
649

Weaving a Four-dimensional Mesh Model from a Series of Three-dimensional
Voxel Models

Masahiko Onosato1, Yosuke Saito2, Fumiki Tanaka3 and Ryoji Kawagishi4

1Hokkaido University, onosato@ssi.ist.hokudai.ac.jp
2Hokkaido University, saito@dse.ssi.ist.hokudai.ac.jp
3Hokkaido University, ftanaka@ssi.ist.hokudai.ac.jp

4FOR-A Co. Ltd.

ABSTRACT

This paper presents a method of four-dimensional (4-D) mesh modeling that generates a 4-D mesh
model from a series of three-dimensional (3-D) voxel models. To reduce the size of model data and
the computing time for mesh generation, the authors have been developing 4-D Mesh Weaver which
generates a 4-D mesh model in a compact data model by incrementally loading 3-D voxel files. For effi-
cient processing in 4-D Mesh Weaver, a 4-D triangulation table was preprocessed for fast processing,
and an algorithm of 4-D mesh generation was improved so as to avoid the redundant vertices of mesh
tetrahedrons.

Keywords: four-dimensional model, tetrahedron mesh, voxel, marching hyper-cube.

1. INTRODUCTION

Four-dimensional (4-D) modeling for representing
and analyzing a dynamic object which continuously
changes its shape and position over time is now
required in various fields such as robotics [5], man-
ufacturing [8], building construction [8], medical sci-
ence [4] and so on. The much-used way for 4-D repre-
sentations is to make a series of three-dimensional (3-
D) frames in which objects at specific time points are
represented as 3-D geometric models. This approach
to 4-D modeling based on conventional 3-D model-
ing divides a continuous spatio-temporal space into
cross-sectional 3-D subspaces, each of which repre-
sents an object’s scene with no time variations. The
behavior of a dynamic object is discretely recorded as
a series of static 3-D frames as well as movie films
and animation videos. To evaluate time-dependent
properties of the object like motion and deformation,
we should retrieve the necessary scenes at particu-
lar time points and then reproduce the changes of
the object from its multiple 3-D models. Thus, the
time axis in a spatio-temporal space is treated dif-
ferently than other three axes of a 3-D subspace and
the way of evaluating time-dependent properties is
deeply dependent on the programming of model data
handling.

Four-dimensional geometric modeling is intro-
duced to represent a dynamic object in a 3-D space as
a static object in a 4-D space. The time axis is contin-
uously dealt with in the same way as the other three
axes. The authors’ research group in Hokkaido Uni-
versity has been studying 4-D geometric modeling for
representing a dynamic object in mechanical design
and manufacturing from 2007. Our first step of 4-D
geometric modeling is to develop a 4-D mesh model-
ing system with which the results of 3-D motion and
deformation simulation are continuously recorded as
a 4-D geometric model. Fig. 1 shows the configuration
of the 4-D mesh modeling system developed by the
authors’ group and named 4-D Mesh Modeler. This
paper mainly focuses on the process of 4-D mesh
weaving in 4-D Mesh Modeler shown in Fig. 1. This
process has been implemented as 4-D Mesh Weaver,
one of the subsystems of 4-D Mesh Modeler. With
4-D Mesh Weaver, 3-D voxel models captured from
a 3-D simulator are incrementally translated into a
continuous 4-D mesh model.

This paper firstly provides a brief introduction of
4-D geometry and tetrahedron mesh representation
in the next section, then makes an explanation of
Bhaniramka’s isosurfacing method [2] using 4-D vox-
els in Section 3. In Section 4, the main part of this

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

mailto:onosato@ssi.ist.hokudai.ac.jp
mailto:saito@dse.ssi.ist.hokudai.ac.jp
mailto:ftanaka@ssi.ist.hokudai.ac.jp

650

Fig. 1: Concept of 4-D Mesh Weaver in 4-D geometric modeling.

Fig. 2: Simplex and cube in 3-D and 4-D space.

paper, an efficient method in 4-D mesh weaving and
its implementation of 4-D Mesh Weaver are explained
with 4-D mesh model examples. Section 5 provides
some issues related to 4-D mesh modeling, followed
by conclusions in Section 6.

