
GL4D: A GPU-based Architecture for Interactive 4D Visualization
Alan Chu, Chi-Wing Fu, Member, IEEE, Andrew J. Hanson, Member, IEEE, and Pheng-Ann Heng, Member, IEEE

Abstract—This paper describes GL4D, an interactive system for visualizing 2-manifolds and 3-manifolds embedded in four Euclidean
dimensions and illuminated by 4D light sources. It is a tetrahedron-based rendering pipeline that projects geometry into volume
images, an exact parallel to the conventional triangle-based rendering pipeline for 3D graphics. Novel features include GPU-based
algorithms for real-time 4D occlusion handling and transparency compositing; we thus enable a previously impossible level of quality
and interactivity for exploring lit 4D objects. The 4D tetrahedrons are stored in GPU memory as vertex buffer objects, and the vertex
shader is used to perform per-vertex 4D modelview transformations and 4D-to-3D projection. The geometry shader extension is
utilized to slice the projected tetrahedrons and rasterize the slices into individual 2D layers of voxel fragments. Finally, the fragment
shader performs per-voxel operations such as lighting and alpha blending with previously computed layers. We account for 4D voxel
occlusion along the 4D-to-3D projection ray by supporting a multi-pass back-to-front fragment composition along the projection ray;
to accomplish this, we exploit a new adaptation of the dual depth peeling technique to produce correct volume image data and to
simultaneously render the resulting volume data using 3D transfer functions into the final 2D image. Previous CPU implementations of
the rendering of 4D-embedded 3-manifolds could not perform either the 4D depth-buffered projection or manipulation of the volume-
rendered image in real-time; in particular, the dual depth peeling algorithm is a novel GPU-based solution to the real-time 4D depth-
buffering problem. GL4D is implemented as an integrated OpenGL-style API library, so that the underlying shader operations are as
transparent as possible to the user.

Index Terms—Mathematical visualization, four-dimensional visualization, graphics hardware, interactive illumination.

1 INTRODUCTION

Visualizing geometric objects embedded in four-dimensional space is
an interesting and challenging problem with a long history [1, 18, 25].
Since our everyday physical world is three-dimensional, we find it dif-
ficult to envision objects that are naturally defined in four dimensions.
Computer graphics modeling tools, which are not constrained by the
physical world, therefore provide a natural approach to rendering and
interacting with high-dimensional mathematical objects and learning
how to visualize their properties. The visualization environment we
describe in this paper provides interactive computer tools for inspect-
ing and exploring geometric objects defined using four-dimensional
coordinate systems using generalized lighting and rendering methods;
recent advances in graphics processors permit the interactive imple-
mentation both of standard but formerly-slow features such as 4D
depth culling and new features such as 4D alpha blending. A basic
and fundamental fact is that 3-manifolds are required to create plau-
sible 4D analogs of 3D lighting models, so that the rendering prob-
lem itself is supplemented by a model-extension problem for surfaces.
Thus typical examples of interesting basic 4D objects include the hy-
percube or tesseract, which is already a 3-manifold and therefore di-
rectly renderable, and the flat torus (T 2), which is a two-manifold and
therefore must be thickened in some way to turn it into a renderable 3-
manifold. Among the other wide classes of interesting objects that can
be studied with our 4D rendering methods are complex functions of
one complex variable and complex polynomial surfaces in two com-
plex variables [20]. Among the spectrum of 4D visualization tech-
niques that the environment described here can support at interactive
frame rates we note, for example, 4D depth buffering, 4D alpha blend-
ing, 3D volume viewing of the projected 4D geometry with tunable

• Alan Chu is with the Chinese University of Hong Kong; E-mail:
achu@cse.cuhk.edu.hk .

• Chi-Wing Fu is with the Nanyang Technological University, Singapore;
E-mail: cwfu@ntu.edu.sg .

• Andrew J. Hanson is with Indiana University, Bloomington; E-mail:
hansona@indiana.edu .

• Pheng-Ann Heng is with the Chinese University of Hong Kong; E-mail:
pheng@cse.cuhk.edu.hk .

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

transfer functions, stereo imaging, and a full 4D diffuse plus specular
illumination model.

