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1. Introduction

In this paper we find asymptotically flat solutions to 5D supergravity in the presence of four

derivative terms. We obtain two types of solutions: magnetic string solutions, with near

horizon geometry AdS3 × S2; and electric particle solutions, with near horizon geometry

AdS2 × S3. These spacetimes are central to the study of black holes in string theory.

Namely, the electric solutions represent 5D black holes, while the magnetic solutions yield

4D black holes upon compactification on a circle with momentum added.
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The inclusion of higher derivative R2 terms allows us to compute corrections to quanti-

ties such as the black hole entropy, and also to obtain smooth spacetimes in cases where the

two derivative action yields a naked singularity. Via the AdS/CFT correspondence, this

permits a more detailed comparison between the microscopic and macroscopic descriptions

of black holes in string theory.

The program of including R2 corrections in 4D supergravity has received much atten-

tion over the past few years [1 – 7] (for reviews see [8 – 10]). By contrast, the relevant 5D

supergravity action was constructed only very recently, as the supersymmetric completion

of a certain mixed gauge/gravitational Chern-Simons term [11]. The 5D theory can be

thought of as arising from M-theory compactified on a Calabi-Yau threefold. The relevant

higher derivative terms are determined by a combination of anomalies and supersymmetry.

Before proceeding, let us note some of the general advantages of working in a 5D

setting. First, by compactifying one of our 5D directions on a circle (or more generally,

a Taub-NUT fiber) we can reproduce all of the 4D solutions of interest [12 – 17]. On the

other hand, by not compactifying we maintain access to solutions that are inherently five

dimensional. One example is the standard 5D black hole [18, 19], which we’ll refer to

as the electric black hole. Another example is a straight fundamental heterotic string

with zero momentum, which provides the simplest example of our magnetic solutions. To

access these in the 4D description requires the auxiliary procedure of decompactifying a

Taub-NUT fiber; here the description is simpler and more direct.

In this paper we restrict attention to spherically symmetric solutions to simplify the

analysis. The generalization to spinning black holes and black rings will appear in subse-

quent work [20]. As we’ll see, a very nice feature of the off-shell R2 supergravity obtained

in [11] is that the construction of BPS solutions is surprisingly simple. Indeed, the bulk of

the analysis is entirely parallel to the two derivative case. The higher derivatives only man-

ifest themselves towards the end of the construction, where they yield corrections to the

standard special geometry relations, which are replaced by a more complicated non-linear

differential equation.

In the magnetic string case our asymptotically flat solutions extend the near horizon

attractor geometries we found in [21]. As described in [21], from the near horizon AdS3

solution we can read off the central charges of the dual CFT, and thereby confirm an

earlier result based on anomalies and supersymmetry [6, 22]. In the full solution the metric

and matter fields exhibit oscillatory behavior of the same sort as found in [23, 24]. As

mentioned above, the simplest example is the single charge solution corresponding to a

heterotic string with vanishing momentum (or, in the language of M-theory on K3 × T 2,

an M5-brane wrapped on K3). This provides an example of how R2 corrections can replace

a naked singularity with a smooth, zero entropy, geometry.

In the electric case, after constructing the black hole solutions we discuss their entropy.

Given the near horizon AdS2 geometry, the computation of the Bekenstein-Hawking-Wald

entropy reduces to evaluating a particular function at its extremum. The resulting entropy

formula turns out to be extremely simple: expressed in terms of the charges, it takes the

same form as in the two derivative case except that the charges are shifted by an amount

proportional to the second Chern class of the Calabi-Yau. With a natural definition of
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horizon area, the formula S = A/4 continues to hold.

We compare our corrected entropy formula to a previously conjectured result [25] based

on the 4D-5D connection and the topological string free energy. The results precisely agree

when expressed in terms of the electric potentials. Expressed instead in terms of the

electric charges, there is a mismatch. Our entropy formula also agrees quantitatively with

a correction found by Vafa in terms of a microscopic model of 5D black holes in M-theory

on an elliptically fibred Calabi-Yau [26].

The remainder of this paper is organized as follows. In section 2 we review the con-

struction of higher derivative terms using the off-shell formalism. In section 3 we find

supersymmetric solutions of magnetic type, interpreted as string solutions. We establish

that 5D strings interpolate smoothly between an AdS3 ×S2 near horizon geometry and an

asymptotically flat region. In section 4 we find supersymmetric solutions of electric type.

We discuss their near horizon behavior and we establish that they interpolate smoothly

between an AdS2 ×S3 near horizon geometry and an asymptotically flat region. In section

5 we discuss the entropy of the 5D Calabi Yau black holes.

2. 5D supergravity with R2 corrections

We begin with a brief review of higher-derivative corrections to N = 2 supergravity in five

dimensions [11]. We use the superconformal formalism, developed in [27, 28], which can

be gauge-fixed to the familiar Poincare supergravity. Our conventions are summarized in

appendix A.

2.1 The supersymmetry transformations

Before introducing the specific action that we analyze in this paper, let us briefly discuss

the relevant supersymmetry multiplets. The irreducible Weyl multiplet contains the fields:

e a
µ , ψµ , Vµ , bµ , vab, χ , D . (2.1)

The first two fields are the vielbein and gravitino. The Vµ is the vector boson associated

with the gauging of the SU(2) R-symmetry under which all fermionic variables and fields

transform,1 while bµ is the gauge field of dilatational symmetry. We will ignore these gauge

fields in the future, for they are gauged way when one reduces to Poincare supergravity.

Finally are three auxiliary fields: an anti-symmetric tensor vab, the fermion χ, and the

scalar D. The vector multiplet consists of the gauge field AI
µ, the scalar M I , the gaugino

ΩI , and also a scalar Y I , which will be gauged away.

Also of importance is the hypermultiplet. Although the hypers decouple from the

physics we are developing, by gauge-fixing them we effectively couple the supersymmetry

variations of the irreducible Weyl and vector multiplets [21]. We will ignore the hypermul-

tiplets henceforth and take the coupled supersymmetry variations as a starting point.

Since the Weyl and vector multiplets are irreducible representations, the variations of

the fields under supersymmetry transformations are independent of the action of the theory

1We suppress the SU(2) indices of Vµ and all fermionic variables because they play no role in our work.
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under consideration. As usual, a bosonic field configuration is supersymmetric when all

fermion variations vanish. The supersymmetry conditions from the fermion variations are

δψµ =

(

Dµ +
1

2
vabγµab −

1

3
γµγ · v

)

ǫ = 0 ,

δΩI =

(

−1

4
γ · F I − 1

2
γa∂aM

I − 1

3
M Iγ · v

)

ǫ = 0 ,

δχ =

(

D − 2γcγabDavbc − 2γaǫabcdev
bcvde +

4

3
(γ · v)2

)

ǫ = 0 , (2.2)

where γ · T = γabT
ab for a rank-2 tensor Tab.

Once again, we wish to emphasize that the above variations are independent of the

action of the theory. Indeed, this is the whole point of retaining the auxiliary fields.