2. FOUR-DIMENSIONAL MESH MODEL

2.1. Geometrical Elements in Four-dimensional
Space

As an introduction of 4-D geometric modeling, let us
start with explanation of geometrical elements in 4-D
space. The simplest shape in 3-D space (3-simplex) is a
tetrahedron, which has 4 vertices (V), 6 edges (E), and
4 faces (F). A cube is the most popular polyhedron in
3-D space. Every polyhedron in 3-D space satisfies the
equation V − E + F = 2. (See Fig. 2 (a).) In 4-D space,
4-simplex is a pentachoron, which has 5 vertices, 10
edges, 10 faces, and 5 cells (C) as shown in Fig. 2 (b).
The four-dimensional analogue of a cube is a hyper-
cube, which has 16 vertices, 32 edges, 24 square faces,
and 8 cells. As well as 3-D space, every polychoron in
4-D space satisfies the equation V − E + F − C = 0.

Each polychoron in 4-D space is bounded by cells,
as well as each polyhedron in 3-D space is bounded
by faces. Cells in 4-D space are polyhedrons on 3-D
subspaces (hyperplanes), and they can be decom-
posed into tetrahedrons. Thus, every polychoron in
4-D space is represented by a set of tetrahedrons on
its boundary, which is called 4-D mesh model in this
study.

Four points placed in 4-D space pi = (xi , yi , zi , ti) ∈
R4, (i = 0, . . . , 3) are formed a tetrahedron on a unique
hyperplane which normal vector n is calculated by
normalizing following 4-D vector m as n = m/|m|.

m =

∣
∣
∣
∣
∣
∣
∣
∣

ex ey ez et
x1 − x0 y1 − y0 z1 − z0 t1 − t0
x2 − x0 y2 − y0 z2 − z0 t2 − t0
x3 − x0 y3 − y0 z3 − z0 t3 − t0

∣
∣
∣
∣
∣
∣
∣
∣

(2.1)

where ex , ey , ez and et are unit vectors along x, y, z
and t axes respectively.

To determine which half space is inside or out-
side of each boundary tetrahedron consistently, the
serialization of tetrahedron’s four vertices is very
important. For example, index order 0-1-3-2 reverses
a normal vector of index order 0-1-2-3. Such an impor-
tant note on the normal vector direction of tetra-
hedron elements in 4-D space is just similar to the
distinction of CW/CCW loops of triangles in 3-D mesh
modeling.

2.2. Data Structure of Four-dimensional Mesh
Models

Four-dimensional mesh modeling needs more geo-
metric elements than ones in 3-D mesh modeling.
To understand higher dimensions increase the num-
ber of geometric elements for model representa-
tion, a simple example of a 4-D model is explained
here.

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

651

Fig. 3: A simple example of a 4-D modeling: tetrahedron’s deformation.

Fig. 4: Geometric data structure of a 4-D mesh model for tetrahedron’s deformation.

An example shown in Fig. 3 is a deforming tetra-
hedron. At time 0, four vertices the tetrahedron are
at 4-D coordinate a, b, c and d respectively. At time
1, three points a, b and c stay at the same x, y and z
coordinates as time 0, but d (0, 0, 1, 0) is continuously
moving to point D (1, 1, 1, 1) shown in Fig. 3. Con-
sequently the tetrahedron is deformed during time 0
and 1. Then, let us see how the deformation process
is represented in 4-D mesh modeling.

Fig. 4 shows geometric elements and their rela-
tions defined in the 4-D mesh model of a deforming

tetrahedron. All vertices in the 4-D model come from
original tetrahedron’s vertices; a, b, c, d, A, B, C, and
D. There are 14 cells that determine the boundary of
the 4-D body. Two of them are original tetrahedrons
abcd and ABCD and the others are newly generated
during time 0 and 1. Each tetrahedron has four adja-
cent tetrahedrons and shares its triangle faces with
them. The numbers of triangle faces and edges are 28
and 22 respectively.

The complicated data structure of a 4-D mesh
model shown in Fig. 4 is prepared to demonstrate

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

652

Fig. 5: Hypercube’s vertex index numbers (left) and edge index numbers (right).

Fig. 6: Distribution of tetrahedron elements defined in 4-D triangulation table.

how many geometric entities and relations are neces-
sary for representing a simple 4-D body. To reduce the
data size of 4-D mesh models, we can omit faces and
edges from 4-D model structure since these entities
and relations are uniquely derived from data of cells.
Information about faces and edges are efficiently
retrieved by introducing neighborhood links that con-
nect adjacent tetrahedrons.