With the migration from fixed-pipeline rendering to programmable
pipeline rendering [28, 33], the OpenGL API had undergone a radi-
cal revision, allowing the OpenGL API to exploit the massive parallel
floating point computation power in the underlying graphics hardware
for rendering as well as general purpose computation. One of our ob-
jectives here is thus to propose a novel architectural design, GL4D,
specifically to exploit programmable shaders in the GPU to efficiently
perform high-quality interactive 4D rendering and visualization. The
GL4D architecture includes the following functionalities:

• Defining 4D geometry model data and managing the data trans-
fer to the graphics hardware;

• Performing 4D modelview and projection transformations to a
virtual 3D volumetric screen through volumetric rasterization
with the geometry shader [9];

• Implementation of high-quality per-voxel operators in 4D, in-
cluding the specification of 4D vertex normals and light sources
to support lighting computations in the fragment shader;

• Order-independent rendering of opaque tetrahedron-based ge-
ometry in 4D using per-voxel occlusion/visibility computation
and back-face culling in the geometry shader;

• Alpha-blended transparent 4D geometry rendering using a multi-
slice multi-pass alpha composition of the projected geometry, ex-
tending the dual depth peeling technique to 4D;

• Support for helpful visual cues in the 4D rendering, including
interactively controllable lighting and viewing, coloring coding
schemes, false intersection highlights, and screen-door effects.

A final design feature is that the application programming interface
(API) of GL4D is constructed in the style of an OpenGL library API,
so that it can serve as a highly-transparent programming environment
for developing 4D visualization applications.

Related Work. Early research on the visualization of high-
dimensional geometry included the work of Noll [32] and Banchoff [2,
3], who exploited 3D computer graphics methods to display four-
dimensional objects. Methods exploited in a variety of early works [1,
18, 19, 25–27] included wireframe representations, hyperplane slicing,
color coding, view transformations, projection, and animation.

Extending the methods of 3D rendering by analogy to the fourth
dimension, Burton et al. [10, 35] and Hanson and Heng [23] proposed

1587

 1077-2626/09/$25.00 © 2009 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

Fig. 1. Overview of the GL4D Architecture.

various frameworks that included lighting models for the visualization
of 4D geometries. Rendering 3D geometry onto a 2D screen was re-
placed by projecting 4D geometry into a 3D image volume, including
both color and depth buffering to support hidden surface removal in
the 4D-to-3D projection. Hanson and Heng also proposed a thickening
mechanism in order to convert 2D surfaces and 1D curves embedded
in four-dimensional space into renderable 3-manifolds. The result-
ing volume images naturally required 3D volume rendering methods
to expose the internal structure of the projected 4D geometry. Alpha
blending along the 4D projection direction was not implemented. An
alternative volume rendering to expose geometric structure after 4D-
to-3D projection was suggested by Banks [4] , who employed princi-
pal curves on surfaces, transparency, and screen-door effects to high-
light intersections in the projected geometry; in addition, Banks [5]
proposed a general mechanism to compute diffuse and specular reflec-
tion of a k-manifold embedded in n-space. Hanson and Cross [11, 21]
developed techniques implementing 4D rendering with the Shirley-
Tuchman volume method [34]. assuming that the objects in 4D are
static and occlusion-free in the 3D image buffer. Such methods cannot
provide real-time occlusion computation and have limited interactivity
compared to the methods introduced in the current paper.

Approaches to closely related problems include Feiner and Besh-
ers [17] “worlds within worlds” interface system to manipulate and
explore high-dimensional data space via nested coordinate systems. A
related system developed by Miller and Gavosto [30]; used sampling
methods to render and visualize 4D slices of n-dimensional data such
as fractals and satellite orbits. Duffin and Barrett [12] proposed a user
interface design to carry out n-dimensional rotation. Among other
interesting contributions to the field are those of Egli et al. [13], who
proposed a moving coordinate frame mechanism to generalize the
sweeping method for representing high-dimensional data, the work of
Bhaniramka et al. [8], who explored isosurfacing in high-dimensional
data by a marching-cube-like algorithm for hypercubes, and that of
Neophytou and Mueller [31], who investigated the use of splatting to
display 4D datasets such as time-varying 3D data. Recently, Hanson
and Zhang [24] proposed a multimodal user interface design that
integrates visual representation and haptic interaction, allowing users
to simultaneously see and touch 4D geometry; this approach was
then extended [36] to exploit the idea of a reduced-dimension shadow
space to directly manipulate higher-dimensional geometries.

Contributions of this paper include:
1. The GL4D framework, a novel visualization architecture for 4D

geometry based on state-of-the-art programmable graphics hard-
ware. Our approach carefully explores and adopts various fea-
tures of the GPU, including the geometry shader, to provide
the first complete example of GPU-based 4D rendering methods
supporting interactive visualization.

2. The delivery of high-quality 4D geometry visualization that sup-
ports interactive controls for a wide range of aspects. This is the
first environment that can deliver both high-quality voxel-based
rendering of the 3D image and real-time 4D fragment lighting
and blending, as well as occlusion computation for 4D geome-
try. In particular, we exploit a new concept of transparency pro-
cessing for 4D geometry by adopting the depth peeling technique

to 4D and properly blending projected fragments falling into the
same voxel. In addition, we also support a variety of visual cues,
such as self-intersections, within the framework of GL4D.