Consequently, the equations (2.2) serve as the supersymmetry conditions in the presence

of higher-derivative terms.

2.2 The two-derivative action

After gauge fixing to Poincare supergravity the two-derivative Lagrangian constructed from

the Weyl multiplet and nV vector multiplets reads

L0 = −1

2
D − 3

4
R + v2 + N

(

1

2
D − 1

4
R + 3v2

)

+ 2NIv
abF I

ab

+NIJ

(

1

4
F I

abF
Jab +

1

2
∂aM

I∂aMJ

)

+
1

24e
cIJKAI

aF
J
bcF

K
de ǫabcde . (2.3)

One can integrate out the auxiliary fields D and vab by solving their equations of motion and

substituting the solutions back into (2.3). This yields the familiar N = 2 Lagrangian arising

from the compactification of eleven-dimensional supergravity on a Calabi-Yau manifold

with intersection numbers cIJK [29].

The functions defining the scalar manifold are

N =
1

6
cIJKM IMJMK , NI = ∂IN =

1

2
cIJKMJMK , NIJ = cIJKMK , (2.4)

where I, J,K = 1, . . . , nV . At the two-derivative level, the D equation of motion imposes

the constraint N = 1 defining real special geometry. However, higher derivative corrections

make the geometry of the scalar moduli space more complicated.

2.3 The four-derivative action

A particular four-derivative term is special in that its coefficient is determined by M5-brane

anomaly cancellation via anomaly inflow [30]. This is the mixed gauge-gravitational Chern

Simons term

eLCS =
c2I

24 · 16ǫabcdeA
IaRbcfgRde

fg . (2.5)

It is believed that all four derivative terms are related to this term by supersymmetry [11].

The supersymmetric completion of the term (2.5) was derived in [11]. The bosonic terms
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are

L1 =
c2I

24

(

1

16e
ǫabcdeA

IaCbcfgCde
fg +

1

8
M ICabcdCabcd +

1

12
M ID2 +

1

6
F IabvabD

+
1

3
M ICabcdv

abvcd +
1

2
F IabCabcdv

cd +
8

3
M IvabD̂bD̂cv

ac

+
4

3
M ID̂avbcD̂avbc +

4

3
M ID̂avbcD̂bvca −

2

3e
M Iǫabcdev

abvcdD̂fvef

+
2

3e
F Iabǫabcdev

cf D̂fvde + e−1F Iabǫabcdev
c
f D̂dvef

−4

3
F Iabvacv

cdvdb −
1

3
F Iabvabv

2 + 4M Ivabv
bcvcdv

da − M I(v2)2

)

. (2.6)

Here Cabcd is the Weyl tensor. The superconformal derivative is related to the usual deriva-

tive as D̂µ = Dµ − bµ. In our gauge the dilatational connection bµ vanishes. However, its

derivative does not vanish so the second superconformal covariant derivative is nontrivial,

viz.

vabD̂bD̂cv
ac = vabDbDcv

ac − 2

3
vacvcbR

b
a − 1

12
vabv

abR . (2.7)

The complete action (2.6) is evidently somewhat unwieldy. Fortunately, most terms

play no role in our applications. For example, the parity-odd terms (proportional to ǫabcde)

vanish on our spacetimes. Their significance is that they fix the normalization through the

anomaly term (2.5). We will ultimately need just the equations of motion for D and for

the gauge fields, and these involve just a few of the terms in (2.6).

3. Magnetic solutions: strings with AdS3 × S2 near horizon geometry

Our strategy for finding regular solutions in the higher derivative theory is to first write an

ansatz consistent with the assumed symmetries, and then demand unbroken supersymme-

try. This part of the analysis proceeds the same whether we consider the two derivative or

four derivative theory, and hence is quite manageable. Supersymmetry does not completely

determine the solution, however — we also need to impose the Bianchi identity and the

special geometry constraint, the latter coming from the D equation of motion. Only at

this last stage do we need specific information about the action.

3.1 Ansatz: magnetic background

We are interested in higher-derivative corrections to the supersymmetric black string solu-

tions carrying magnetic charges pI studied in [31]. We assume translation invariance along

the string, and spherical symmetry in the transverse directions. To make these symmetries

explicit, we write our ansatz as

ds2 = e2U1(r)
(

dt2 − dx2
4

)

− e−4U2(r)dxidxi , dxidxi = dr2 + r2dΩ2
2 , (3.1)

where i = 1, 2, 3. The two-forms F I and v will be proportional to the volume form on S2.

We chose the vielbein as

eâ = eU1dxa , a = 0, 4 ,
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eî = e−2U2dxi , i = 1, 2, 3 . (3.2)

The non-trivial spin connections are

ω âî
a = −eU1+2U2∂iU1 , ω îĵ

k = 2δi
k∂jU2 − 2δj

k∂iU2 . (3.3)

3.2 Supersymmetry conditions

We start by analyzing the supersymmetry conditions (2.2) in the background (3.1). The

supersymmetry parameter ǫ is constant along the string and obeys

γt̂4̂ǫ = −ǫ . (3.4)

Gravitino variation. We first analyze the gravitino variation (2.2)

δψµ =

(

Dµ +
1

2
vabγµab −

1

3
γµγ · v

)

ǫ = 0 . (3.5)

For the background (3.1), the covariant derivative is

Da = ∂a −
1

2
eU1+2U2∂iU1γâî ,

Di = ∂i + ∂jU2γîĵ . (3.6)

Along the string, equation (3.5) simplifies to

[

−1

2
eU1+2U2∂iU1γâî +

1

6
eU1vîĵγâîĵ

]

ǫ = 0 . (3.7)

It is convenient to use the projection (3.4) in the form

γîĵk̂ǫ = −εijkǫ , (3.8)

where ε123 = 1. Then

γîĵǫ = γk̂γîĵk̂ǫ = εijkγk̂ǫ . (3.9)

So (3.7) becomes
[

−1

2
eU1+2U2∂kU1 +

1

6
eU1vîĵεijk

]

γâk̂ǫ = 0 , (3.10)

from which we can solve for the auxiliary field,

vîĵ =
3

2
e2U2εijk∂kU1 , (3.11)

or in coordinate frame

vij =
3

2
e−2U2εijk∂kU1 . (3.12)

Consider now the components of the gravitino variation along xi,

[

∂i + ∂jU2γîĵ +
1

2
vĵk̂

(

γiĵk̂ − 2

3
γiγĵk̂

)]

ǫ = 0 . (3.13)
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The vĵk̂ terms split into a “radial” part where either j, k is equal to i, and an “angular”

part where i 6= j 6= k. Thus we have two conditions

0 =

(

∂i −
1

6
εijke

î
i vĵk̂

)

ǫ ,

0 =

(

∂jU2εijk +
2

3
vîk̂e

î
i

)

γk̂ǫ , (3.14)

where there is no summation over i. The second equation leads to U2 = U1, so we will

drop the subscripts on U from now on. The first equation then leads to

(

∂i − 1
2∂iU

)

ǫ = 0 , (3.15)

and so the Killing spinor takes the form

ǫ = eU/2ǫ0 , (3.16)

where ǫ0 is some constant spinor.

