. (27)

If we use the first line of (3) to convert this to a limit on the fundamental quantum gravity
scale, we find M > 870 GeV.

The comparison of string predictions to the data on Bhabha scattering brings in two
new considerations. The first of these is that Bhabha scattering at energies above the Z0

resonance includes Z0 exchange as an important contribution, while the Z0 was not a part of
our string QED. To find a prescription for including both γ and Z0 exchange, we recall that
all QED Bhabha scattering amplitudes are multiplied by the common form factor S(s, t).
Thus, we suggest comparing the data on Bhabha scattering to the simple formula

dσ

d cos θ
(e−e+ → e−e+) =

dσ

d cos θ

∣∣∣∣
SM

· |S(s, t)|2 . (28)

This is essentially the assumption that the SR excitations of the photon and the Z0 have
the same spectrum, up to contributions of size m2

Z that we can ignore in computing their
masses, and that the SR excitations of the Z0 have the same polarization asymmetry as the
Z0 in their coupling to electrons.

The second complication for Bhabha scattering is that, unlike the case of e+e− → γγ,
there are many possible forms for the higher-dimension corrections to the Standard Model
result. Already at dimension 6 there are three possible helicity-conserving operators, of
which two are also parity-conserving. At dimension 8 there are 4 parity-conserving operators.
Various combinations of these operators have been proposed as the basis for fits to Bhabha
scattering data. It would be useful to review the most important models proposed previously
and to compare them to (28).

For many years, Bhabha scattering has been of interest as the most sensitive probe of
lepton substructure. The form proposed for deviations from the Standard Model prediction
was the most general combination of helicity-conserving dimension-6 operators [33]

δL =
4π

2Λ2
[ηLLeLγ

µeLeLγµeL + ηRReRγ
µeReRγµeR + 2ηRLeRγ

µeReLγµeL] , (29)

where the ηa are ±1 or 0 and the mass scale Λ is taken to be the scale of compositeness.
With the recent interest in large extra dimensions and low-scale quantum gravity, Bhabha

scattering has been reconsidered as a place to look for the effects of virtual KK graviton
exchange. As we have remarked in the introduction, the effect of KK exchange is not
reliably computable in low-energy effective field theory. Typically, this effect is modeled by

12



introducting an appropriate contact interaction with an adjustible coefficient [3, 6, 7]. In
this paper we will follow Hewett’s convention by representing the effective Lagrangian for
KK exchange as [6]:

δL = i
4λ

M4
H

T µνTµν , (30)

where λ = ±1 and T µν is the full energy-momentum tensor of the model. Hewett writes the
scale in this Lagrangian as MS; we use the notation MH to distinguish this mass scale from
the string scale [34].

It should be noted that the expressions (29) and (30) do not contain any powers of a
small coupling constant. When these expressions are added to the Standard Model formulae,
the higher-dimension operators compete with amplitudes that are of order g2. This allows
one to obtain very stringent bounds on the coefficient of the new operators. Bounds on the Λ
parameters, for example, are typically a factor of 20 higher than the center-of-mass energy of
the e+e− collisions being analyzed. The physical meaning of these bounds, however, depends
on the relation between the coefficients in (29) and (30) and the predictions of the underlying
fundamental theory. In Section 6, we will derive (30) from our toy string model and show
that the coefficient is of order

1

M4
H

∼ g4

M4
S

. (31)

Thus, (30) is parametrically suppressed with respect to the effects of SR exchange. This
conclusion is generic when quantum gravity is represented by a weakly-coupled string theory,
though perhaps in other models of quantum gravity (30) might be the dominant effect.

With this in mind, we will compare the models discussed above to an illustrative data
set for Bhabha scattering at LEP 2. A complete analysis of the LEP 2 data is beyond the
scope of this paper. For reference, we have listed the various expressions for the Bhabha
scattering cross sections in these models in Appendix A.

The four LEP experiments have all announced preliminary results on the Bhabha scat-
tering cross section at high energies [32, 35, 36, 37, 38] and have used the results to put limits
on 4-fermion contact interactions. In particular, the L3 experiment has published their data
at 183 GeV in a form convenient for our analysis. In Figure 5, we compare this data to the
formula (28) and to the analogous formulae derived from (29) and (30). The curves shown
are the 95% confidence exclusion limits for the various models considered: for SR exchange,
MS > 410 GeV, for KK exchange with λ = +1, MH > 830 GeV, for compositeness with VV
contact interactions (ηLL = ηRR = ηRL = −1) Λ > 8800 GeV, for compositeness with AA
contact interactions, (ηLL = ηRR = −ηRL = +1), Λ > 6700 GeV. In a weakly-coupled string
theory, the dominant effect would come from MS. Using the relation (3), the exclusion limit
on MS derived from this data would correspond to a limit on the quantum gravity scale of
M > 1.2 TeV.

A similar analysis can be used to estimate the sensitivity of experiments at future, higher-
energy e+e− colliders. As a guide, consider a linear e+e− collider running at a center of mass
energy of 1 TeV. With a 100 fb−1 data sample, the measurement of Bhabha scattering
should be systematics limited. We consider a set of 8 measurements of the differential cross

13
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Figure 5: Comparison of data on Bhabha scattering at 183 GeV with models of corrections
to the Standard Model from higher-dimension operators. The plot shows the fractional devi-
ation from the Standard Model, (dσ/d cos θ/dσ/d cos θ/|SM−1) versus cos θ. The four curves
represent: solid, string model with MS = 410 GeV; dotted, KK exchange with MH = 830
GeV; dashed, VV contact interactions with Λ = 8800 GeV; dot-dash, AA contact interac-
tions with Λ = 6700 GeV.
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Figure 6: Comparison of deviations from the Standard Model prediction for Bhabha scatter-
ing at 1 TeV due to corrections from higher-dimension operators. The four curves represent:
solid, string model with MS = 3.1 TeV; dotted, KK exchange with MH = 6.2 TeV; dashed,
VV contact interactions with Λ = 88 TeV; dot-dash, AA contact interactions with Λ = 62
TeV.

sections corresponding to the bin centers in Figure 5 and assume that each measurement
is made to 3% accuracy and agrees with the Standard Model expectation. Then the 95%
confidence exclusion limits for the four models just considered are: for SR exchange, MS >
3.1 TeV, for KK exchange with λ = +1, MH > 6.2 TeV, for compositeness with VV contact
interactions Λ > 88 TeV, for compositeness with AA contact interactions, Λ > 62 TeV. The
corresponding deviations from the Standard Model expectation are graphed as a function of
cos θ in Figure 6. Using (3), the limit on MS would translate to a limit M > 9.3 TeV on the
quantum gravity scale.

A remarkable feature of Figure 6 is that the four curves shown have very different shapes.
If a deviation from the Standard Model is seen, then with higher statistics or higher energy it
should be possible to determine which of these theories, if any, gives the correct description.
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4.2 Resonances

Though theories based on contact interactions are limited to the first deviations from the
Standard Model, our string theory formulae are valid at higher energies, and we can examine
their characteristic features there. The most obvious property apparent in (11) is the presence
of a sequence of s-channel poles at masses Mn =

√
nMS, for n = 1, 2, . . .. It is interesting to

explore the properties of the first resonances in some detail.
The stringy form factor S(s, t) has its first pole at s = M2

S. Near this point, it has the
form

S(s, t) ∼ t

s−M2
S

. (32)

We can use (32) to find the first resonance in string QED tree amplitudes. The pole contri-
butions are

A(e−Le
+
R → e−Le

+
R) = −2e2

u2

s2

s

s−M2
S

, A(e−Le
+
R → e−Re

+
L) = −2e2

t2

s2

s

s−M2
S

,

A(e−Le
+
R → γLγR) = −2e2

u
√
ut

s2

s

s−M2
S

, A(γLγR → γLγR) = −2e2
u2

s2

s

s−M2
S

,

A(γRγR → γRγR) = −2e2
s

s−M2
S

, A(e−Re
+
R → e−Re

+
R) = −2e2

s

s−M2
S

,

(33)

with equal results for the parity-reflected and time-reversed processes, and zero for all other
possible reactions.