3. An OpenGL-style API library for the GL4D implementation that
can serve as a transparent and generic interface for developing
4D visualization applications.

Paper Organization. The paper is organized as follows: After the
architecture overview presented in Section 2, Sections 3 and 4 detail
the GPU-based procedure for processing an input stream of 4D tetra-
hedrons: Section 3 focuses on the application of vertex and geom-
etry shaders for transformations in 4D and volumetric rasterization,
while Section 4 presents the per-voxel processing steps in the frag-
ment shader, including 4D lighting and hidden surface elimination (or
alpha composition in case of transparency). Section 5 shows the re-
sults of applications to various 4D geometric models and presents the
library API of GL4D. Finally, Section 6 presents the conclusion and
discusses possible directions for future work.

2 OVERVIEW: THE GL4D ARCHITECTURE

The GL4D visualization architecture is a rasterization-based rendering
system for 4D virtual mathematical worlds using the tetrahedron as the
rendering primitive. Its design parallels the conventional rasterization-
based rendering pipeline in 3D computer graphics: In 3D computer
graphics, we have 2-simplices, i.e., triangles, as the primitive elements
used to represent surfaces in 3D that have unique normals and respond
to lighting models; in the 4D computer graphics world of GL4D, we
have 3-simplices, i.e., tetrahedrons, as the building blocks of hyper-
surfaces (3-manifolds) in 4D that have unique normals and respond
to lighting models generalized to 4D virtual worlds. Tetrahedrons are
therefore the elementary rendering primitives needed to support light-
ing in a 4D rendering environment.

2.1 4D Geometry Input for GL4D
The GL4D architecture supports these tetrahedron-based inputs:

1. Tetrahedrons - Individual tetrahedrons are input to GL4D in im-
mediate mode using the obvious sequence of glVertex calls
between glBegin and glEnd.

2. Hypersurfaces (Hexahedral meshes) - A retained mode allows us
to directly load hypersurfaces by means of a hexahedral grid of
4D vertices through command calls in the GL4D API.

3. Surfaces embedded in 4D - We can also input lower-dimensional
geometries, such as 2-manifolds (surfaces), through command
calls in GL4D. Just as we must thicken a 3D space curve to form
a renderable tube in 3-space, we need to thicken 2-manifolds to
allow them to interact uniquely with 4D lights. The thickening
process in [23] is employed internally inside GL4D to build the
geometric representations in terms of 4D tetrahedrons.

2.2 Hexahedral meshes
In 3-space, we can parameterize a surface by a mapping from a uv-
parametric space to a 2D-grid of 3D coordinates. In 4-space, we can
also parameterize an intrinsic or thickened 3-manifold by a mapping

1588 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

from a uvw-parametric space to a 3D-grid of 4D coordinates. We refer
to this geometric as a hexahedral mesh.

In GL4D, we can define a vector of four parametric equations (each
for one dimension in 4D) in terms of u, v, and w, and pass the equations
to GL4D. GL4D can uniformly (and possibly with an adaptive strat-
egy) sample the equations and construct a hexahedral mesh internally.
By decomposing each cell in the hexahedral mesh into tetrahedrons,
GL4D transfers the geometry data to the tetrahedron-based processing
pipeline in the GPU. It is worthwhile noting that per-vertex normals in
the mesh can be computed either via an explicit parametric equation,
via the Gram-Schmidt process and a 4D cross product, or explicitly
input from the user.

2.3 Overview: Tetrahedron-Processing Pipeline
The tetrahedron-processing pipeline in GL4D is divided into the fol-
lowing three major components; the first one is on the CPU side, while
the other two are on the GPU side; see also Figure 1.

• The first component is a tetrahedron tessellator on the CPU side
to generate a tetrahedron stream given different kinds of user in-
put, for example, hexahedral meshes or various kinds of 4D ge-
ometries.

• The second component in GL4D is the geometry subsystem,
which parallels that in conventional 3D rendering. It includes 1)
a per-vertex transformation unit that employs the vertex shader
to transform (modelview and projection) the 4D geometry from
4D object space to 4D eye space, and finally projects to the 3D
volumetric screen, and 2) a 3D-rasterization unit that employs
the geometry shader to voxelize the input tetrahedrons into scan-
planes of voxels in the 3D projected geometry.

• The last component is a GPU-based per-fragment processing
unit that carries out per-voxel computation after 3D rasterization
(or voxelization). Here we perform per-voxel operations such as
lighting and occlusion computation to create a volume-rendered
image of the 4D geometry. We can also include visual cues other
than lighting in this per-fragment processing step; see Section 5.