3. ISOSURFACING A FOUR-DIMENSIONAL VOXEL
MODEL

One of the most feasible ways to construct 4-D mesh
models is to do isosurfacing 4-D voxel data pro-
posed by Bhaniramka, et al. [2] in 2000. Bhaniramka’s
method extends the marching cubes for 3-D space
by Lorensen et al. [9] to 4-D space. The 4-D march-
ing cubes method translates 4-D voxel data to a set
of tetrahedrons by looking up the 4-D triangulation
table for 216 patterns of hypercubes. Each pattern
is identified by 16 bits of inside/outside flags and

it means one of numbers from 0 (all voxels are out-
side) to 65,535 (all voxels are inside). All vertices of
tetrahedrons generated in the 4-D marching cubes
method are located on edges of a hypercube and
identified by using edge index number as shown
in Fig. 5.

The 4-D triangulation table provides a mapping
between hypercube pattern codes and a set of tetra-
hedrons to be generated. For example, a hypercube
pattern code 10 (23 + 21), which means vertex No. 1
and 3 have an inside flag and other vertices are all
outside, has three tetrahedron patterns which edge
numbers are 15-3-7-13, 7-3-5-13, and 3-0-5-13. This
mapping table contains 65,536 hypercube patterns
and 856,960 tetrahedrons that are classified into
8,036 vertex-on-edge patterns. As shown in Fig. 6,
hypercube patterns in 4-D triangulation table are
translated to an average of 13.1 tetrahedron elements,
and at most, 26 tetrahedrons. Thus, the 4-D march-
ing cubes method usually outputs a large number
of tetrahedrons from 4-D voxel data and this makes
it difficult to apply this approach to a large-scale
time-varying data [10].

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

653

4. FOUR-DIMENSIONAL MESH WEAVER

4.1. Problems of 4-D Mesh Generation from 4-D
Voxel Data

Four-dimensional mesh generation in 4-D space by
marching cubes is almost the same as one in 3-D
space except for its large data size. To make a 4-D
mesh modeling system executable on a desktop PC
with good interactivity, it is necessary to reduce
both memory size and computing time used for 4-D
mesh generation. Main problems to be solved are as
follows;

• Big data size of 4-D voxel: The size of 4-D voxel
data easily exceeds the capacity of a computer
when you want to make a long-term model or
precise time-step model. While the data size of
10243 voxels and 1B/voxel in 3-D space is about
1GB, a 4-D voxel model extended for 1024 time-
steps requires 1TB of memory.

• Large 4-D triangulation table: As described in
Section 3, the 4-D triangulation table contains
856,960 tetrahedrons for 65,536 hypercube pat-
terns. The size of its ASCII file is approximately
9.4MB and it requires almost the same size of
memory when the file is loaded. Although the
size is not so large compared with 4-D voxel
and 4-D mesh model, a smaller sized table is
preferable for parallel processing by GPGPU.

• Time-consuming process of merging redun-
dant vertices: When tetrahedron generation in
4-D marching cubes is executed on each hyper-
cube independently, vertices of generated tetra-
hedrons are newly created on edges of each
hypercube. Since every edge of a hypercube is
shared with other seven neighbor hypercubes,
eight vertices may be created on the same edge
in multiple. Merging redundant vertices is a
necessary process to evaluate the adjacency of
tetrahedrons and to reduce the memory space
for a 4-D mesh model, but it is the mostly time-
consuming process in 4-D mesh generation.

• Enlarged topological structure: To add a dimen-
sion to 3-D modeling makes geometric model
structure of boundary representations more
complicated due to the introduction of a new
topological element, cell, and increase data ref-
erence links between topological elements as
shown in Fig. 4.

To resolve or avoid these problems, the authors’
group has been implementing a lean mesh translator
named 4-D Mesh Weaver.

4.2. Incremental Processing of a Series of 3-D
Voxel Models

As described in Subsection 4.1, 4-D voxel data are too
large to be allocated on the main memory in whole.