The properties of the first SR resonances can then be found by factorizing these expres-
sions. They require four spin 0 resonances γ0i, i = 1, . . . , 4, one spin 1 resonance γ∗1 and one
spin 2 resonance γ∗2 . Four spin zero resonances are needed because the transition amplitudes
between any pair of e−Re

+
R, e−Le

+
L , γRγR and γLγL vanish. The on-shell couplings of electron

and photon pairs to the resonances are

A(γRγR → γ∗01) =
√

2eMS, A(e−Le
+
R → γ∗1) =

√
3
2
eMSǫ

µ
−,

A(γLγL → γ∗02) =
√

2eMS , A(e−Re
+
L → γ∗2) =

√
1
2
eMS · 1√

2
[ǫµ+ǫ

ν
0 + ǫν+ǫ

µ
0 ],

A(e−Re
+
R → γ∗03) =

√
2eMS , A(e−Le

+
R → γ∗2) =

√
1
2
eMS · 1√

2
[ǫµ−ǫ

ν
0 + ǫν−ǫ

µ
0 ],

A(e−Le
+
L → γ∗04) =

√
2eMS , A(γLγR → γ∗2) =

√
2eMSǫ

µ
−ǫ

ν
−,

A(e−Re
+
L → γ∗1) =

√
3
2
eMSǫ

µ
+,

(34)

where, when the first particle moves in the +3̂ direction,

ǫµ+ =
1√
2
(0, 1, i, 0)µ , ǫµ− =

1√
2
(0, 1,−i, 0)µ , ǫµ0 = (0, 0, 0, 1)µ . (35)

Feynman rules which give rise to these expressions are listed in Figure 7.
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= i

k1

k2

µν

γ 2*

γ 2*

γ 1*

γ 0 1,2*

k1

k1

k2

k2

µ

k1µ

k2ν

ρσ

[(k1–k2)µγν + (k1– k2)νγµ]2 e
4MS

= i {k1g
ρµk2 + k2 g

ρνk1 
2 e
MS

= i 3 e
2

k1µ

k2ν

ν σ µ σ

– gµνk1k2
 – k1•k2g

ρµgνσ

1
2

– gρσ(k1k2 – k1•k2g
µν) + (ρ  σ)}

γ µ

γ 0 3,4*

= i 2 e (
1±γ5

2
)

= i 2
e
Ms

(k1k2 – g
µνk1• k2± i εµνρσk1ρk2σ)

ν µ

12-99
8521A5

ν µ

ρ σ

Figure 7: Feynman rules for the coupling of the SR resonances at M = MS in string QED
to electron and photon pairs.
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From these expressions, we can compute the width of the resonances. For the scalar SR
resonances,

Γ01 = Γ02 =
α

4
MS , Γ03 = Γ04 =

α

2
MS . (36)

For the vector resonance,

Γ1 =
α

4
MS , (37)

with equal contributions from decays to e−Re
+
L and e−Le

+
R. For the spin 2 resonance,

Γ2(e
+e−) = Γ2(γγ) =

α

20
MS , Γ2 =

α

10
MS , (38)

again with equal contributions from e−Re
+
L and e−Le

+
R. The production cross sections can be

derived from these formulae using, for example

σ(e+e− → γ∗J) = 4π2(2J + 1)
Γ(γ∗J → e+e−)

MS
δ(s−M2

S) . (39)

In e+e− collisions, one currently has data available only up to 200 GeV. In quark-
antiquark processes, however, collision energies up to 1 TeV and above are available in
the Tevatron data. Thus, it is important to generalize this analysis to qq collisions so that
we can ask whether the SR excitations of the gluon ought to have been seen at the Tevatron.
We will now present our first attempt at a generalization of string QED to string QCD.
Though this theory will not be completely satisfactory, it will at least allow us to estimate
the bound on the string scale from the study of jets at the Tevatron.

Consider, then, a system of four D3-branes with a U(4) gauge symmetry. Represent the
gluons of QCD by the gauge bosons of SU(3) ⊂ U(4), that is, by 3×3 Chan-Paton matrices
ta. Represent left-handed quarks and antiquarks of one flavor by the U(4) matrices

(ti)pq =
1√
2
δi
pδ

4
q , (t

i
)pq =

1√
2
δi
qδ

4
p . (40)

Ideally, we would like to make an orbifold projection of the U(4) theory onto a theory which
contained only these quarks and gluons at the massless level. Unfortunately, this is not
possible, because the commutator [ti, t

j
] includes not only a linear combination of the ta but

also the U(1) generator

t4 =
1√
24




1
1

1
−3


 . (41)

Thus, this massless U(1) gauge boson will also appear in quark-quark scattering amplitudes.
Keeping this problem in mind, we compute the amplitude for qLqR scattering using (8).

Only the first line has a nonzero Chan-Paton factor, which equals

tr[tit
j
tkt

ℓ
+ t

ℓ
tkt

j
ti] =

1

4

{
δjkδℓi + δkℓδij

}

=
1

2

{
(ta)ji(t

a)ℓk +
2

3
δjiδℓk

}
. (42)
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In the last line, the first term corresponds to color octet exchange in the s-channel, and the
second term to exchange of a U(1) boson corresponding to the generator (41). To make
our estimate, we will drop the U(1) piece and then factorize the color octet piece of the
amplitude as above. This gives

A(qi
Lq

j
R → qℓ

Lq
k
R) = −2g2u

2

st
(ta)ji(t

a)ℓk · S(s, t) , (43)

which implies:

A(qi
Lq

j
R → g∗a1 ) =

√
3

2
gMS(ta)jiǫ

µ
− ,

A(qi
Lq

j
R → g∗a2 ) =

√
1

2
gMS(ta)ji ·

1√
2
[ǫµ−ǫ

ν
0 + ǫν−ǫ

µ
0 ] , (44)

and similarly for qi
Rq

j
L. The result is just what we would have obtained by replacing e by

g and adding an SU(3) color matrix in the Feynman rules of Figure 7. From these matrix
elements, we can compute the production cross sections from unpolarized qq initial states:

σ(qq → g∗1) =
4π2αs

3
δ(s−M2

S) , σ(qq → g∗2) =
4π2αs

9
δ(s−M2

S) , (45)

so that

σ(qq → g∗) =
16π2αs

9
δ(s−M2

S) . (46)

The result (46) can be compared to the cross section for producing the axigluon [39] and
coloron [40], hypothetical massive vector or axial vector bosons that couple to qq with the
QCD coupling strength. In either case, the cross section is

σ(qq → V ) =
16π2αs

9
δ(s−M2

S) . (47)