3 GL4D: THE GEOMETRY SUBSYSTEM

Following the order-independent design for rendering triangles in con-
ventional 3D graphics hardware, GL4D also uses order-independent
processing for the input tetrahedrons. After tetrahedron transfer from
the CPU side, the GPU side uses the vertex shader and the geometry
shader to transform and voxelize the input tetrahedrons, and then the
fragment shader processes individual voxel fragments.

3.1 Vertex Shader: Transformation and Projection
The first step on the GPU side of GL4D is the vertex shader for per-
vertex transformation in 4D; the 4D modelview transformation is first
applied to transform each vertex coordinate from object-space (input
from the 4D tetrahedrons) to eye space in 4D, while the projection
transformation projects the resultant eye-space coordinates to the vol-
umetric image buffer. Users can invoke various GL4D commands to
set up the modelview and projection transformations in 4D. Note that
in 3D, we project and image 3D objects on a 2D screen, whereas in
4D, we project and image 4D objects on a volumetric screen; later in
the GL4D pipeline, GPU-accelerated 3D volume rendering is used to
represent the contents of the volumetric screen image.

Fig. 2. Vertex shader: per-vertex processing: 4D modelview transfor-
mation followed by 4D to 3D projection.

At the end of each vertex shader call, each resultant vertex has two
coordinates attached: a 4D eye coordinate after the 4D modelview
transform, and a normalized device coordinate defined in the space of
the volumetric screen. In addition, we also transform the 4D normal
vector from the 4D object space to the 4D eye space, to support per-
voxel 4D lighting later in the fragment shader; see Figure 2. Note that
we can support not only orthographic projection, but also perspective
projection, as demonstrated in the hypercube visualization example
shown in Section 5.

3.2 Geometry shader: Rasterizing the Tetrahedrons
In order to support per-voxel lighting and per-voxel hidden surface re-
moval (and alpha composition) in the fragment shader, we first have
to rasterize the input tetrahedrons into voxel fragments inside the vol-
umetric screen buffer. Here we apply the geometry shader provided
by the programmable rendering pipeline to carry out a per-primitive
(per-tetrahedron) 3D rasterization. It is worthwhile noting that ex-
isting voxelization methods [14, 16, 29] were originally designed for
voxelizing triangle-based 3D models; these methods do not apply effi-
ciently to the voxelization of our volume-bounding tetrahedrons. Our
3D rasterization of tetrahedrons is designed as follows:

Assembling Tetrahedrons. First, since no rendering primitives in
conventional graphics hardware are designed for tetrahedron transfer,
we must adapt existing rendering primitives so that the graphics hard-
ware can properly assemble individual tetrahedrons in each geometry
shader call. Here we employ the geometry-shader-specific primitive,
namely GL LINES ADJACENCY EXT; since this primitive type is 4-
vertex-based, we can group the four vertices of each tetrahedron into
a single adjacency line primitive. In this way, the primitive assembly
unit in the graphics hardware can properly group the four correspond-
ing vertices in a single geometry shader call.

Backface Culling. On commodity graphics hardware, backface
culling of triangles can be done by computing the cross product of the
two on-edge vectors from the first vertex in a triangle (in eye space),
and then by checking the sign of the z-component in the resultant vec-
tor. If the z-component has the same sign as the viewing direction’s
z-component, the triangle is back-facing and can be culled.

Fig. 3. Two possible vertex orderings in a tetrahedron; in the figure, p0
is above the paper, whereas the other points are on the paper.

In 4D graphics, we can implement an analogous mechanism for dis-
carding back-facing tetrahedrons in the geometry shader. We first must
ensure that the vertices in all input tetrahedrons are ordered in a con-
sistent manner. Note that given a 4D tetrahedron with the vertex input
sequence (p0, p1, p2, p3), we can have two possible spatial arrange-
ments as shown in Figure 3: First, we can determine a 3D subspace
containing the tetrahedron similar to a 2D plane containing a triangle
in 3D; then, the two possible spatial arrangements are:

1. p1 p2 p3 are in clockwise order as seen from p0 in the 3D sub-
space of the tetrahedron

2. p1 p2 p3 are in anti-clockwise order as seen from p0 in the 3D
subspace of the tetrahedron

In GL4D, all input tetrahedrons should be ordered in anti-clockwise
order, or else the face normal will be flipped. We can compute the 4D
cross product as a determinant:

Face normal of a tetrahedron =

v1x v2x v3x x̂
v1y v2y v3y ŷ
v1z v2z v3z ẑ
v1w v2w v3w ŵ ,

1589CHU ET AL: GL4D: A GPU-BASED ARCHITECTURE FOR INTERACTIVE 4D VISUALIZATION

where �vi = pi − p0 = (vix,viy,viz,viw), with i = 1, 2, and 3, are the
three on-edge vectors on the tetrahedron from p0. Furthermore, since
backface culling requires only the sign of the w-component in the re-
sulting face normal, we can simplify the computation:

Face normal′s w− component =
v1x v2x v3x
v1y v2y v3y
v1z v2z v3w

= v1xyz · (v2xyz × v3xyz) .