Most applications of 4-D mesh modeling are related to
time-variation processes and produce a time series of
3-D voxel data incrementally. To prepare hypercubes
of inside/outside patterns for tetrahedron mesh gen-
eration, at least two successive 3-D voxel models
should be loaded on the main memory. The 4-D mesh
data generated from hypercubes can be incrementally
added to model data file, and then cleared from the
memory. This step-by-step mesh generation of 4-D
Mesh Weaver, as well as incremental generation in 3-D
marching cube[9] ,enables to reduce the size of main
memory and build a 4-D mesh model of many time
steps.

As a part of the 4-D mesh modeling system, we
have been developing a capturing tool for a series of
3-D voxel models. This tool uses OpenGL’s API hook
and captures OpenGL commands of scene definition
from a 3-D application such as simulator. Captured
commands of OpenGL are executed on a graphic
board and 3-D voxel data are prepared on the graphics
memory of the board by using Eisemann’s voxeliza-
tion method [6]. This approach eliminates the need
of preparing large 3-D voxel data files and has a high
compatibility with parallel processing on GPGPU. In
this paper, we won’t go into a detail of this 3-D voxel
data capturing tool using API hook and a graphic
board.

4.3. Preprocessing of a 4-D Triangulation Table

The 4-D triangulation table is the most important part
in 4-D mesh generation, and it is referred by each
hypercube to decide tetrahedron patterns to be gen-
erated. We analyzed the content of the original 4-D
triangulation table that consists of tuples of a hyper-
cube pattern code, the number of tetrahedrons, and
vertex index sequences, and then designed a data
structure of the 4-D triangulation table so as to reduce
memory space and operation steps.

The data structure of the 4-D triangulation table is
illustrated in Fig. 7. The original table is converted to
two tables and a list: the hypercube pattern table, the
tetrahedron list, and the edge list table. The hyper-
cube pattern table is an entry table that gives the
number of tetrahedrons, new vertex flag code, and
start index of the tetrahedron list. Each vertex flag
code has information of vertices on a hypercube to
be created. As explained later, possible new vertices
in a hypercube are No. 19, 27, 30, and 31 in Fig. 5
(right) and 4 bits in 1 byte are used as flags of “cre-
ated” or “not created”. The tetrahedron list just stores
tetrahedron indices referred from the hypercube pat-
tern table. This list needs large memory for more than
8.5 × 105 tetrahedrons. To make this list compact,
we introduce tetrahedron pattern indices. We have
analyzed tetrahedron patterns of a hypercube in 4-D
marching cubes and assigned an index to each pat-
tern. By using tetrahedron pattern indices instead of
lists of tetrahedron vertices code, the size of required

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

654

Fig. 7: Data structure of 4-D triangulation table preprocessed for efficiency.

Fig. 8: Indexing concept of boxes and vertices in a simplified 2-D example.

memory is reduced to almost one-third. The edge list
table is used to get a list of tetrahedron’s vertices gen-
erated on hypercube edges from tetrahedron pattern
indices.

4.4. Advancing Frontier Edge Algorithm of 4-D
Marching Cubes

As described in Subsection 4.1, multiply created ver-
tices on hypercubes require larger memories for tem-
poral working space and long computation time for
merging vertices. Based on 3-D approach[11], the
authors have developed an advancing frontier edge
algorithm of 4-D marching cubes by which the ver-
tex merge process is not necessary since each vertex
is created just one-time. To explain this algorithm, a
simplified example of mesh generation from a series
of one-dimensional voxel models is introduced and
illustrated in Fig. 8 and Fig. 9.

A time series of 1-D voxel (vector) models that
stores 0/1 values is loaded to a main memory one-
by-one. The first voxel model, t = 0, is prepared for
model-end termination and its values are set to all
zero. When the length of voxel model is Nx + 1, Nx

boxes are prepared and set in line. Each box has its
coordinate values (x, t) and index value calculated as
k = x + Nxt. Each box has four vertices a, b, c and
d as shown in Fig. 9. The edges c-d and b-d on the
box are named advancing frontier edges since these
edges have no adjacent boxes as processed. As shown
in Fig. 8, each box has two levels; the lower level
with vertices a, b and the upper level with vertices
c, d. The lower level vertices are holding values of the
previous voxel model, while the upper level is hold-
ing the current model. A voxel value of the current
model is set to each vertex of two adjacent boxes. In
Fig. 8, vertex d on the box indexed k has the same
value with vertex c on the box indexed k + 1. To dis-
tinguish the vertices created on edges, a notation of
(box index): (edge index) is introduced. A vertex on
the right edge has the edge index of 0, and one on
the top edge has 1. The left edge index is also 0
as well as the right edge, but we use the left box
index. A vertex on the bottom edge is referred by
the box index of the previous layer. This indexing
method enables duplication-free creation of vertices.
Fig. 9 shows the process of line generation based
on the advancing edge frontier algorithm. When the

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

655

Fig. 9: Line generation process in a simplified 2-D example.