Then we can use experimental constraints on these objects to place a direct experimental
bound on the string scale. A recent paper by the CDF collaboration has searched for the
presence of a narrow resonance in the two-jet invariant mass distribution in pp collisions at
the Tevatron [41]. The CDF collaboration does not find evidence for such a resonance and
puts a lower limit of 980 GeV (at 95% conf.) on the axigluon or coloron mass. Naively,
we should have the same limit on MS. Several uncertain factors appear in this comparison,
however. On the negative side, the events with g∗2 have an angular distribution which is
more peaked toward the beam axis, and so the acceptance for these events should be lower.
The angular distribution for the g∗1 events is identical to that from the axigluon or coloron.
On the positive side, we have ignored scalar gluon resonances and the production of g∗1 and
g∗2 by gluons. Thus, we might say that the CDF limit constraints the string scale MS to be
greater than approximately 1 TeV. If we convert this limit to a limit on the quantum gravity
scale using the second line of (3), we find that M > 1.6 TeV.
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Figure 8: Differential cross section for Bhabha scattering in our string model, with MS = 1
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The sensitivity to SR resonances in quark and gluon scattering will increase dramatically
when the LHC begins operation. The sensitivity of higher-energy hadron colliders to the
axigluon was estimated some time ago by Bagger, Schmidt, and King [42]. Scaling their
results to the LHC energy, we expect that the LHC could put a limit of about 5 TeV on the
axigluon mass, and a comparable limit on MS. Using (3), this would correspond to a limit
M > 8 TeV. These values are sufficiently high that string resonances ought to be discovered
at the LHC if the low quantum gravity scale is connected to the mechanism of electroweak
symmetry breaking as suggested by ADD [1].

To conclude this section, we discuss what happens when we probe even higher energies,
above the scale of the first SR resonance. When s > M2

n, the expression (11) has a zero at
t = −(s−M2

n). Thus, above the first resonance, there is one zero in cos θ, above the second
resonance, there are two zeros, and so forth. This leads to an angular distribution of the
sort produced by diffractive scattering. In Figure 8, we plot the differential cross section for
Bhabha scattering, from (28), for a sequence of energies that interleave the SR resonances.

It is well-known from the old string literature that the differential cross sections at very
high energy have the form of a narrow diffractive peak. Indeed, using Stirling’s formula to
evaluate S(s, t) in the limit s→ ∞ and fixed angle, we find [9]

S(s, t) ∼ exp[−α′sf(cos θ)] , (48)

where f(θ) is the positive function

f(c) = −1 + c

2
log

1 + c

2
− 1 − c

2
log

1 − c

2
. (49)

However, at intermediate energies, the large positive deviation in the backward direction is
also an important part of the string signature. As cos θ → −1,

|S(s, t)|2 →
(

πα′s

sin πα′s

)2

. (50)

Thus for increasing s there is a larger enhancement, but in a narrower region of backward
angles.

5 Stringy corrections to e+e− → γG

Our toy model includes the process of graviton emission in electron-positron annihilation,
e+e− → γG. This process gives a missing-energy signature which becomes significant when
the center-of-mass energy of the annihilation approaches the gravitational scale M . The
process has been used by the LEP 2 experiments to put constraints on the size of large extra
dimensions. In this section, we study the stringy corrections to this process.

To begin, we recall that the leading contribution to this process at low energy is model-
independent. The calculation uses only the fact that a graviton—even a KK excitation—
couples to the energy-momentum tensor of matter [43]. The coupling has the usual 4-
dimensional gravitational strength. From this, one finds that the polarized differential cross
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Figure 9: Schematic illustration and world-sheet diagram of the scattering process involving
three open strings on a D-brane and one closed string in the bulk.

section for the process e−Le
+
R → γG, for production of a given KK excitation of mass m, is

given by [3, 4]

dσ

d cos θ

∣∣∣∣
ft

=
παGN

1 −m2/s

[
(1 + cos2 θ)

(
1 + (

m2

s
)4

)

+

(
1 − 3 cos2 θ + 4 cos4 θ

1 − cos2 θ

)
m2

s

(
1 + (

m2

s
)2

)
+ 6 cos2 θ(

m2

s
)2

]
. (51)

To obtain the full cross-section for graviton emission at a given collision energy, we need to
sum over all the modes whose emission is kinematically allowed. The resulting cross-section
behaves as σ ∼ sn/2/Mn+2. This expression grows with s; if it were valid for all s, it would
violate unitarity. We will see that string theory supplies an appropriate form factor to cut
off this dependence.

In our stringy toy model, the graviton is a part of the closed string massless spectrum,
while the electrons and photons are described by massless states of open strings. Therefore,
to study the process e+e− → γG we consider the string scattering amplitude involving three
open strings and a closed string. The calculation of this amplitude is very similar to the
calculation of the four open-string scattering presented in Section 3. The amplitude is given
by

M(1, 2, 3, G) = gM(1, 2, 3, G) tr([t1, t2]t3), (52)

where we need to substitute for each ti the appropriate matrix from (5). To evaluate the
ordered amplitude M(1, 2, 3, G), we map the string worldsheet in Fig. 9 (a) onto a disc, and
then into the upper half plane. The three open string vertex operators have to be placed
on the boundary; the closed string vertex operator can sit anywhere inside the upper half
plane. Then, the ordered amplitude is

M(1, 2, 3, G) =
1

α′2X
2
∫

C+

d2z

〈
3∏

i=1

Vqi
(xi, ki)VqG

(z, z, kG)

〉
, (53)

where Vqi
(xi) is the vertex operator of the open string state i, and VqG

(z, z) is the vertex
operator of the graviton. The open string vertex operators are placed on the real axis at
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xi = 0, 1, X, with X to be fixed and sent to ∞. The integral is taken over the upper half
plane C+. Just as in Section 3, we perform the doubling trick, extending the definitions of
the fields to the full complex plane; then the open string vertex operators are given by (17)
and (18). The closed string vertex operator in the 0 picture takes the form

Vµλ
0,0(z, z, k) = − κ

πα′D
λ
ν (∂Xµ(z) + ik · ψ(z)ψµ(z)) eik·X(z)

· (∂Xν(z) + iDk · ψ(z)ψν(z)) eiDk·X(z), (54)

where Dµ
ν = 1 for µ = ν = 0..3, Dµ

ν = −1 for µ = ν = 5..10, and Dµ
ν = 0 for µ 6= ν. Using

these vertex operators and the correlation functions given in (16) and (19), the amplitude
(53) can be evaluated. In this calculation, one encounters integrals of the form

I0(a, b, c) =
∫

C+

d2z |z|a |1 − z|b (z − z)c,

I1(a, b, c) =
∫

C+

d2z |z|a |1 − z|b (z − z)c (z + z), (55)

with arbitrary a, b, c. Using the representation

|z|a =
1

Γ(−a/2)

∫ ∞

0
t−a/2−1e−t|z|2dt (56)

these integrals can be evaluated. The results are

I0(a, b, c) = (2i)c

√
π

2
Γ (−1 − (a + b+ c)/2)

·Γ ((1 + c)/2) Γ (1 + (b+ c)/2) Γ (1 + (a+ c)/2)

Γ(−a/2)Γ(−b/2)Γ (2 + (a + b)/2 + c)
;

I1(a, b, c) = 2
2 + a + c

4 + a+ b+ 2c
I0(a, b, c). (57)

We find that the individual amplitudes contributing to (51) are all multiplied by a com-
mon factor

F(s, t, u,m2) =
1√
π
e−(log 2)α′m2

Γ(
1

2
− 1

2
α′m2)

· Γ(1 − 1
2
α′s)Γ(1 − 1

2
α′t)Γ(1 − 1

2
α′u)

Γ(1 + 1
2
α′(s−m2))Γ(1 + 1

2
α′(t−m2))Γ(1 + 1

2
α′(u−m2))

. (58)

An analogous result holds for the process gg → gG: To obtain the string theory amplitude, we
just multiply the field theory answer by the same prefactor (58). This result is in agreement
with the calculation of Dudas and Mourad [14]. We believe, but we have not been able to
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show, that the relation among amplitudes is a consequence of the N = 4 supersymmetry of
the underlying model. The field-theory cross section formula (51) is then modified by

dσ

d cos θ
=

dσ

d cos θ

∣∣∣∣
ft
·
∣∣∣F(s, t, u,m2)

∣∣∣
2
. (59)

The expression (58) has an interesting pole structure [14]. The poles in the s channel
occur for s = 2nM2

S, and correspond to producing SR states with an even excitation number.
The SR states with an odd excitation number cannot decay into a graviton and an open string
massless state. On the other hand, these states can mix with the graviton, leading to the
appearance of extra poles at m2 = (2n+1)M2

S. These poles were also observed by Hashimoto
and Klebanov [24] in their calculation of the gluon-gluon-graviton vertex. Their presence is
essential for the correct factorization properties of the form factor (58).