In this way, we can readily implement the above computation in the
geometry shader as a 3D cross product followed by a 3D dot product.
If the resultant w-component is negative, the tetrahedron is back-facing
and can be culled. Following the convention in OpenGL, users of the
GL4D API can also enable or disable this 4D culling feature.

Multi-slice Rasterization. In order to trigger a fragment shader
call for each voxel fragment inside a 3D-rasterized tetrahedron, we
employ a multi-slice (multi-pass) rasterization scheme to voxelize
tetrahedrons from back to front inside the volumetric screen. In each
slicing step, the tetrahedrons are voxelized on a specific slicing plane,
and all these slicing planes are parallel to the 2D screen in the eye
space with respect to the virtual camera that renders the volumetric
screen onto the display window. Hence, we can properly voxelize each
tetrahedron slice by slice from back to front in an order-independent
manner, and can still correctly compose the fragment colors later in
the fragment processing.

Fig. 4. Two possible cross-sections when slicing a tetrahedron with a
plane: a triangle or a quadrilateral; note that vertices behind the slicing
planes are colored in red.

To efficiently voxelize a tetrahedron over a specific slicing plane,
we adopt the Marching Tetrahedron method [37] to rasterize a tetra-
hedron volume in GL4D. When a slicing plane intersects a tetrahe-
dron (see Figure 4) there are only two possible voxelizable footprints:
1) a triangle, where the slicing plane cuts three edges of the tetrahe-
dron, and 2) a quadrilateral, where the slicing plane cuts four edges of
the tetrahedron. For both cases, we find that the output can be mod-
eled as a triangle strip, and, hence, we can employ triangle strip (i.e.,
GL TRIANGLE STRIP in OpenGL) as the output primitive type from
the geometry shader.

Moreover, our geometry shader can label each vertex as positive
(takes value 1) or negative (takes value 0), depending on which side the
vertex resides with respect to a given slicing plane; see also Figure 4.
Then, we can pack the zeros and ones of the four vertices as a 4-
bit integer so that we can quickly index the intersecting edges from
a constructed edge table in the geometry shader code. In this way,
we can efficiently compute the edge-plane intersections and output the
intersecting shape as a triangle strip.

Output from Geometry Shader. Triangle strips output from the
geometry shader are rasterized by the standard rasterization engine on
the graphics hardware, and hence we can trigger a fragment shader call
to process each rasterized voxel fragment.

When the geometry shader generates the triangle strips, we attach
to each associated vertex a set of three attributes: a projected posi-
tion (gl Position) inside the volume screen buffer, and a 4D po-
sition and normal in the 4D eye space. It is worthwhile noting that
a few interpolation steps are required in the geometry shader to com-
pute these per-vertex attributes at the edge-plane intersection points
because these attributes are originally given (from the vertex shader)

only at the tetrahedron vertices. After the geometry shader, the stan-
dard rasterization engine can then help to further interpolate these data
over the rasterized triangle strips; the fragment shader that follows thus
receives these data for each voxel fragment.

4 GL4D: VOXEL FRAGMENT PROCESSING

With the goal of supporting high-quality 4D lighting and occlusion,
GL4D performs lighting, hidden surface removal, and transparency
composition in a per-voxel manner in the fragment shader. Note that
earlier 4D visualization work performed lighting and occlusion in a
per-vertex or even per-primitive manner, and back-to-front sorting of
tetrahedrons was required before the volume rendering. Note that
when tetrahedrons are projected from 4D to 3D, the projected tetra-
hedrons may intersect each other in the volumetric screen region, and
per-primitive sorting may not always properly identify the occluding
regions. With per-voxel fragment processing, we can guarantee high-
quality self-intersection detection.

4.1 Hidden surface removal

The first per-voxel-fragment operation carried out in the fragment
shader is hidden surface removal. Here we take a “camouflage ap-
proach” by employing the early depth culling mechanism available on
existing graphics hardware. At the end of the geometry shader, we
replace the z value in the output position (e.g., the gl Position
output from the geometry shader) by the depth value along the 4thw-
dimension; hence, the early depth culling takes the w-dimension depth
as its input as well as the book-keeping value in the depth buffer. As
a result, we can efficiently discard occluded voxel fragments without
invoking the fragment shaders on them.