Edge dx dy dz dt Pn Edge dx dy dz dt Pn Edge dx dy dz dt Pn

0 0 −1 −1 −1 3 12 −1 −1 −1 0 0 20 0 −1 −1 0 3
1 −1 0 −1 −1 2 13 0 −1 −1 0 0 21 −1 0 −1 0 2
2 0 0 −1 −1 2 14 −1 0 −1 0 0 22 0 0 −1 0 2
3 0 0 −1 −1 3 15 0 0 −1 0 0 23 0 0 −1 0 3
4 −1 −1 0 −1 1 16 −1 −1 0 0 0 24 −1 −1 0 0 1
5 0 −1 0 −1 1 17 0 −1 0 0 0 25 0 −1 0 0 1
6 −1 0 0 −1 1 18 −1 0 0 0 0 26 −1 0 0 0 1
7 0 0 0 −1 1 19 0 0 0 0 0 27 0 0 0 0 1
8 0 −1 0 −1 3 28 0 −1 0 0 3
9 −1 0 0 −1 2 29 −1 0 0 0 2

10 0 0 0 −1 2 30 0 0 0 0 2
11 0 0 0 −1 3 31 0 0 0 0 3

Tab. 1: Hypercube edge numbers and offset parameters for hypercube index coding.

line generation process for one layer is completed,
the vertices on the upper level and the lower level
are swapped, and the upper level is cleared for new
layer setting. By swapping the two levels and reusing
them, the space of main memory is necessary only for
one layer.

This algorithm explained in 2-D space can be natu-
rally extended to 4-D space as the advancing frontier
edge algorithm for 4-D marching hypercubes. In 4-D
space, there are four advancing frontier edges in a
hypercube as shown in Fig. 5 (right). They are No. 19,
27, 30 and 31, and referred as 0, 1, 2 and 3 respec-
tively. Each hypercube has a coordinate (x, y, z, t) in
4-D space and its hypercube index value is defined as
k = x + Nx(y + Ny(z + Nzt)), where Nx , Ny , Nz are the
numbers of hypercubes along x, y, and z respectively.
A vertex created on an edge of a hypercube is noted
as the combination of a hypercube index code k and
an edge identifier Pn as k: Pn as defined in following
formula (4.1) and Tab.1.

k = (x + dx + Nx(y + dy + Ny(z + dz + Nz(t + dt))))
(4.1)

Created vertices notated in k : Pn form are sorted
in a vertex list and each of them is assigned an index
number of the vertex list.

4.5. Compact Data Structure for 4-D Mesh Models

Four-dimensional geometric modeling easily increases
the amount of models data, and much care of model
data reduction is needed for software implementa-
tion. Because the 4-D mesh modeling deals with only
tetrahedrons as boundary elements in 4-D space, the
authors have designed a compact data structure for
4-D mesh models. This data structure represents
essential elements and relations for 4-D mesh models
and additional attributes can be added to the struc-
ture for the use of applications or for faster calcula-
tion. The data structure for 4-D mesh model consists
of three object classes: 4-D body, Tetrahedron, and
Vertex as shown in Fig. 10.

The class Tetrahedron is the key object in the 4-D
mesh modeling. It holds a sequence of four vertices
and a sequence of four neighbor tetrahedrons. The

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

656

Fig. 10: Compact data structure of 4D tetrahedron for representing connection network.

direction of the normal vector in a tetrahedron is
determined by the order of vertices as described in
Subsection 2.1. Every tetrahedron shares its triangle
faces with its neighbor tetrahedrons. In the case of
Fig. 10, tetrahedron #1 is connected by next link 0 to
tetrahedron #2 via mating triangle face p1 − p2 − p3.
Mating triangle faces are identified by a vertex not
included in the triangle face. Therefore, triangle face
p1 − p2 − p3 is uniquely identified by the excluded
vertex p0 and the index of its next link is used as
the same index number as the excluded vertex. On
the other hand, tetrahedron #2 is connected to tetra-
hedron #1 with next link 2 by mating triangle face
p3 − p2 − p1.