The form factor (58) expresses the way in which the amplitudes for KK graviton emission
are cut off in all relevant high-energy limits. Assume that the kinematic variables are suffi-
ciently far away from any of the poles in (58). (Near the poles, the effects of finite width of
the resonances have to be taken into account. This is beyond the scope of our analysis here.)
For the radiation of state of very high mass, we can evaluate F at the threshold s = m2,
t = u = 0, and then take m2 large. Using Stirling’s formula, we find

F ∼ exp[−(log 2)α′m2] . (60)

In the limit of fixed mass, s→ ∞, and fixed angle, we find

F ∼ exp[−α′sf(cos θ)] , (61)

where f(c) is the function defined in (49). In the high-energy limit in which s, t, u,m2 all
become large together, we find the more complicated formula

F ∼ exp[−1

2
α′sf(x, cos θ)] , (62)

where x = m2/s and f(x, c) is given by

f(x, c) = x log 4x− (1 − x)
(1 + c)

2
log

(1 + c)

2
− (1 − x)

(1 − c)

2
log

(1 − c)

2

−(
(1 + c)

2
+ x

(1 − c)

2
) log(

(1 + c)

2
+ x

(1 − c)

2
)

−(
(1 − c)

2
+ x

(1 + c)

2
) log(

(1 − c)

2
+ x

(1 + c)

2
) . (63)

The function f(x, c) is positive for the allowed values of c and x, even though this property
is not manifest in (63). Thus, the string correction (58) gives a form factor suppression in
all hard-scattering regions.
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Recently, Bando et al. [44] have pointed out that high-mass graviton emission from a
brane is suppressed by a form factor effect due to brane recoil. The formula they propose is

F ∼ exp[−1

2

Λ2
S

τ3
m2] , (64)

where τ3 is the brane tension and ΛS is a cutoff scale which should be of order MS. The
expression in the exponent is smaller than that in (60) by a factor of order g2

Y M . In weak-
coupling Type IIB string theory, brane recoil is described by the emission of scalars in the
N = 4 gauge multiplet associated with brane. With the orbifold projection described in
Section 2, there is one scalar φ3 that survives and remains in the spectrum. This scalar does
not couple to the QED state in the field theory limit, but it does couple through higher-
dimension operators. However, these couplings are proportional to one factor of gY M in the
amplitude for each φ3 emitted. These inelastic processes deplete the cross section for elastic
G emission without φ3 emission and should lead to a form factor suppression of the form
exp[−cg2

Y Mm
2/M2

S]. This is in agreement with the result of [44]. However, we see from (60)
that there is a parametrically more important source for the form factor, the intrinsic non-
pointlike nature of the states in string theory. We should note that the numerical coefficient
in the formula (4) for the brane tension is quite small, so that effects of the size (64) might
nevertheless be relevant.

In our study of open-string scattering, we saw that the form factor cutoff of string am-
plitudes is important only at very high energy. At energies of the order of the string scale, a
much more important phenomenon is the enhancement of scattering cross sections through
the effect of SR resonances. We have seen that the amplitudes for graviton emission contain
the series of SR poles at s = 2nM2

S and m2 = (2n + 1)M2
S. Thus, string theory predicts

an enhancement of the rate for graviton emission processes such as e+e− → γG through
resonant processes such as

e+e− → γ∗∗ → γG , e+e− → γγ∗1,2 → γγG . (65)

Typically, the resonances would be seen more clearly in e+e− or qq elastic scattering. How-
ever, the resonant production of missing-energy events would be an important confirmation
that the observed resonances were a manifestation of quantum gravity with large extra di-
mensions.

6 Stringy corrections to γγ scattering

In this section, we address the question of the relative strengths of the effective operators
in the low energy theory mediated by virtual SR and KK exchanges. At the end of Section
1, we argued, on very general grounds, that in any weakly coupled string theory the SR-
mediated operators are expected to dominate. Here, we will substantiate this claim by an
explicit calculation.
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Figure 10: Schematic illustration and world-sheet diagram for open string scattering via a
closed string exchange.

6.1 Tree amplitude

It is important to note that, unlike renormalizable field theory, string theory gives a nonzero
contribution to the γγ scattering amplitude at the tree level. To compute this amplitude,
we follow the procedure outlined in Section 3. We find

A(γRγR → γRγR) = −e2s2
[

1

st
S(s, t) +

1

su
S(s, u) +

1

tu
S(t, u)

]
, (66)

where S(s, t) is given by (11). The helicity amplitudes for γRγL → γRγL and γLγL → γLγL

can be obtained from (66) by crossing. All other helicity amplitudes vanish.
The expression (66) must vanish in the field theory limit α′ → 0. This is easily seen as a

consequence of s+ t+ u = 0. Using a higher–order expansion of S, as in (21), we obtain

A(γRγR → γRγR) =
π2

2
e2
s2

M4
S

+ · · · , A(γRγL → γRγL) =
π2

2
e2
u2

M4
S

+ · · · . (67)

This result can be compared to the γγ → γγ amplitude induced by KK graviton exchange.
Using the effective Lagrangian (30), it is straightforward to see that [45, 46]

AKK(γRγR → γRγR) = 16
λ

M4
H

s2 , AKK(γRγL → γRγL) = 16
λ

M4
H

u2 . (68)

These expressions have exactly the same form as (67), and this must be so, because there
is only one gauge-invariant, parity-conserving dimension 8 operator which contributes to
γγ → γγ. However, the scale MH in (68) is different from the string scale that appears in
(67). We have already remarked in Section 4 that the relation between MS and MH can
be obtained explicitly in our string model, and that in a weakly-coupled string theory the
effect of KK graviton exchanges (68) is subdominant to the SR exchanges (67). In the next
section, we will derive that result.

6.2 Loop amplitude

In string theory, the graviton exchange proper arises at the next order in perturbation theory.
The graviton is a closed-string state. It first appears in open-string perturbation theory
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through the 1-loop diagram shown in Figure 10 [13]. In this section, we will compute this
diagram and show that it contains a piece which has the form of the one-graviton exchange
amplitude. Some other properties of this diagram have recently been analyzed in [14].

In the covariant formulation of string theory [9, 26], the open string loop amplitude shown
in Figure 10 is computed in terms of correlation functions of vertex operators placed on the
two boundaries. It is convenient to conformally map the annulus shown in Figure 10(b) into
a cylinder, represented by a rectangle in the complex plane

0 ≤ ℜw ≤ π , 0 ≤ ℑw ≤ 2πt , (69)

periodically connected with the identification w ∼= w + 2πit. The boundaries of the annulus
are mapped to the lines ℜw = 0 and ℜw = π. The parameter t is a modulus which must be
integrated over the whole range 0 < t <∞.