4.2 Per-voxel lighting

The second per-voxel operation that takes place in the fragment shader
is per-voxel lighting in 4D. Here we employ the interpolated 4D nor-
mals and positions (in eye space); these were output from the geom-
etry shader, and were later interpolated by the standard rasterization
engine. We employ the standard Phong illumination (in 4D eye space)
because of its simplicity and efficiency in the shader computation:

I = ka + kd max(L̂ · N̂ , 0) + ks max((R̂ · V̂)ns , 0) ,

where N̂, V̂ , L̂, and R̂ are the normal vector, the view vector (from the
voxel fragment to view point), the light vector (from the voxel frag-
ment to the light source), and the light-reflected vector, respectively;
I is the resultant reflectance from the voxel, whereas ka, kd , ks, and
ns are the ambient, diffuse, specular, and shininess terms, respectively.
Note that N̂, V̂ , L̂, and R̂ are all unit vectors defined in 4D eye space
and 4D dot products have to be used. Furthermore, following the con-
ventional OpenGL lighting model in local viewer mode, we can set V̂
to be (0,0,0,1) when local viewer mode is enabled.

4.3 Notion of Rendering 4D Transparent Objects

In addition to opaque 4D objects, we also support the rendering of
transparent 4D objects. In the case of 3D graphics, we render transpar-
ent objects by composing the fragments that fall onto each screen pixel
either from back to front or from front to back; implicitly, we base this
ordering on the z-distance of the fragments from the eye point. While
such an alpha composition process is well-developed in 3D graphics,
its extension to 4D needs clarification.

In 4D graphics, since we eventually display the final rendering on a
2D computer screen, each screen pixel could find its projection from
any point in a 2D subspace rather than along a 1D projective line as in
3D graphics. Therefore, we do not have a straightforward z ordering.
We could have the following situations:

• First, if the 4D object is opaque, we can ignore the alpha com-
position in the w-dimension and perform the hidden surface re-
moval as in subsection 4.1; hence, we take only the w-nearest
voxel fragment in the 3D volumetric screen.

1590 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

• Second, if the 4D object is transparent, we can compose the
voxel fragments that fall into the same voxel (in the volumet-
ric screen) in a back-to-front (or front-to-back) manner along the
w-dimension. After alpha composition along the w-dimension,
the volume rendering step that follows will further compose the
voxel fragments along the z-dimension to the final screen; see
Figure 5. Since the 4D modelview and projection transforms are
interactively controlled by the user, we leave the subspace order-
ing decision to the user.

• Finally, the user can also disable the alpha composition in the
volume rendering step from 3D to 2D screen, exposing only the
w-dimension alpha composition effect in the nearest z layer.

Though the above approaches do not perform alpha composition
directly over the entire zw-subspace for each screen pixel, we argue
whether such a direct approach can exist as there are no obvious depth
orderings for voxel fragments over the entire zw-subspace. Hence, we
propose the above achievable approaches to rendering 4D transparent
objects, and indeed, these are feasible methods that can be practically
realized on shaders with existing GPU technology, as we see in the
next subsection.

Fig. 5. Rendering transparent 4D objects: alpha composition along w-
dimension followed by z-dimension.

4.4 Dual Depth Peeling for 4D Transparent Objects

To support efficient alpha composition along the w-dimension with
proper depth sorting (as in the second and third approaches above), we
extend the conventional dual depth peeling method [7, 15]; this method
can handle 2n depth layers in n rendering passes, and five textures
are needed in the implementation: two of them are used for storing
minimum and maximum per-pixel depth values in a ping-pong manner
across subsequent rendering passes; another two store per-pixel color
and alpha values accumulated from the front and back peeling side
(also in a ping-pong manner); the last one is for storing the color and
alpha values accumulated from back to front peeling.

Note that the ping-pong technique is adopted for the min-max depth
value, the accumulated color, and alpha values to avoid a read-write
hazard when going from one rendering pass to the next, and we use
GL MAX blending mode for all three render targets as in OpenGL.
With such an adaptation, we can produce transparent renderings of
objects in 4D such as the 4D hypercube as illustrated in Figure 14.

5 IMPLEMENTATION AND RESULTS

In this section, we first describe the implementation issues and perfor-
mance analysis of GL4D; we then present the visualization results for
various 4D models and briefly outline the library API of GL4D.

5.1 Implementation Issues
GL4D is implemented on top of OpenGL 2.1, and requires support for
the geometry shader to handle per-tetrahedron processing. The basic
principles of the implementation are listed in the following.