An object of the 4-D body class keeps a list of
vertices, a list of tetrahedrons, and other attribute
items. In addition to the compact data structure based
on tetrahedron objects, a tree structure of 4-D AABB
(axis-aligned bounding box) can be added to a 4-D
body object for quick estimation of object intersec-
tions. The vertex class is defined as a subclass of 4-D
vector class and just keeps four numbers for 4-D coor-
dinate values. The authors have a plan to apply the
compact representation method proposed by Bland-
ford, et al. [3] for 2-D and 3-D meshes to 4-D mesh
models.

5. FOUR-DIMENSIONAL MESH WEAVER

The 4-D mesh generation method described in
Section 4 has been implemented as a C++ program
named 4-D Mesh Weaver on PC. This program is

running as a file converter from a time series
of 3-D voxel files to a 4-D mesh file as shown
in Fig. 11. Four-dimensional geometric modeling
is not a new idea itself, but it has been consid-
ered as an impractical idea due to its larger data
size, longer processing time, complex data structure,
and hard-to-understand operations. The increasing
capability of computer hardware and software is
gradually resolving these problems so as to make
the idea of 4-D geometric modeling practical. The
authors expect that 4-D geometric modeling can con-
tribute to find new approaches to spatio-temporal
problems.

An example of 4-D mesh generation by a conven-
tional approach and 4-D Mesh Weaver is summarized
in Fig. 11 and Tab. 2. The conventional approach
consists of two steps: mesh generation with dupli-
cated vertices and merging vertices. The number
of unmerged vertices is eight times of the merged
vertices. In this example, merging process made elim-
ination of vertices excessively and it causes inappro-
priate elimination of tetrahedrons. The processing
time by 4-D Mesh Weaver is almost one-third of the
conventional approach. The 4-D Mesh Weaver can
translate 3-D voxel files of 32 time steps into a 4-
D mesh model. This means that three voxel data in
1283 format can be processed in each second, using
only single CPU. The target of 4-D Mesh Weaver is
to process ten 3-D scenes in 10243 resolution in
every second. The parallel processing using multiple
CPU, GPGPU, and cloud computing environment will
encourage this challenge.

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

657

Fig. 11: Model data processing by 4-D Mesh Weaver.

Input Models Voxel files X,Y,Z:128, T:32 value 0/1 2.05MB/file
PC specification Windows 7, Intel Corei7 870 2.93GHz, 16GB, Visual Studio 2010 C++, 64bits

Process
Unmerged vertices Merged vertices Tetrahedrons Time[sec]

Conventional 27,684,470 2,326,981 16,035,881 32.3
4-D Mesh Weaver N/A 3,460,588 20,784,259 10.3

Generated 4-D mesh model file 379MB

Tab. 2: Comparison of 4-D mesh generation between conventional approach and 4-D Mesh Weaver.

Fig. 12: Hyperplane cutting views of 4-D mesh model by 4-D Mesh Viewer.

Fig. 12 shows the cutting sections of the 4-D mesh
model used in the example. Because we cannot see
a 4-D mesh model directly, 4-D Mesh Viewer cuts a
4-D mesh model by a specified hyperplane, extracts
cross-sections of tetrahedrons, and forms a 3-D mesh

model for computer graphics. When we cut a 4-D
mesh model with a series of time-orthogonal hyper-
plane step-by-step, we can reproduce the animation
of dynamic objects.

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

658

6. CONCLUSIONS

Four-dimensional geometric modeling is not a new
idea itself, but it has been considered as an imprac-
tical idea due to its larger data size, longer processing
time, complex data structure, and hard-to-understand
operations. The increasing capability of computer
hardware and software is gradually resolving these
problems so as to make the idea of 4-D geometric
modeling practical.