The complete four-point open string amplitude is a sum of ordered amplitudes in which
the four vertex operators are placed on the boundaries in all possible ways. The open strings
on a D-brane and the Type IIB closed strings are oriented, so we do not need to consider
non-orientable worldsheets such as the Mobius strip. Thus,

A1−loop = g4Ap(1, 2, 3, 4) · tr[t1t2t3t4] + perms +

g4Anp(1, 2; 3, 4) · tr[t1t2]tr[t3t4] + perms. (70)

This equation is the analogue of the tree-level color decomposition in (8). Only the second
line, the ‘non-planar’ amplitude, has the correct color structure to represent graviton ex-
change. We will show that the first term in the second line, which we denote AGs, contains
the contribution of a virtual graviton exchanged in the s-channel.

The explicit expression for AGs is

AGs = g4tr[t1t2]tr[t3t4]
∫
dt

t

[
4∏

i=1

∫ 2πt

0
dyi

]

·Zp
x

∑

λ

Zλ

〈
4∏

i=1

ǫi · V0(wi, ki)

〉

λ

, (71)

where Zp
x denotes the partition function of the worldsheet bosons Xµ and the anticommuting

ghosts, and Zλ denotes the partition function of the worldsheet fermions ψµ and the commut-
ing ghosts. The expectation value is correspondingly assumed to be computed only from field
contractions, excluding the partition functions. The parameter λ denotes the periodicities
of the worldsheet fermions. As we stated in Section 2, we will carry out our computations in
this section in the original N = 4 supersymmetric Type IIB theory. Thus, we will sum only
over uniform periodic and antiperiodic boundary conditions for the world-sheet fermions
around each of the two cycles. The vertex operators are placed at

w1 = iy1 , w2 = iy2 , w3 = π + iy3 , w4 = π + iy4 . (72)
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We will check the overall normalization of this expression in Section 6.3.
The easiest way to account for the boundary conditions on the worldsheet fermions is to

extend their definitions to π ≤ ℜw ≤ 2π. On this extended worldsheet, the fermions are
holomorphic, and their possible periodicities and correlators are the same as for a torus with
modulus it. For the worldsheet bosons, the boundary conditions can be described using the
method of image charges. For the fields located on the boundary and satisfying Neumann
boundary conditions the correlator is the same as that for a torus with modulus it, with
an extra factor of 2 from the image fields. The correlators necessary for our calculation are
listed explicitly in Appendix B.

For the computation of this section, we will be interested in the contribution to the
amplitude from bosonic closed string states propagating up the cylinder. These states have
fermions antiperiodic around the cylinder, that is, in the direction of ℑw. Both boundary
conditions in the direction of ℜw are needed to enforce the GSO projection [9]. We will
refer to the partition functions for the sectors antiperiodic in the imaginary direction and
antiperiodic/periodic in the real direction as ZA

A/ZA
P and use a similar notation for the

correlation functions. In Section 6.3, we will also consider the contribution from bosonic open
string states propagating around the cylinder. These states have fermions with boundary
conditions antiperiodic in the real direction. The computation will involve the partition
functions ZA

A/ZP
A and the analogous correlators.

For the cylinder amplitude, the superconformal charges satisfy
∑

i qi = 0. Thus, we will
write all four vertex operators in the 0 picture. We will use the explicit form

Vµ
0 (ki) = (iẊµ + α′2k · ψ ψµ)eiki·X(wi, wi), (73)

where the dot denotes a derivative along the boundary. Note that this expression is slightly
different from (17) in that the X field has not been split into holomorphic and antiholomor-
phic components.

The t integration in (71) runs from 0 to ∞. However, this domain of integration can
be separated into two regions. In the limit of small t, the cylinder becomes very long and
the amplitude is dominated by light closed-string states. In the limit of large t, the cylinder
becomes very narrow and the amplitude is dominated by light open-string states. The
separation between these two regions is ambiguous, since only their sum is a well-defined
gauge-invariant quantity. We parametrize this ambiguity by the integration cutoff t0. Below
we will show that the small-t region reproduces the graviton exchange amplitudes (68), with
MH related to the string scale and t0. In this calculation, we will use the small-t expansions
of the partition functions and correlators. These expressions (given in Appendix B) are valid
up to t ∼ π. This suggests that the natural value of the cutoff is t0 ∼ π. The expression we
will derive forMH will depend on t0. This simply makes clear that the loop diagrams of string
theory also give other contributions to the dimension 8 terms of the effective Lagrangian.
The most important point is that all of these contributions are subleading, suppressed by a
power of g2 relative to the SR contribution (66).

We now describe the evaluation of the graviton-exchange contribution in (71). For the
moment, we consider a Dp-brane with p arbitrary; later we will specialize to the case p = 3.
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Using the small-t expressions of the partition functions and correlators given in Appendix
B, we find the expression

AGs = g4δ12δ34 · 4−α′s2(7−3p)/2π3−pα′(7−p)/2 ·
∫ t0

0
dtt(5−p)/2 exp(

α′s

2

π

t
)

·2
[

4∏

i=1

∫ 1

0
dYi

]
(sin πY12)

−α′s(sin πY34)
−α′sF (Yi; ǫi, ki) + ∆, (74)

where F is a function of external momenta and kinematics which has no t dependence,
Yi = yi/2πt, Yij = Yi − Yj, and ∆ is the contribution to the integral from the large-t region.
Explicitly, the function F is given by

F = C1 + C2 , (75)

where

C1 =
(

1

2α′

)2

ǫ1 · ǫ2ǫ3 · ǫ4 sin−2 πY12 sin−2 πY34,

C2 = k1 · k4(2k1 · k4 ǫ1 · ǫ2 ǫ3 · ǫ4 + 2ǫ1 · ǫ2 (k1 · ǫ3 k3 · ǫ4 + ǫ3 · k4 k2 · ǫ4)
+2ǫ3 · ǫ4 (k1 · ǫ2 ǫ1 · k3 + ǫ1 · k2 ǫ2 · k4)). (76)

Since we are only interested in the s → 0 limit of the amplitude, in (76) we have dropped
the terms which do not contribute in this limit.

The small-t contribution in (74) factorizes into two integrals, the modulus intergal in the
first line and the coordinate integral in the second line. The coordinate integral can be easily
evaluated. In this calculation, one encounters two simple integrals,

I1 =
∫ 1

0
dY1

∫ 1

0
dY2(sin πY12)

−2−α′s, (77)

and

I2 =
∫ 1

0
dY1

∫ 1

0
dY2(sin πY12)

−α′s. (78)

Evaluating these integrals in the limit α′s→ 0 yields I1 = 0, I2 = 1. Therefore, in this limit
we have

2

[
4∏

i=1

∫ 1

0
dYi

]
(sin πY12)

−α′s(sin πY34)
−α′sF (Yi; ǫi, ki) = 2C2. (79)

One can show that this expression is identical to the matrix element of the square of the
photon energy-momentum tensor, T µν(1, 2)Tµν(3, 4). This means that in this limit, this
process is accurately described by the effective Lagrangian (30). The integral over the
modulus t then determines the coefficient of this operator.