Vertex Buffer Object. To avoid excessive geometry transfer and
redundant vertex program computation (for the same vertex), the re-
tained mode of GL4D caches the 4D geometry input on the GPU as
(index-based) vertex buffer objects, which stores three arrays of data
attributes: one for 4D object-space positions, one for 4D object-space
normals (for each 4D position), and one for indices, with each set of
four consecutive indices forming one tetrahedron in 4D.

Hexahedral-cell-to-tetrahedron Decomposition. In the hexahedral-
cell-to-tetrahedron decomposition, we can divide a hexahedral cell
into five or six tetrahedrons as depicted in Figure 6. However, if we
examine the triangle patterns on matching faces of adjacent cells in the
decomposition, the patterns in the six-tetrahedron decomposition can
match properly without a T-join, while the five-tetrahedron decompo-
sition apparently does not. However, we can work around this by using
a five-tetrahedron decomposition that alternates two different orienta-
tions of the five-tetrahedron decomposition in a hexahedral mesh; see
Figure 7. We can thus seamlessly match the diagonals across neigh-
boring hexahedral cell faces (see Figure 7 (right)), while generating
fewer tetrahedrons as compared to the six-tetrahedron decomposition.

Fig. 6. Possible ways of decomposing a hexahedral cell into tetrahe-
drons: six tetrahedrons (top) and five tetrahedrons (bottom).

Fig. 7. Decomposing a hexahedral mesh into tetrahedrons by alternat-
ing the orientations of five-tetrahedron decompositions.

Tetrahedron-slicing. To speed up the performance of primitive
assembly (also known as IA, the input assembler) and the geometry
shader, we compute for each rendering frame the z range of groups of
tetrahedrons. Then, for each multi-slice rendering pass (within each
rendering frame), we assemble only the tetrahedrons that overlap with
the z value of the current slice; hence, we can reduce the workload of
primitive assembly, and avoid intensive tetrahedron-slice intersections
in the geometry shader.

5.2 Performance of GL4D

Table 1 shows a performance analysis of GL4D; three PC systems
equipped with different graphics boards were employed to render three
different 4D models (hypercube, 4D torus, and Steiner surface) with
per-voxel hidden surface removal and per-voxel lighting in 4D:

• 8600: Dell OptiPlex GX620 with Intel Pentium D 3GHz, 1GB
memory, and GeForce 8600 GTS;

1591CHU ET AL: GL4D: A GPU-BASED ARCHITECTURE FOR INTERACTIVE 4D VISUALIZATION

Fig. 8. Rotating the hypercube in 4D space. This is a 3-manifold composed of eight 3D cubes; we shade each 3D cube with its own color.

• 9800GT: Dell XPS 730 with Intel Core 2 Quad CPU Q9400
2.66GHz, 3GB memory, and GeForce 9800 GT;

• GTX285: Dell Precision T5400 with Intel Xeon CPU 2.50 GHz,
8GB memory, and GeForce GTX285.

Table 1. Frame rate (frame per second) of GL4D for different 4D models
and different PC systems with different numbers of slices.

It is worth noting that although the hypercube only has 40 4D
tetrahedrons, these tetrahedrons are relatively large in size compared
to tetrahedrons in other models; hence, they produce a substantial
number of tetrahedron-slice intersections and voxel fragments. The
number of slices in the 3D rasterization (or voxelization) process can
greatly affect the performance (and quality) of GL4D; the greater the
number of slices, the more tetrahedron-slice intersections occur (the
first data row for each model shown in the table), and hence, the more
calls to the geometry shader and the more voxel fragments for the frag-
ment shader to process. In general, 256 slices are employed in prac-
tice. We also tested the performance of GL4D on a series of three
successive generations of graphics cards: GeForce 8600, GeForce
9800GT, and GeForce GTX285. We can see from the table that real-
time performance can be achieved with the latest GPU technology. For
instance, using the GTX285 to display the flat torus using 256 slices,
GL4D can generate 81.9M tetrahedron-slice intersections per second.

5.3 Visualization Results
In this subsection, we explore and demonstrate various visualization
effects on different 4D geometric models, including the hypercube,
the flat torus (T 2), the knotted sphere, Steiner’s Roman surface, and
the CP2 quintic 2-manifold corresponding to a cross-section of string
theory’s quintic Calabi-Yau 6-manifold in CP4.