It will be convenient to use cylindrical coordinates from now on. The metric takes the

form

ds2 = e2U
(

dt2 − dx2
4

)

− e−4U (dr2 + r2dΩ2
2) , (3.17)

in terms of a single function U(r). The coordinate frame expression (3.12) is a tensor

statement on the 3-dimensional base space, where εabc is a completely anti-symmetric

tensor with components ±√
g. So in cylindrical coordinates the auxiliary two-form is

vθφ =
3

2
e−2Ur2 sin θ∂rU , vθ̂φ̂ =

3

2
e2U∂rU , (3.18)

with other components vanishing due to spherical symmetry in the transverse space. The

projection (3.4) in cylindrical coordinates can be written as

γr̂θ̂φ̂ǫ = −ǫ . (3.19)

Gaugino variation. Evaluated on the magnetic background, the gaugino variation δΩI

in (2.2) gives
(

γθ̂φ̂F Iθ̂φ̂ + γ r̂er
r̂∂rM

I +
4

3
M Iγθ̂φ̂vθ̂φ̂

)

ǫ = 0 . (3.20)

Using (3.19) and solving for the field strength we get

F Iθ̂φ̂ = e2U∂rM
I − 4

3M Ivθ̂φ̂ = ∂r(M
Ie−2U )e4U . (3.21)

In coordinate frame, (3.21) becomes

F I
θφ = ∂r(M

Ie−2U )r2 sin θ . (3.22)

This equation is the first hint of the expected attractor behavior: the flow of the scalars

M I is completely determined by the magnetic field F I .

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
0
7

Auxiliary fermion variation. The last supersymmetry variation to solve is δχ = 0.

Neglecting the ǫ-terms since we look for parity invariant solutions, this condition is

(

D − 2γcγabDavbc +
4

3
(γ · v)2

)

ǫ = 0 . (3.23)

The relevant components of the covariant derivative of v for the contraction in (3.23) are

Dθvrφ = Dφvθr = −Γθ
θrvθφ , Drvθφ = ∂rvθφ − 2Γθ

θrvθφ , (3.24)

with

Γθ
θr = Γφ

φr = −2∂rU +
1

r
. (3.25)

Then, the second term in (3.23) becomes

γcγabDavbc = er
r̂e

θ
θ̂
eφ

φ̂
(−4Dθvrφ + 2Drvθφ) γ r̂θ̂φ̂

= 2
e6U

r2 sin θ
∂rvθφγ r̂θ̂φ̂

=
3

2
e6U∇2(e−2U )γr̂θ̂φ̂ , (3.26)

with ∇2 = ∂i∂i = r−2∂r(r
2∂r) due to spherical symmetry. Inserting (3.26) in (3.23) we

have
(

D − 3e6U∇2(e−2U )γr̂θ̂φ̂ − 16

3
(vθ̂φ̂)2

)

ǫ = 0 , (3.27)

where we used

(γ · v)2 = −4(vθ̂φ̂)2 . (3.28)

Using the projection (3.19) and substituting the auxiliary field (3.18) into (3.27) we find

D = −3e6U∇2(e−2U ) +
16

3
(vθ̂φ̂)2

= 3e6U
(

−∇2(e−2U ) + 4e−2U (∇U)2
)

= 6e4U∇2U . (3.29)

What we have found so far is that supersymmetry demands a metric of the form (3.17),

an auxiliary two tensor of the form (3.18), the gauge field strengths (3.22), and the auxiliary

D-field (3.29). All told the entire solution is now specified in terms of the functions M I

and U which are not fixed by supersymmetry alone.

3.3 Equations of motion

Having exhausted the implications of unbroken supersymmetry, we now need to use infor-

mation from the equations of motion.

– 8 –
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Maxwell’s equations. Any specific string solution is parameterized by the values of the

magnetic charges as measured by surface integrals at infinity. These in turn determine the

gauge fields in the interior via the Maxwell equations.

We first consider the equation of motion

∂θ

(

√
g

∂L
∂F I

θφ

)

= 0 . (3.30)

Spherical symmetry implies that the expression in parenthesis is a function of r only,

hence (3.30) is satisfied identically for any field strength F I
θφ = FI(r) sin θ. Thus we get

no new information from this equation of motion.

In the magnetic case the nontrivial condition arises from the Bianchi identity dF I = 0.

The point is that the expression (3.21) for F I determined from supersymmetry is not

automatically a closed form. Therefore, the Bianchi identity

∂rF
I
θφ = ∂r

(

r2∂r(M
Ie−2U )

)

sin θ = 0 , (3.31)

is nontrivial. Physically, this is because supersymmetry is consistent with any extended

distribution of magnetic charges, while here we are demanding the absence of charge away

from the origin. The equation (3.31) integrates to

r2∂r(M
Ie−2U ) = −pI

2
, (3.32)

where pI is the quantized magnetic charge carried by F I . We note that the field strength

F I = −pI

2
ǫ2 , (3.33)

does not get modified after including higher derivatives since it is topological.

The solutions to (3.32) are harmonic functions on the three-dimensional base space.

We are just interested in the simplest solution

M Ie−2U = HI = M I
∞ +

pI

2r
, (3.34)

with M I
∞ the value of M I in the asymptotically flat region where U = 0.

D equation. So far, by imposing the conditions for supersymmetry and integrating the

Bianchi identity, we have been able to write our solution in terms of one unknown function

U(r). To determine this remaining function we use the equation of motion for the aux-

iliary field D. Inspecting (2.3) and (2.6) we see that the only D-dependent terms in the

Lagrangian are

LD =
1

2
(N − 1)D +

c2I

24

(

1

12
M ID2 +

1

6
F IabvabD

)

. (3.35)

Therefore, the equation of motion for D is

N = 1 − c2I

72

(

F I
abv

ab + M ID
)

. (3.36)
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Inserting the gauge-field (3.22), the auxiliary field (3.18), and the D-field (3.29) gives

e−6U =
1

6
cIJKHIHJHK +

c2I

24

(

∇HI∇U + 2HI∇2U
)

. (3.37)

Here HI are the harmonic functions defined in (3.34) and we used

N =
1

6
cIJKHIHJHKe6U . (3.38)

The D constraint (3.37) is now an ordinary differential equation that determines U(r). Its

solution specifies the entire geometry and all the matter fields.

We can solve (3.37) exactly in the near horizon region. This case corresponds to

vanishing integration constants in (3.34) so that

HI =
pI

2r
. (3.39)

Then (3.37) gives

e−6U =
1

8r3

(

p3 +
1

12
c2 · p

)

=
ℓ3
S

r3
, (3.40)

where p3 = 1
6cIJKpIpJpK . The geometry in this case is AdS3 × S2 with the scale ℓS in

agreement with our previous work [21].

The asymptotically flat solutions to (3.37) cannot in general be found in closed form.