The modulus integral can be rewritten in a form reminiscent of a massive graviton prop-
agator from field theory. To do this, we change the integration variable to v = 1/t, and use
the identity

v(p−9)/2 =

(
α′

2

)(9−p)/2 ∫
d9−pm exp(−πα

′m2

2
v) . (80)
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Performing the v integration, we find

∫ t0

0
dtt(5−p)/2 exp(

α′s

2

π

t
) = −

(
α′

2

)(7−p)/2
1

π

∫
d9−pm

1

s−m2
exp(

πα′(s−m2)

2
v0), (81)

where v0 = 1/t0. When both s and m2 are small compared to 1/α′, the integrand in (81)
is just the field theory propagator. We have already pointed out that the virtual graviton
exchange cannot be analyzed within effective field theory; technically, this results from the
divergence of the KK mass integration in the region of high m. The integral in (81), however,
is finite, due to the exponential suppression for α′m2 ≫ 1. This finite coefficient gives the
scale MH in (30).

Evaluating the integral (81) for s = 0 and assembling the pieces, we obtain as the leading
term in the low-energy expansion of the small-t integral of (74)

AGs = g4δ12δ34 · 2(9−3p)/2π(13−3p)/2(πv0)
(p−7)/2α′(7−p)/2 1

7 − p
· T µν(1, 2)Tµν(3, 4) + . . . . (82)

Now set p = 3. The amplitude (82) can be reproduced by the effective Lagrangian (30),
provided that we identify

8

M4
H

= g4π
2

4

1

M4
S

· (πv0)
−2, (83)

and use λ = +1 in (30). As we have explained above, for a numerical estimate we can
evaluate this expression with v0 ∼ 1/π. This gives

1

M4
H

∼ π2

32

g4

M4
S

. (84)

As expected, the relation is of the form (31), with an additional suppression from the numer-
ical coefficient on the right-hand side. Substituting this value of MH into (68), we confirm
that this contribution is subdominant with respect to the SR exchange amplitude (66).

6.3 Normalization

There is another reason that we must analyze the one-loop diagram, and that is to find
the relation between the effective Newton constant or the gravity scale M and the more
fundamental string theory parameters g and α′. We have already quoted this relation in (2).
In this section, we will give the derivation. Once again, our analysis will be done for the toy
case of an N = 4 supersymmetric D-brane theory.

Our procedure is illustrated in Figure 11. We will first take the t → ∞ limit of the
cylinder and relate this to a loop diagram of Yang-Mills field theory. This will determine
the normalization of the diagram. Then we will take the t→ 0 limit to identify the graviton
exchange. In this section, we will give what we consider the shortest route through this
analysis, considering a two-point function in the first part of the calculation rather than a
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(a)

(b)

Figure 11: Limits of the cylinder diagram which must be compared to derive the normaliza-
tion of the graviton exchange contribution: (a) t→ ∞; (b) t→ 0.

four-point function, and, in the second part, considering only one fairly simple structure in
the gravitation interaction.

We thus consider first the t→ ∞ limit. In principle, we should study the four-point loop
diagram. However, it is simpler to analyze the two-point function. The normalizations of
these diagrams are related by considering the limit (k1 + k2)

2 → 0, in which pairs of vertex
operators factorize into single vertex operator insertions as shown in Figure 4. Through this
relation, the normalization of (71) is equivalent to the following normalization of the planar
two-point loop amplitude shown in Figure 11(a):

A2 = g2tr[t1t2]tr[1]
∫
dt

t

[
2∏

i=1

∫ 2πt

0
dyi

]
· Zp

x

∑

λ

Zλ

〈
2∏

i=1

ǫi · V0(wi, ki)

〉

λ

, (85)

where the notations are as in (71) and the two vertex operators are placed at w1 and w2 in
(72).

It is simplest to concentrate on the structure

ǫ1 · k2ǫ2 · k1 . (86)

Looking back to the form (73), we see that this structure arises in two ways in the contraction
of vertex operators, from the contraction of the two factors Ẋ with factors k · X in the
exponentials, and from a contraction of the fermionic terms with one another. The correlators
for X and ψ should be taken in the limit t → ∞; the appropriate expressions are given in
(111). In the two sectors corresponding to bosonic open string states, these terms give

〈Πǫ · V〉AA ∼ ǫ1 · k2ǫ2 · k1

[
α′2(1 − 2Y )2 − 4α′2(e−πtY + e−πt(1−Y ))2

]
,
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〈Πǫ · V〉PA ∼ ǫ1 · k2ǫ2 · k1

[
α′2(1 − 2Y )2 − 4α′2(e−πtY − e−πt(1−Y ))2

]
, (87)

where Y = Y12 and, for clarity, we have left off the expectation value of the exponentials.
Restoring this factor, including the partition functions from (107), and making the cancel-
lations between the two sectors, we find

A2 = g2NCδ
12
∫ ∞

0

dt

t

64π2t2α′2

(8π2α′t)d/2

·
∫ 1

0
dY ǫ1 · k2ǫ2 · k1

[
(1 − 2Y )2 − 1

]
exp[α′k1 · k2(2πt)Y (1 − Y )] , (88)

where we have replaced (p+ 1) = d and tr[1] = NC . Now do the t integral. For d close to 4,
we obtain,

A2 = g2NCδ
12 8

(4π)2
Γ

(
2 − d

2

)
ǫ1 · k2ǫ2 · k1

∫ 1

0
dY

[
(1 − 2Y )2 − 1

]
. (89)

As Kaplunovsky [47] pointed out for the analogous closed string calculation, this result
can be matched to the computation of the one-loop two-point diagram in Yang-Mills theory
in the background-field gauge. The required expressions are given in [48]. The value of
this diagram given there, summed over the bosonic content of the N = 4 supersymmetric
Yang-Mills theory (1 vector and 6 scalars), is

g2NCδ
12 1

(4π)2
Γ

(
2 − d

2

)
(ǫ1 · ǫ2k1 · k2 − ǫ1 · k2ǫ2 · k1)

∫ 1

0
dY

[
8(1 − 2Y )2 − 8

]
. (90)

In this expression, Y is the Feynman parameter. The first term in the bracket comes from
a spin-independent determinant, the second term from the spin operator. The expressions
(89) and (90) match. Thus, the normalization assumed in (85) and in (71) is correct.

Now we turn to the t → 0 limit. Here it is simplest to extract the graviton exchange by
considering the limit of high-energy scattering with low momentum transfer. That is, we set

k2 ≈ −k1 , k4 ≈ −k3 . (91)

Then the usual graviton exchange diagram in four dimensions contains a term

A = −8πGNδ
12δ34(2kµ

1k
ν
1)

1

s
(2k3µk3ν) = −8πGN

t2

s
δ12δ34 , (92)

where s = −(k1 + k2)
2 = −(k3 + k4)

2 and t = −(k1 + k3)
2.

In the scattering amplitude of four vector bosons, this term has the structure

ǫ1 · ǫ2ǫ3 · ǫ4k1 · k3k1 · k3 , (93)

using (91) to replace k2 and k4.
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After close examination of the various terms contributing to (71), one can see that, after
the cancellation between the ZA

A and ZA
P sectors, there is only one source for a term of

this structure. That is the contribution in which one takes only the fermionic term in each
vertex operator (73) and contracts the ǫ · ψ operators on the same side of the cylinder and
the k · ψ operators across the cylinder. The correlators needd are given in (109) and (110).
There are two contractions of this type for each sector. When these two terms are added,
all dependence on the Yij cancels out. The contributions from the two sectors then add
constructively. The sum of these terms gives

AGs = (ǫ1 · ǫ2ǫ3 · ǫ4δ12δ34t2)g4 2(2πα′)4

(8π2α′)(p+1)/2

∫ ∞

0
dtt(5−p)/2

[
1

2
eπ/4t

]2α′s

. (94)

One should be careful to note that the t in the prefactor is the Mandelstam invariant, whereas
the other factors t represent the modulus of the cylinder.