This paper dealt with only a small part in the
4-D geometric modeling framework. Input and output
data were limited to a series of 3-D voxel models and
a 4-D mesh model respectively. This combination is
the first step and the authors have a plan to exam-
ine various combinations of spatio-temporal input
data models and 4-D modeling methods. For example,
the authors are now developing a 4-D shape repre-
sentation and operation method based on implicit
function. The approach of 4-D point cloud and 4-D
Delaunary triangulation by Aganj, et al.[1] will expand
the possibility of 4-D geometric modeling.

The authors expect that 4-D geometric modeling
can contribute to find new approaches to spatio-
temporal problems in various fields such as design,
manufacturing, robotics, computer vision, medicine,
geoscience and so on.

ACKNOWLEDGEMENT

This work was partly supported by JSPS Grant-in-Aid
for Challenging Exploratory Research, Grant Number
24656106.

REFERENCES

[1] Aganj, E.; Pons, J-P.; Keriven R.: Globally opti-
mal spatio-temporal reconstruction from clut-
tered videos. Proc. 9th Asian Conference on
Computer Vision, 2009, 667–678.

[2] Bhaniramka, P.; Wenger, R.; Crawfis, R.: Iso-
surfacing in higher dimensions, Proc. of the
conference on Visualization ‘00, 2000, 267–
273.

[3] Blandford, D.K.; Blelloch, G.E.; Cardoze, D.E.;
Kadow, C.: Compact Representations of Sim-
plicial Meshes in Two and Three Dimensions,
International Journal of Computational Geom-
etry & Applications, 15(1), 2005, 3–23.

[4] Brock, K.M., et al.: Automated generation
of a four-dimensional model of the liver
using warping and mutual information, Medical
Physics, 30(6), 2003, 1128–1133. DOI:10.1118/
1.1576781

[5] Cameron, S.: Collision Detection by Four-
Dimensional Intersection Testing, IEEE Trans-
actions on Robotics and Automation, 6(3),
1990, 291–302.

[6] Eisemann, E., et al.: Single-Pass GPU Solid
Voxelization for Real-Time Application, Proc.
Graphics Interface 2008, 2008, 73–80.

[7] Ji, G.; Shen, H.-W.; Wenger, R.: Volume Tracking
Using Higher Dimensional Isosurfacing, 2003,
Proc. the 14 th IEEE Visualization Conference,
209–216.

[8] Kameyama, H.; Otomo, I.; Onosato, M.; Tanaka,
F.: Representing Continuous Process of Work-
piece Transformation in Five-Axis Machining
Using Spatio-Temporal Model, Proc. of 2012
Asian Conference on Design and Digital Engi-
neering, 2012, #100098

[9] Lorensen, W.E.; Cline, H.E.: Marching cubes:
A high resolution 3d surface construction
algorithm, Computer Graphics, 21(4), 1987,
163–169.

[10] Shen, H.-W.: Time-Dependent Isosurface Extrac-
tion, in Charles, D., et al. eds. The Visualization
Handbook, Academic Press, 2011, 57–67.

[11] Wyvill, G.; McPheeters, C.; Wyvill, B.: Data struc-
ture for soft objects, The Visual Computer,
1986, 2, Springer-Verlag, 227–234.

[12] Zhang, J.P.; Hu, Z.Z.: BIM- and 4D-based inte-
grated solution of analysis and management
for conflicts and structural safety problems
during construction: 1. Principles and method-
ologies, Automation in Construction, 20, 2011,
155–160. DOI:10.1016/j.autcon.2010.09.013.

Computer-Aided Design & Applications, 11(6), 2014, 649–658, http://dx.doi.org/10.1080/16864360.2014.914383
c© 2014 CAD Solutions, LLC, http://www.cadanda.com

	INTRODUCTION
	FOUR-DIMENSIONAL MESH MODEL
	Geometrical Elements in Four-dimensional Space
	Data Structure of Four-dimensional Mesh Models

	ISOSURFACING A FOUR-DIMENSIONAL VOXEL MODEL
	FOUR-DIMENSIONAL MESH WEAVER
	Problems of 4-D Mesh Generation from 4-D Voxel Data
	Incremental Processing of a Series of 3-D Voxel Models
	Preprocessing of a 4-D Triangulation Table
	Advancing Frontier Edge Algorithm of 4-D Marching Cubes
	Compact Data Structure for 4-D Mesh Models

	FOUR-DIMENSIONAL MESH WEAVER
	CONCLUSIONS
	ACKNOWLEDGEMENT
	References