In the following two subsections we discuss an approximate solution and an example of

numerical integration.

3.4 Corrected geometry for large black strings

One way to find solutions to (3.37) is by perturbation theory. This strategy captures the

correct physics when the solution is regular already in the leading order theory, i.e. for

large black strings. Accordingly, the starting point is the familiar solution

e−6U0 =
1

6
cIJKHIHJHK , (3.41)

to the two-derivative theory. This solves (3.37) with c2I = 0.

Although c2I is not small it will be multiplied by terms that are of higher order in the

derivative expansion. It is therefore meaningful to expand the full solution to (3.37) in the

form

e−6U = e−6U0 + c2Iε
I +

1

2
c2Ic2JεIJ + . . . , (3.42)

where εI(r), εIJ(r), . . . determine the corrected geometry with increasing precision.

Inserting (3.42) in (3.37) and keeping only the terms linear in c2I we find the first order

correction2

εI =
1

24
(∇HI∇U0 + 2HI∇2U0) . (3.43)

2It is understood that the correction ε
I is only defined in the combination c2Iε

I .
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Iterating, we find the second order correction

εIJ = − 1

72

(

∇HI∇(e6U0εJ) + 2HI∇2(e6U0εJ )
)

, (3.44)

where the first order correction εI is given by (3.43). Higher orders can be computed

similarly. In summary, we find that starting from a smooth solution to the two-derivative

theory we can systematically and explicitly compute the higher order corrections. The

series is expected to be uniformly convergent.

In the near horizon limit (3.39) the full solution (3.40) is recovered exactly when taking

the leading correction (3.43) into account. As indicated in (3.40) the effect of the higher

derivative corrections is to expand the sphere by a specific amount (which is small for

large charges). The perturbative solution gives approximate expressions for the corrections

also in the bulk of the solution. Numerical analysis indicates that the corrections remain

positive so at any value of the isotropic coordinate r the corresponding sphere is expanded

by a specific amount.

3.5 Fundamental strings

One of the main motivations for developing higher derivative corrections is their potential

to regularize geometries that are singular in the lowest order supergravity approximation [4,

23, 24, 5, 6]. This is the situation for small strings, by which we mean charge configurations

satisfying p3 = 1
6cIJKpIpJpK = 0.

A particularly important example of a small string is when the Calabi-Yau is K3×T 2

and the only magnetic charge that is turned on is the one corresponding to an M5-brane

wrapping the K3. The resulting 5D string is then dual, via IIA-heterotic duality, to the

fundamental heterotic string [32, 33].

Let M1 be the single modulus on the torus and M i be the moduli of K3 where

i = 2, . . . , 23. The charge configuration of interest specifies the harmonic functions as

H1 = M1
∞ +

p1

2r
, H i = M i

∞ , i = 2, . . . , 23 . (3.45)

The only nonvanishing intersection numbers are c1ij = cij where cij is the intersection

matrix for K3. We choose M i
∞ consistent with

N e−6U =
1

6
cIJKHIHJHK = H1 . (3.46)

The master equation (3.37) now becomes

H1 = e−6U −
[

∂rH
1∂rU + 2H1 1

r2
∂r(r

2∂rU)

]

, (3.47)

where we used c2(K3) = 24 and c2i = 0. We can write this more explicitly as

1 +
p1

2r
= e−6U − 2

(

1 +
p1

2r

)

U ′′ − 4

r

(

1 +
3p1

8r

)

U ′ , (3.48)

where primes denote derivatives with respect to r.

In our units distance r is measured in units of the 5D Planck length. The parameter

p1 is a pure number counting the fundamental strings. We take p1 ≫ 1 so as to have an

expansion parameter. We will analyze the problem one region at a time.
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The AdS3×S2-region. This is the leading order behavior close to the string. According

to our near horizon solution (3.40) we expect the precise asymptotics

e−6U → ℓ3
S

r3
, r → 0 , (3.49)

where the S2-radius is given by

ℓS =

(

p1

4

)1/3

. (3.50)

Since we assume p1 ≫ 1 this is still much larger than the 5D Planck scale. The modulus

describing the volume of the internal T 2 is

M1 =
p1

2ℓS
= 2−1/3(p1)2/3 , (3.51)

which also corresponds to the length scale (p1)1/3.

The near-string region. We next seek a solution in the entire range r ≪ p1 which

includes the scale (3.50) but reaches further out. In fact, it may be taken to be all of space

in a scaling limit where p1 → ∞.

In the near string region (3.48) reduces to

p1

2r
= e−6U − p1

r
U ′′ − 3p1

2r2
U ′ . (3.52)

We can scale out the string number p1 by substituting

e−6U(r) =
p1

4r3
e−6∆(r) , (3.53)

which amounts to

U(r) =
1

2
ln

r

ℓS
+ ∆(r) . (3.54)

This gives

∆′′ +
3

2r
∆′ +

1

4r2
(1 − e−6∆) +

1

2
= 0 , (3.55)

which describes the geometry in the entire region r ≪ p1. The asymptotic behavior at

small r is

∆(r) = − 1

13
r2 +

3

(13)3
r4 + · · · . (3.56)

Since ∆(r) → 0 smoothly as r → 0 we have an analytical description of the approach to

the AdS3 × S2 region.

The asymptotic behavior for large r is also smooth. Expanding in u = 1
r we find

∆(r) = −1

6
ln(2r2) − 1

36r2
+ · · · . (3.57)

It is straightforward to solve (3.55) numerically. Figure 1 shows the curve that interpolates

between the asymptotic forms (3.56) and (3.57). The oscillatory behavior in the inter-

mediate region is characteristic of higher derivative theories. We comment in more detail

below.
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Figure 1: Analytical and numerical results for ∆(r) in the near string region, r ≪ p1. In both

plots the blue curve is given by solving (3.55) numerically. Left : the numerical solution close to

the string with the approximate solution (3.56) given in red. Right : the numerical solution further

away with the approximate solution (3.57) given in green. The plots have overlapping values of r

but different scales.

In the original variable U(r) the approximation (3.57) gives

e−6U =
p1

2r

(

1 +
1

6r2
+ . . .

)

, (3.58)

for large r. The leading behavior agrees with the near string behavior e−6U = H1 ∼ p1

2r

familiar from the description of a fundamental string in two-derivative supergravity. In the

full theory this singular region is replaced by a smooth geometry described by ∆(r).

The approach to asymptotically flat space. We still need to analyze the region

where r is large, meaning r ∼ p1 or larger. Although standard two-derivative supergravity

is expected to describe this region it is instructive to consider the possible corrections.