This expression can be simplified by changing variables from t to v = 1/t and then
introducing the variable m as in (80). Setting also p = 3, we arrive at the expression

AGs = (ǫ1 · ǫ2ǫ3 · ǫ4δ12δ34t2)g4α
′4

8π

∫
d6m

1

m2 − s
. (95)

We can convert the integral over m to a discrete sum over KK states in the 6 large extra
dimensions of periodicity 2πR by using the relation

R6
∫
d6m =

∑

m

. (96)

Finally, we may pick off the term in the sum that corresponds to the massless graviton
in four dimensions. We then identify

8πGN =
1

8π
α′4g4R−6 . (97)

Replacing GN with the fundamental quantum gravity scale M according to (1), we find

M−8 = πα2α′4 , (98)

which is equivalent to the promised relation (2).

7 Experimental constraints on the quantum gravity

scale

It is useful to compare the constraints on the large extra dimension scenario that we have
obtained in this paper through model-dependent string effects to more robust, model-inde-
pendent constraints. In the introduction, we noted that previous constraints on large extra
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Collider R / M (n = 2) R / M (n = 4) R / M (n = 6)

Present: SN1987A 3 × 10−5/50000 1 × 10−9/1000 6 × 10−11/100
LEP 2 4.8 × 10−2 / 1200 1.9 × 10−9 / 730 6.8 × 10−12 / 530
Tevatron 5.5 × 10−2 / 1140 1.4 × 10−9 / 860 4.1 × 10−12 / 780

Future: LC 1.2 × 10−3 / 7700 1.2 × 10−10 / 4500 6.5 × 10−13 / 3100
LHC 4.5 × 10−4 /12500 5.6 × 10−11 / 7500 2.7 × 10−13 / 6000

Table 1: Current and future sensitivities to large extra dimensions from missing-energy
experiments. All values for colliders are expressed as 95% confidence exclusion limits on
the size of extra dimensions R (in cm) and the effective Planck scale M (in GeV). For the
analysis of SN1987A, we give probable-confidence limits.

dimensions have come from two sources, searches for missing energy due to gravitation
radiation into the extra dimensions, and searches for contact interactions due to KK graviton
exchange. It has become clear in this paper that the possible contact interactions are model-
dependent and may not be of purely gravitational origin. So the truly model-independent
constraints come only from missing-energy experiments.

In Table 1, we summarize the most important present and future constraints on the quan-
tum gravity scale M from missing-energy searches. This table updates the table presented
in [4] and improves upon it in several important respects.

The first line of Table 1 gives the constraints obtained in [5] from the consistency of
the observed neutrino flux from the supernova SN1987A with the predictions of the stellar
collapse models. This analysis puts an upper bound on the rate of energy loss through
graviton emission. There exist some strong astrophysical bounds on the scale of quantum
gravity—for example, [49]—but these depend on assumptions about the cosmological sce-
nario. The constraint from the supernova is different in character. Since we have a reasonable
understanding of the composition of a supernova and of the conditions inside its core during
collapse, it is possible to calculate the gravitional radiation expected in this process in an
unambiguous way. The typical energy of the emitted gravitons is well below a TeV, and so
the emission rate calculation uses only the model-independent low-energy limit of the gravi-
tational coupling. It is argued in [5] that, though there are uncertainties in the parameters of
the supernova core, the bounds quoted should be accurate to better than a factor of 2. The
bound for the case of two large extra dimensions (n = 2) is surprisingly strong and must be
taken seriously. We note that the values given in the remaining lines of the table are more
precise 95% confidence exclusion limits available from accelerator experiments.

The second line of the table gives the constraints arising from the process e+e− →
γ+ (missing) which have been announced by the ALEPH collaboration [50, 19]. Similar
constraints on anomalous single photon production have been announced by the other LEP
experiments [51, 52, 53].

The third line of the table is derived from a new search for events with one jet and missing
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ET presented by the CDF collaboration in [54]. Of the five cuts on missing ET presented
in this analysis, the analysis based on the cut ET > 200 GeV turns out to give the best
sensitivity. We have applied the formulae in [4] to convert the limit on the cross section to
the quoted bounds on M . Note that these bounds are very close to the estimates in the
“Future Tevatron” line of [4].

The fourth line of the table gives the reach of a 1 TeV e+e− linear collider as computed in
[4]. However, in the fifth line, the constraints given in Table 1 for the LHC are much stronger.
This is the result of the observation, made in [3], that at the LHC there is a dramatic
improvement in signal/background if one makes a very hard ET cut. It is advantageous to
move this cut to as high a value as the statistics permit. The results shown here correspond
to the analysis in [4] applied to a cut at ET > 1000 GeV.

For the LHC search, one may worry that the effective field theory used to obtain the
bounds in Table 1 breaks down for the collisions of the most energetic partons. In Section
5, we have derived the form factor which describes the modification of the cross sections
at high energies due to string theory effects. We have shown that at very high energies,
this form factor leads to exponential suppression of the signal cross section. One might
expect that the sensitivity of the LHC searches will be somewhat lowered by this effect.
However, it turns out that for values of the string scale in the few-TeV range, this effect
does not significantly alter the signal rates at LHC. In fact, we find a relatively small effect
for typical parton-parton center-of-mass energies and a dramatic enhancement when partons
can combine to the SR resonances, due to processes analogous to (65) with an excited gluon
or quark intermediate state. In the situation in which these states are present, they would
also be seen as resonances in the two-jet invariant mass distribution. We conclude that in
either case, whether the resonances are observed or not, the bounds in the last line of Table 1
would not be significantly decreased by stringy physics.

8 Conclusions

In this paper, we have studied the phenomenology of large extra dimensions for the situation
in which quantum gravity is represented by a weakly-coupled string theory. We have found
that, in this case, the signatures of large extra dimensions which have been considered in the
literature up to now are overshadowed by genuine string effects. The first sign of new physics
is found in string corrections to Standard Model two-body scattering cross sections, leading
to contact interactions due to string resonances and to the dramatic appearance of these
resonances at colliders. The fact that these resonances have not yet been observed allows
us to put a lower bound on the string scale of about 1 TeV. The corresponding limit on the
quantum gravity scale, M > 1.6 TeV, is much stronger than that of any current accelerator
experiment. The next generation of colliders should probe values of the string scale up to 5
TeV and values of the quantum gravity scale above 8 TeV.

The motivation for the idea of large extra dimensions in the work of Arkani-Hamed,
Dimopoulos, and Dvali [1] came from the possibility of a natural relation between the weak
interaction scale and the scale of quantum gravity. If this possibility is indeed realized, the
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linear collider and the LHC will carry out experimental measurements of string physics. For
many years, physicists have thought of strings as tiny objects and imagined that we could
observe them in experiments only in some distant era. It seems now that this era could be
close at hand.
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A Reference formulae for models of contact interac-

tions

In this appendix, we give the explicit expressions for the contact-interaction corrections to
Bhabha scattering that are compared in Figures 5 and 6. We also give the first contact-
interaction corrections to the e+e− → γγ and γγ → γγ amplitudes.