In the asymptotic region the full equation (3.47) simplifies to

1 +
p1

2r
= e−6U − 2

(

1 +
p1

2r

)

U ′′ . (3.59)

Terms with explicit factors of 1/r were neglected but we kept derivatives with respect to

r, to allow for structure on Planck scale even though r ∼ p1 ≫ 1. Changing variables as

e−6U = (1 +
p1

2r
)e−6W , (3.60)

we find

W ′′ =
1

2
(e−6W − 1) ≃ −3W . (3.61)

The expansion for small W is justified because (3.58) imposes the boundary condition

W → 0 for r ≪ p1.
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The solution W = 0 expected from supergravity is in fact a solution to (3.61) but there

are also more general solutions of the form

W = A sin(
√

3r + δ) . (3.62)

The amplitude of this solution is undamped, so it is not really an intrinsic feature of

the localized string solution we consider. Instead it is a property of fluctuations about

flat space, albeit an unphysical one. The existence of such spurious solutions is a well-

known feature of theories with higher derivatives, and is related to the possibility of field

redefinitions [34, 23, 24]. In the present context the issue is that other variables such

as W̃ = (∇2 − 3)W exhibit no spurious solutions. It would be interesting to make this

interpretation of the spurious solutions more explicit. It would also be interesting to

understand possible relations of our fundamental string solutions with the picture proposed

in [35].

4. Electric solutions: black holes with AdS2 × S3 near horizon geometry

We now consider the case of electrically charged, spherically symmetric solutions. We follow

the same strategy as in the analysis of the magnetic solutions: we start from an ansatz

with the desired symmetry, then use the supersymmetry conditions (2.2) to relate various

functions in the ansatz, and finally impose appropriate equations of motion to obtain the

full solution. The solutions we study are the higher-derivative corrected versions of those

in [36].

In the electric case we start with a metric of the form

ds2 = e4U1(x)dt2 − e−2U2(x)dxidxi , (4.1)

where i = 1 . . . 4. This gives the vielbein

et̂ = e2U1dt , eî = e−U2dxi , (4.2)

and spin connections

ω t̂̂i
t = −2∂iU1e

2U1+U2 , ω îĵ
k = ∂jU2δ

i
k − ∂iU2δ

j
k . (4.3)

In this paper we limit ourselves to spherically symmetric solutions for which

vîĵ = 0 . (4.4)

4.1 Supersymmetry conditions

We now make the conditions (2.2) imposed by supersymmetry explicit for our electric

ansatz.
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Gravitino variation. We begin with constraints from the gravitino variation, the first

equation in (2.2). The temporal part of the gravitino variation reads

[

∂t +
1

2
ω t̂̂i

t γt̂̂i +
1

2
vab

(

γtab −
2

3
γtγab

)]

ǫ = 0 . (4.5)

We assume that the Killing spinor is time-independent and satisfies the projection

γt̂ǫ = −ǫ . (4.6)

Inserting (4.4) we find
(

1

2
ω t̂̂i

t − 2

3
e t̂
t v t̂̂i

)

γîǫ = 0 , (4.7)

which implies

vt̂̂i =
3

2
∂iU1e

U2 . (4.8)

The spatial part of the gravitino variation is

[

∂i +
1

4
ω k̂ĵ

i γk̂ĵ + vt̂ĵ

(

γit̂ĵ −
2

3
γiγt̂ĵ

)]

ǫ = 0 . (4.9)

Substituting the formulae for the connection and using projection (4.6) yields

[

∂i +
1

2
∂jU2γîĵ + vt̂ĵ

(

γiĵ −
2

3
γiγĵ

)]

ǫ = 0 . (4.10)

The radial (̂i = ĵ) and the angular (̂i 6= ĵ) terms have a different form. Therefore they

must vanish separately so that

(

∂i +
2

3
v t̂̂ie î

i

)

ǫ = 0 ,

1

2
∂jU2 +

1

3
vt̂ĵe î

i = 0 . (4.11)

Inserting vt̂̂i from (4.8) into the second equation we find that U1(x) = U2(x). Therefore we

will drop the index on the function U(x) from now on. The first equation in (4.11) gives

the form of the Killing spinor

ǫ = eU(x)ǫ0 , (4.12)

where ǫ0 is a constant spinor.

In summary, the gravitino equation determines the form of the Killing spinor (4.12),

the auxiliary field

vt̂̂i =
3

2
∂ie

U , vti =
3

2
e2U∂iU , (4.13)

and simplifies the metric from (4.1) to

ds2 = f2dt2 − f−1dxidxi , (4.14)

where f = e2U(x).
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Gaugino variation. We next analyze the gaugino variation, the second equation in (2.2).

Noting that only vt̂̂i are non-vanishing, and using the projection (4.6), we have
(

−1

4
γ · F I − 1

2
γa∂aM

I − 2

3
M Iv t̂̂iγî

)

ǫ = 0 . (4.15)

This requires that the scalars are time-independent and that the only non-zero components

of the field strengths are F t̂̂i. This in turn gives the condition

−1

2
F It̂̂i +

1

2
ei

î
∂iM

I − 2

3
M Iv t̂̂i = 0 . (4.16)

Inserting the auxiliary field (4.13) and switching to a coordinate frame we find

1

2
e−2UF I

it −
1

2
∂iM

I − M I∂iU = 0 . (4.17)

Reorganizing, we have

F I
it = ∂i(e

2UM I) , (4.18)

which can be integrated to

AI
t = e2UM I . (4.19)

This equation captures the characteristic feature of attractor flows: the scalars follow the

electric potentials along the entire radial flow.

Auxiliary fermion variation. Imposing δχ = 0 results in the condition
(

D − 2γcγabDavbc − 2γaǫabcdev
bcvde +

4

3
(γ · v)2

)

ǫ = 0 . (4.20)

The third term vanishes in the spherically symmetric case and the fourth term can be

evaluated as
4

3
(γ · v)2 =

16

3
δijvt̂̂ivt̂ĵ = 12e2U∂iU∂iU . (4.21)

For the covariant derivative we need the non-vanishing Christoffel symbols

Γi
tt = 2e6U∂iU , Γt

ti = 2∂iU , Γk
ij = (δij∂k − δik∂j − δkj∂i)U . (4.22)

and the auxiliary field (4.13). This gives the only non-vanishing component of the covariant

derivative as

Divtj =
3

2
e2U (∂i∂jU + 2∂iU∂jU − δij∂kU∂kU) , (4.23)

so that

γcγabDavbc = γiγjtDjvti = −γt̂δ
ijDjvti = −3

2
e2Uγt̂ (∂i∂iU − 2∂iU∂iU) . (4.24)

After applying the projection (4.6) on the supersymmetry parameter ǫ, the condition (4.20)

from the variation of the auxiliary fermion now becomes

D = 3e2U (∂i∂iU − 2∂iU∂iU) − 12e2U ∂iU∂iU

= 3e2U
(

∇2U − 6(∇U)2
)

. (4.25)

We have now exhausted the supersymmetry conditions (2.2). As a result we have

found (4.13), (4.19), and (4.25) which determine vab, AI
t , and D in terms of the scalar

moduli M I and the metric function U(x). These remaining functions are not determined

by supersymmetry alone. Instead we must now turn to the equations of motion.
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4.2 Maxwell equations

The black hole solutions we seek are defined by conserved electric charges with respect to

each gauge field. For a given charge, Gauss’ law determines the radial dependence of the

electric field as follows.