The unpolarized cross section formula for Bhabha scattering can be written in the form

dσ

d cos θ
=
πα2

2s

[
u2(|ALL|2 + |ARR|2) + 2t2|ARL,s|2 + 2s2|ARL,t|2

]
, (99)

where

ALL =
1

s
+

1

t
+

(1
2
− sin2 θw)2

sin2 θw cos2 θw

(
1

s−m2
Z

+
1

t−m2
Z

)
+ ∆LL

ARR =
1

s
+

1

t
+

sin2 θw

cos2 θw

(
1

s−m2
Z

+
1

t−m2
Z

)
+ ∆RR

ARL,s =
1

s
− (1

2
− sin2 θw)

cos2 θw

1

s−m2
Z

+ ∆RL,s

ARL,t =
1

t
− (1

2
− sin2 θw)

cos2 θw

1

t−m2
Z

+ ∆RL,t . (100)

For KK graviton exchange parametrized by (30) [55],

∆LL = ∆RR =
λ

παM4
H

[
(u+

3

4
s) + (u+

3

4
t)
]
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∆RL,s = − λ

παM4
H

(t+
3

4
s)

∆RL,s = − λ

παM4
H

(s+
3

4
t) . (101)

For standard dimension-6 contact interactions [33],

∆LL = 2
ηLL

αΛ2

∆RR = 2
ηRR

αΛ2

∆RL,s = ∆RL,t =
ηRL

αΛ2
. (102)

The VV case corresponds to ηLL = ηRR = ηRL = ±1. The AA case corresponds to ηLL =
ηRR = −ηRL = ±1.

For the string model described in Sections 2 and 3, the corrections are more easily de-
scribed by (28).

The expressions above are written in such a way that they can easily be pulled apart into
cross sections for definite helicity initial and final states. At a high-energy linear collider
with a polarized e− beam, it is possible to resolve ambiguities in the relative contributions
of the various ∆i.

For completeness, we note also that the amplitude for e+e− → γγ, which is given by (25)
in our string model, takes the following form with KK graviton exchange parametrized by
(30) [56]:

A(e−Le
+
R → γLγR) = −2e2

√
u

t

[
1 +

λ

παM4
H

ut

]
. (103)

Thus, in this model, we may identify Drell’s Λ± parameter as

Λλ = (πα)1/4MH ≈ 0.39MH . (104)

B Ingredients needed for the one-loop calculation in

Section 6

The partition functions for the cylinder with modulus it, with fermion periodicities required
for our calculation in Section 6, are:

Zp
x = (8π2α′t)−(p+1)/2η(it)−8;

ZA
A =

(
ϑ00(0 | it)
η(it)

)4

;

ZA
P = −

(
ϑ10(0 | it)
η(it)

)4

;

ZP
A = −

(
ϑ01(0 | it)
η(it)

)4

. (105)
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Note that the zero-mode integration in the bosonic partition function, Zx, was performed
only in the directions transverse to the brane. It turns out that this is the only place in the
calculation which depends on p. The small-t expansions of the partition functions which we
will use for the calculation in Section 6.2 are

Zp
x = (8π2α′)−(p+1)/2t(7−p)/2e2π/3t + . . . ;

ZA
A = eπ/3t(1 + 8e−π/t + . . .);

ZA
P = −eπ/3t(1 − 8e−π/t + . . .). (106)

In the calculation in Section 6.3, we will make use of the following large-t expansions:

Zp
x = (8π2α′t)−(p+1)/2e2πt/3 + . . . ;

ZA
A = eπt/3(1 + 8e−πt + . . .);

ZP
A = −eπt/3(1 − 8e−πt + . . .). (107)

Here and below, we only keep the leading terms in the expansions of bosonic partition
functions and correlators. For fermionic quantities, we keep the first subleading corrections,
since in some cases the leading terms cancel after different sectors are combined.

We will also need the following correlation functions (all of them are understood to
exclude the corresponding partition function):

〈Xµ(wi)X
ν(wj)〉 = gµν

(
−α′ log

∣∣∣∣ϑ11

(
wij

2π
| it
)∣∣∣∣

2

+ α′ (ℑwij)
2

2πt

)
;

〈ψµ(wi)ψ
ν(wj)〉AA =

gµν

2π

ϑ00

(
wij

2π
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)

ϑ11

(
wij

2π
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) ∂νϑ11(0 | it)
ϑ00(0 | it) ;

〈ψµ(wi)ψ
ν(wj)〉AP =

gµν

2π

ϑ10

(
wij

2π
| it
)

ϑ11

(
wij

2π
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) ∂νϑ11(0 | it)
ϑ10(0 | it) ;

〈ψµ(wi)ψ
ν(wj)〉PA =

gµν

2π

ϑ01

(
wij

2π
| it
)

ϑ11

(
wij

2π
| it
) ∂νϑ11(0 | it)
ϑ01(0 | it) , (108)

where wij = wi − wj. The fermionic correlators here are just the same as for a torus with
modulus it; they are valid for arbitrary wi’s. On the other hand, the bosonic correlator in
the first line is only valid for the fields that are placed on the boundary and satisfy Neumann
boundary conditions. It differs from a torus correlator by a factor of 2, which correctly
takes into account the image charges in this case. This correlator is sufficient for our present
calculation.

The small-t expansions of the correlators (108) depend on whether the two fields are on
the same side of the cylinder or not. We can write wij = π∆ij + 2πiyij, where yij = yi − yj,
and ∆ij = 0 if i and j are on the same side of the cylinder, and 1 otherwise (this assumes,
without loss of generality, that i > j.) The small-t expansions for the case of ∆ij = 0 are,

〈Xµ(wi)X
ν(wj)〉 = gµνα′

(
π

2t
− 2 log 2 + log t− 2 log sin πYij

)
+ . . . ;
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〈
Ẋµ(wi)X

ν(wj)
〉

= igµνα
′

t
cot πYij + . . . ;

〈
Ẋµ(wi)Ẋ

ν(wj)
〉

= gµν α
′

2t2
1

sin2 πYij

+ . . . ;

〈ψµ(wi)ψ
ν(wj)〉AA = −igµν 1

2t

1

sin πYij

(
1 − 4e−π/t sin2 πYij + . . .

)
;

〈ψµ(wi)ψ
ν(wj)〉AP = −igµν 1

2t

1

sin πYij

(
1 + 4e−π/t sin2 πYij + . . .

)
, (109)

where Yij = yij/t. For the case of ∆ij = 1 we get:

〈Xµ(wi)X
ν(wj)〉 = gµνα′ log t+ . . . ;

〈ψµ(wi)ψ
ν(wj)〉AA = gµν 2

t
e−π/2t cosπYij + . . . ;

〈ψµ(wi)ψ
ν(wj)〉AP = −igµν 2

t
e−π/2t sin πYij + . . . (110)

The other two correlators, < ẊX > and < ẊẊ >, are in this case suppressed by e−π/t and
do not play a role.

For the calculation in Section 6.3, we need the large-t expansions of the correlators (108),
with the fields on the same side of the cylinder. These are given by

〈Xµ(wi)X
ν(wj)〉 = −2πtα′gµνYij(1 − Yij);〈

Ẋµ(wi)X
ν(wj)

〉
= iα′gµν(1 − 2Yij);

〈
Ẋµ(wi)Ẋ

ν(wj)
〉

= gµν α
′

πt
;

〈ψµ(wi)ψ
ν(wj)〉AA = −igµν

(
e−πtYij + e−πt(1−Yij )

)
;

〈ψµ(wi)ψ
ν(wj)〉PA = −igµν

(
e−πtYij − e−πt(1−Yij )

)
. (111)
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