Neglecting the Chern-Simons terms, which do not contribute to spherically symmetric

solutions, the F-dependent terms in the Lagrangian are

LF = 2NIv
abF I

ab +
1

4
NIJF I

abF
Jab

+
c2I

24

(

1

6
F I

abv
abD +

1

2
F IabCabcdv

cd − 4

3
F Iabvacv

cdvdb −
1

3
F Iabvabv

2

)

. (4.26)

The Maxwell equations

Dµ

(

∂L
∂F I

µν

)

=
1√
g
∂µ

(√
g

∂L
∂F I

µν

)

= 0 , (4.27)

are equivalent to the statement ∂rqI = 0, where qI are the conserved electric charges

qI = − 1

4π2

∫

S3

√
g

∂L
∂F I

tr

= −1

2
e−2Ur3Er

I . (4.28)

The canonical momenta are

E i
I =

∂L
∂F I

ti

= 4NIv
ti + NIJF Jti +

c2I

24

(

1

3
vtiD + 2Ctitjvtj −

8

3
vtjvjtv

ti − 2

3
vtiv2

)

. (4.29)

We need to make this expression more explicit. First, let us define moduli with lower

indices as3

MI =
1

2
NIJMJ . (4.30)

In the context of Calabi-Yau compactification of M-theory the MI are volumes of four-

cycles dual to the two-cycles with volume M I . At any rate, the definitions (2.4) of the

various scalar functions now imply

NIJ∂iM
J = ∂iMI . (4.31)

We now find

4NIv
ti + NIJF Jti = e2U∂i

[

e−2UMI

]

, (4.32)

due to (4.13) and (4.18). It is straightforward to cast the remaining terms in (4.29) in this

form as well, by using (4.13), (4.18), (4.25), along with

Citjt = −2∂i∂jU − 6∂iU∂jU +
3

2
δij(∇U)2 +

1

2
δij∇2U . (4.33)

After the dust has settled we find

E i
I = e2U∂i

[

e−2UMI −
c2I

8
(∇U)2

]

. (4.34)

3This notation is actually redundant because MI = NI .
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We now see that the Maxwell equation ∂rqI = 0 becomes

∇2
[

e−2UMI −
c2I

8
(∇U)2

]

= 0 , (4.35)

where ∇2 denotes the Laplacian on flat R
4. Solutions are thus a set of harmonic functions

on this space. In this paper we consider the single center solutions

e−2UMI −
c2I

8
(∇U)2 = HI = M∞

I +
qI

r2
, (4.36)

where the integration constants M∞
I are the moduli at infinity, and the qI are the same

charges as appear in (4.28).

4.3 Completing the electric solution: the D equation

At this point we have used supersymmetry to specify the entire solution in terms of the

functions M I and U , and we have determined M I by integrating Gauss’ Law. Therefore,

we need only one more constraint to find the complete solution. For this we consider the

equation of motion for the auxiliary field D.

Starting from the Lagrangian L0 +L1 given in (2.3) and (2.6), the terms that depend

on the D-field are

LD =
1

2
(N − 1)D +

1

24
c2I

(

1

12
M ID2 +

1

6
F IabvabD

)

. (4.37)

Varying with respect to D we find

N − 1 +
c2I

72

(

M ID + F Iabvab

)

= 0 . (4.38)

From (4.25), (4.18), and (4.13), this becomes

N − 1 +
c2I

24
e2U

(

(∇2U − 4(∇U)2)M I + ∇U∇M I
)

= 0 . (4.39)

In the absence of higher derivative terms this equation simply reads N = 1. Since N =
1
6cIJKM IMJMK this amounts to an algebraic constraint on the scalar manifold. The

general equation with higher derivatives included is much more complicated. To be explicit,

recall that the M I are determined in terms of MI by the relation

MI =
1

2
cIJKMJMK , (4.40)

and the MI in turn are given by

MI = e2U
(

HI +
c2I

8
(∇U)2)

)

, HI = M∞
I +

qI

r2
. (4.41)

The condition (4.39) is thus a nonlinear, second order, ordinary differential equation for

U(r). But note that to write this equation explicitly requires inverting (4.40) to find M I ,

which cannot be done until cIJK have been specified.4. Once this has been done, the

resulting differential equation typically requires a numerical treatment.

4One also should be alert to the fact that the inversion of (4.40) may not be unique, which raises some

interesting issues. Some explicit examples in related contexts can be found in [37, 38]
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4.4 Near horizon geometry

It is instructive to make the equations above more explicit in the near horizon region of

the black hole. To do so take the integration constants M∞
I = 0 and seek a solution with

constant MI and M I related by (4.40). Then (4.41) gives f = e2U = r2

ℓ2S
and

ℓ2
SMI = qI +

1

8
c2I . (4.42)

The notation ℓS was chosen with some foresight. Indeed, the change of variables r2 = ℓ3
S/2z

bring the geometry (4.14) into the standard form

ds2 =
ℓ2
S

4z2
(dt2 − dz2) − ℓ2

SdΩ2
3 , (4.43)

which we recognize as AdS2 × S3 with S3 radius ℓS and AdS2 radius ℓA = 1
2ℓS .

In the near horizon region the D equation (4.39) is an algebraic constraint

N =
1

6
cIJKM IMJMK = 1 +

1

12ℓ2
S

c2IM
I . (4.44)

If we write the inversion equation (4.40) in terms of the rescaled variables

M̂ I ≡ ℓSM I , (4.45)

it becomes
1

2
cIJKM̂JM̂K = qI +

1

8
c2I . (4.46)

This is an algebraic equation that determines M̂ I as functions of the charges qI and the

numbers cIJK and c2I . Given such a solution, M̂ I = M̂ I(qJ), the constraint (4.44) gives

the scale of the geometry

ℓ3
S =

1

6
cIJKM̂ IM̂JM̂K − 1

12
c2IM̂

I , (4.47)

where the right hand side is a function of the charges alone. Finally, (4.45) and (4.46) give

the physical moduli in the near horizon region as

MI =
qI + 1

8c2I
(

1
6cIJKM̂ IM̂JM̂K − 1

12c2IM̂ I
)2/3

,

M I =
M̂ I

(

1
6cIJKM̂ IM̂JM̂K − 1

12c2IM̂ I
)1/3

. (4.48)

The expressions (4.46)–(4.48) completely specify the near horizon geometry of the 5D black

hole.
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4.5 Example: K3 × T 2

In order to illustrate how our final expression (4.39) determines the entire radial dependence

of the solution, we next present a numerical solution in the special case of K3 × T 2. As

in the analogous magnetic example (section 3.5) we let M1 be the single modulus on the

torus and M i be the moduli of K3, where i = 2 . . . 23. The only non-vanishing intersection

numbers are then c1ij ≡ cij , where cij is the intersection matrix for K3, with inverse cij .

From MI = 1
2cIJKMJMK , we find

M1 = 1
2cijM

iM j , Mi = cijM
jM1 , (4.49)

We easily invert this to obtain the M I as functions of the MI

M1 =

√

cijMiMj

2M1
, M i = cijMj

√

2M1

cklMkMl
. (4.50)

The Chern class c2I is calculated on the 4-cycle Poincare dual to the I-th 2-cycle.

Therefore, the c2i vanish, leaving only c2,1 = c2(K3) = 24.

Substituting (4.41) into (4.50) to yields

M1 =

(

e2U cijHiHj

2H1 + 6(U ′)2

)1/2

, M i =

(

e2U cijHiHj

2H1 + 6(U ′)2

)−1/2

e2UcijHj , (4.51)

where primes denote derivatives with respect to r. The special geometry constraint (4.39)

is
1
2cijM

iM jM1 − 1 + e2U

[

(U ′′ +
3

r
U ′ − 4U ′2)M1 + U ′(M1)′

]

= 0 . (4.52)

The problem is now to insert (4.51) into (4.52) and solve for U(r).

This is straightforward to solve numerically, given specific choices of charges. Consider

a small black hole, q1 = 0 with q2 = q3 = 1, c23 = 1. We also assume H = H2 = H3 = 1+ 1
r2

are the only harmonic functions not equal to unity. Then (4.52) becomes

HU ′′ + (1 + 3(U ′)2)

[

U ′r−1

(

3 +
1

r2

)

+ H

]

− e−3U (1 + 3(U ′)2)3/2 = 0 . (4.53)

The boundary conditions are fixed by matching to the desired small r behavior

e−2U ∼ ℓ2
S

r2
, (4.54)

with ℓS = 3−1/6. The result of the numerical analysis is the U(r) shown in figure 2. It

exhibits the same kind of oscillations seen in [23, 24] and discussed in the end of section

3.5.

5. Entropy of electrically charged black holes

5.1 Entropy function

We now turn to the computation of the entropy of the electric black hole solutions. Due

to the higher derivative corrections, the relevant formula is Wald’s generalized expression
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Figure 2: Numerical solution of (4.53). The plot displays e−2U(r) for small r.

for the entropy as a surface integral over the horizon [39]. Generally it can be laborious

to integrate Wald’s entropy density, but the extremal black holes we consider have a near

horizon AdS2 factor, and for such black holes the problem reduces to evaluating an “entropy

function” at its extremum [7]. The entropy function is the Legendre transformation of the

action with respect to the electric charges. In our conventions, the precise expression is

S = πℓ2
Aℓ3

S

(

F I
tr

∂L
∂F I

tr

− L
)

, (5.1)

where L is the Lagrangian density evaluated in the near horizon AdS2 × S3 geometry.

5.2 Near horizon supersymmetry

To proceed we need to evaluate L = L0 + L1, and its derivative with respect to the field

strength. This task is greatly simplified by taking advantage of the conditions resulting

from enhancement of supersymmetry in the near horizon region. This means there is no

need to impose any projector condition on the Killing spinor ǫ, and so each term in the

supersymmetry conditions (2.2) vanishes by itself, rather than balancing off other terms.

To see how this works, recall that the variation of the auxiliary fermion includes the

term (4.9)

γcγabDavbc = −3

2
e2Uγt̂

(

1

r3
∂r(r

3∂rU) − 2(∂rU)2
)

. (5.2)

Taking this to vanish we immediately find a metric function of the form

e2U =
r2

ℓ2
S

, (5.3)
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for some ℓS . This is recognized as the metric function describing AdS2 × S3 (4.43) with

the scales of the constituent spaces related as

ℓA = 1
2ℓS . (5.4)

With the geometry in hand, the D-field (4.25) determined from the variation of the auxiliary

fermion becomes

D = 3e2U
(

∂2U − 6(∂U)2
)

= −12

ℓ2
S

, (5.5)

and the auxiliary two-form (4.13) determined from the gravitino variation becomes

vtr =
3

2
e2U∂rU =

3r

2ℓ2
S

. (5.6)

The gaugino variation (4.15) shows that the moduli M I are constants in the near horizon

region. It also gives the field strengths (4.18) as

F I
tr = −∂r(e

2UM I) = −2r

ℓ2
S

M I . (5.7)

Our general expression (4.28) for the electric charge can be written in the near horizon

region as

qI = −1
2ℓ2

Sr
∂L
∂F I

tr

. (5.8)

Using (5.4), (5.7), and (5.8), the entropy function becomes

S = π

(

ℓSq · M − ℓ5
S

4
L

)

. (5.9)

5.3 Evaluation of entropy function

Up until now we have just used the supersymmetry variations, which are independent of

the action. We now need to use details of the action. The first piece of information we need

is the modified special geometry constraint (4.39) coming from the D equation of motion.

Using the near horizon field values found above we recover (4.44)

N − 1 − c2 · M
12ℓ2

S

= 0 . (5.10)

Next, we need to evaluate the Lagrangian density. Using the near horizon supersymmetry

results, as well as (5.10), we find for the two derivative Lagrangian L0,

L0 =
4

ℓ2
S

+
1

3

c2 · M
ℓ4
S

, (5.11)

after some algebra. For the four derivative Lagrangian L1,

L1 = −1

2

c2 · M
ℓ4
S

, (5.12)
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after more algebra. Altogether

L = L0 + L1 =
4

ℓ2
S

− 1

6

c2 · M
ℓ4
S

, (5.13)

giving the entropy function

S = π

(

ℓSq · M − ℓ3
S +

1

24
ℓSc2 · M

)

. (5.14)

At this stage we could evaluate S by inserting the values for ℓS and M I obtained from our

explicit solutions, but it is more instructive to proceed by extremizing the entropy function.

This also serves as a useful consistency check on our results.

The problem consists of extremizing S with respect to ℓS and M I , while holding fixed

qI and imposing the constraint (5.10). We therefore add in a Lagrange multiplier and write

S = π

(

ℓSq · M − ℓ3
S +

1

24
ℓSc2 · M + λ

(

N − 1 − c2 · M
12ℓ2

S

))

. (5.15)

Extremizing gives

0 = q · M − 3ℓ2
S +

1

24
c2 · M +

1

6
λ

c2 · M
ℓ3
S

,

0 = ℓSqI +
1

24
ℓSc2I + λNI −

1

12
λ

c2I

ℓ2
S

,

0 = N − 1 − c2 · M
12ℓ2

S

. (5.16)

We can solve for λ as follows. Contract the second equation with 1
ℓS

M I , subtract it

from the first, and use the third to eliminate N . This gives

λ = −ℓ3
S . (5.17)

Before continuing, we can use these equations to rewrite the entropy in a suggestive

form. Using (5.17), and the first and third equations of (5.16), we insert into (5.15) to get

S = 2πN ℓ3
S . (5.18)

This is the same formula as we would find in the two derivative theory, except that in

that case we would have N = 1. From the higher dimensional point of view the condition

N = 1 corresponds to fixing the CY3 to have unit volume. More generally, if we continue

to think of N as the volume, then we see that (5.18) is precisely S = A/4G, with A

being the horizon area in 11 dimensions. However, one should perhaps not take this too

seriously, since in the presence of higher derivatives the metric, and hence the horizon area,

are subject to field redefinition ambiguities.

From (5.17) and the middle equation of (5.16) we can now solve for NI as

ℓ2
SNI = qI +

1

8
c2I . (5.19)
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This agrees with our previous result (4.42), which we obtained by integrating Gauss’ law

and matching onto charges defined in the asymptotically flat region. The agreement is a

nontrivial check on the consistency of our method (and the accuracy of our algebra).

We are now ready to find the entropy. Introducing the rescaled moduli

M̂ I = ℓSM I , (5.20)

as in (4.45), the entropy (5.18) becomes simply

S = 2π

(

1

6
cIJKM̂ IM̂JM̂K

)

. (5.21)

The rescaled moduli can be found by solving (5.19) written in the form

1
2cIJKM̂JM̂K = q̂I , (5.22)

where the shifted charge is defined as

q̂I = qI +
1

8
c2I . (5.23)

The solution to (5.22) will take the form M̂ I(q̂I) which we then insert in (5.21) to find the

entropy as function of the charges.

The value of ℓS can be computed by solving the special geometry constraint (5.10)

from which we recover our previous result (4.47) for ℓS . However, we do not actually need

ℓS to find the entropy, because the factors of ℓS were scaled away when arriving at the

entropy formula (5.21).

The computation of the entropy in terms of the q̂I is almost insensitive to the detailed

form of the action. All we need is (5.21) and (5.22) which could be derived using just

the conditions due to enhancement of supersymmetry. To get the right shift in the def-

inition (5.23) of q̂I , though, we need to use some information about the action, such as

the D equation of motion. Assuming we know this shift, we see that if we know the black

hole entropy in the two derivative theory, then the corrected entropy is obtained simply by

replacing the charges by the shifted charges.

Strictly speaking, the regime of validity of our computation only extends to terms first

order in c2I , since we only considered the addition of four-derivative terms to the action.

A priori, 2 + 2n derivative terms in the action will contribute at the same order as any

(c2I)
n terms. In the case of black holes / strings with near horizon geometry AdS3 × S2,

one can use anomalies and supersymmetry to prove that the four derivative action in fact

gives the exact expression for the large momentum behavior of the entropy [6, 22]. In the

present case it is also tempting to conjecture that the regime of validity extends beyond

the first order terms, at least in some cases.

5.4 Comparison with other results

Comparison with 4D black holes and the topological string. In [25] an entropy

formula for 5D black holes was conjectured, based on 4D results and the topological string
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partition function. The entropy is given by

S = F − φI ∂F
∂φI

, (5.24)

with

F = − 1

π2

(

DIJKφIφJφK − π2

6
c2Iφ

I

)

. (5.25)

This yields

S =
2

π2
DIJKφIφJφK . (5.26)

To convert to our notation, use

DIJK =
1

6
cIJK , φI = πM̂ I , (5.27)

so that the entropy becomes

S = 2π

(

1

6
cIJKM̂ IM̂JM̂K

)

, (5.28)

in precise agreement with (5.21).

On the other hand, in [25] the electric charges are

qI = − ∂F
∂φI

=
1

2
cIJKM̂JM̂J − 1

6
c2I , (5.29)

which is equivalent to

q̂I = qI +
1

6
c2I . (5.30)

This is to be compared with (5.23). Thus, when expressed in terms of the qI our entropy

formula will not agree with [25]. We hope to understand this discrepancy in future work.

We also note that the authors of [25] performed a 5D supergravity computation keeping

only the Gauss-Bonnet like term. This computation yielded a different discrepancy, which

is not surprising since the full action contains many more terms at this order.

K3 × T 2 black holes. In general we have to invert (5.22) to express the entropy in

terms of the electric charges qI . This can be done explicitly when cIJK are the intersection

numbers for K3×T 2. This is basically the same problem we solved in (4.50), with solution

M̂1 =

√

cij q̂iq̂j

2q̂1
, M̂ i =

√

2q̂1

cklq̂kq̂l
cijqj . (5.31)

The entropy is then

S = π
√

2q̂1cij q̂iq̂j = π
√

2(q1 + 3)cijqiqj . (5.32)

A small black hole corresponds to taking q1 = 0, such that the M2-branes lie entirely within

K3. The higher derivative terms give a finite size horizon to this would-be singular charge

configuration.
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Elliptically fibred Calabi-Yau black holes. There is no known microscopic descrip-

tion of black holes made from wrapping M2-branes on a generic Calabi-Yau. However,

in [26] Vafa proposed such a description for an elliptically fibred Calabi-Yau. This pro-

posal yields a correction to the entropy that has the right form to match with a four

derivative term in five dimensions. We can use our results to check that the coefficient also

agrees.

Consider M-theory on a Calabi-Yau 3-fold K realized as an elliptic fiber E over a base

space B. Wrap M2 branes along a two-cycle [C]+n[E], i.e. one that has components along

the fiber and also along C ⊂ B. In [26] it was argued that the relevant moduli space is

the symmetric product Symn(Ĉ), where Ĉ is an elliptically fibred four manifold with base

C. BPS states are then computed from the cohomology of Ĉ in the standard fashion. The

cohomology leads to the entropy formula

S = π
√

2n(C · C + 3c1(C) + 2) , (5.33)

where the intersection products refer to the base B. This formula is valid for large n. Now,

if we follow [26] and use c1(C) = 1
12c2(Ĉ), we see that the leading order correction to the

entropy corresponds to the shift

C · C → C · C +
1

4
c2(Ĉ) . (5.34)

This matches the leading order shift obtained from (5.23),

q̂ · q̂ ≈ q · q +
1

4
c2 · q . (5.35)
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A. Conventions

We briefly summarize our conventions. The metric signature is mostly minus ηab =

diag(+,−,−,−,−).5 Covariant derivatives of spinors are defined as

Dµ = ∂µ +
1

4
ω ab

µ γab , (A.1)

where ωab are the spin-connection one forms related to the vielbein through the Cartan

equation

dea + ωa
b ∧ eb = 0 . (A.2)

Our convention for the curvature is

Rλ
µνκ = ∂κΓλ

µν − ∂νΓ
λ
µκ + Γσ

µνΓλ
κσ − Γσ

µκΓλ
νσ . (A.3)

5The signature is opposite to that in our previous paper [21].
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The scalar curvature is then, e.g., R = p(p−1)
ℓ2A

− q(q−1)
ℓ2S

for AdSp × Sq. The Weyl tensor is

given by

Cabcd = Rabcd −
2

3
(ga[cRd]b − gb[cRd]a) +

1

6
ga[cgd]bR . (A.4)

Anti-symmetric products of gamma-matrices are normalized so that γabcde = εabcde where

ε01234 = 1.

Finally, we take G5 = π
4 and measure moduli in units of 2πℓ11. In these units the

charges are quantized (for review see [40]).
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