Hypercube. Considering a 3D cube as a two-manifold composed of
six 2D squares bounding a solid 3D block, a 4D hypercube can simi-
larly be thought of as a 3-manifold built from eight 3D cubes bounding
a solid 4D block. Figure 8 depicts an image sequence obtained by ro-
tating a 4D hypercube in a fixed plane in 4D space; the boundary 3D
cubes are shaded with different colors so that we can see which cubes
are facing the 4D camera; cubes with back-facing normals are hidden
from sight in the 4D view. The initial viewpoint shows three of four
possible front-facing boundary cubes and the 4D projection rotates un-
til only the single red cube is facing the 4D camera. The lower left cir-
cles contain the four coordinate axes projected to the 2D screen space.
In the penultimate view, the red axis disappears because it aligns with
our 4D viewing ray. Finally, we turn down the opacity to show more
internal details of the jello-like red cube.

We demonstrate 4D perspective projection in GL4D with the hyper-
cube in Figure 9. The left sub-figure shows an orthographic view of
the hypercube, while the middle and right figures employ shorter and
shorter focal lengths (larger fields of view) in the virtual 4D pinhole
camera. Unlike ordinary 3D projection, the perspective distortion in
the right figure persists in any 3D viewpoint if we were to make a 3D
rotation; it is a feature of the 4D, not the 3D, projection.

Fig. 9. Hypercube under different projections; Left: orthographic; mid-
dle: perspective; right: also perspective, but with a larger field-of-view
(and the 4D camera moved closer to the hypercube).

Flat Torus. The flat torus (T 2) is a particular embedding of the fa-
miliar donut-shaped 3D torus that is completely flat in 4D Euclidean
space. GL4D adds circles at each point to create a thickened 3-
manifold from this 2-manifold embedded in 4D. Figure 10 shows an
image sequence of the projected torus rotating in 4D. The initial pro-
jection to the XYZ subspace is a tube-shaped object; see the first axis
icon for the first two sub-figures. After reducing the opacity value (i.e.,
the second sub-figure), we gradually rotate the torus to its XYW sub-
space. The bright rings embedded in the shape come from specular
highlights in the 4D lighting. After we rotate the torus in 4D slightly
off the XYZ axes (the third sub-figure), the single-ring highlights start
to split and the volume visualization helps to reveal features of the
internal structure as the object is rotated to different 4D projections.

Knotted Sphere. The knotted sphere embedded in 4D space is con-
structed by spinning a knotted line segment around a central axis.
GL4D thickens this 2-manifold to make it locally a 3-manifold in 4-
space; certain anomalies are expected to remain for topological rea-
sons. In Figure 11, we present first the opaque knotted sphere (the
leftmost sub-figure). Since the defining 2-manifold for the knotted
sphere is constructed over a 2D parametric domain, GL4D can apply
textures onto the knotted sphere in the parameter space. This opens up
the interior visibility of the opaque rendering as shown in the second
subfigure of Figure 11. In practice, GL4D can sample an input 2D tex-
ture in the fragment shader by using the parametric coordinates. Next,
we can reduce the voxel opacity in the volume rendering as well as an-
imating the lighting direction, as shown in the sequence on right hand
side of Figure 11.

Steiner Surface. In the visualization of Steiner surface, we ex-
ploit the stereo viewing capability of GL4D. We can set up a pair
of 4D virtual cameras with user-controllable interocular distance and
render stereo pairs; Figure 12. shows stereo views of two different
4D orientations of the Steiner surface with divergent viewing (wall-
eyed/parallel viewing). For each orientation, we render also an opaque
version of the geometry.

Calabi-Yau Quintic Cross-section. Finally, we use the GL4D tools
to render a complex patch-based surface geometry into the volumetric

1592 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

Fig. 10. Rotating the 4D embedded flat torus (from left to right) in the ZW plane, from XYZ to XYW; note the change in the axis icons.

Fig. 11. Knotted sphere projected from 4D space; from left to right: we use a large opacity value in the volume rendering so that the model appears
like an opaque surface; a screen door effect is added by applying a checkerboard deletion pattern in the parametric space; next, we reduce the
opacity and animate the 4D lighting direction.

screen buffer. Figure 13 shows the Calabi-Yau quintic cross-section; it
consists of 52 = 25 patches, each shaded with different colors keyed to
the two phase transformations applied to the fundamental patch [20].
Note that this complicated surface can result in a large number of self-
intersections when projected to the volumetric screen buffer. GL4D
can efficiently detect and highlight these self-intersections using a per-
voxel and per-slice method, similar to the screen parallel approach to
intersection curves described by Banks [6]. Intersections are marked
in red in the right column of Figure 13.

Fig. 13. Two different views of Calabi-Yau quintic cross-section in 4D;
the red color (2nd column) indicates self-intersection in the projection.

4D Transparency with Dual Depth Peeling. By adapting the dual
peeling method to render 4D objects, we can correctly sort and com-
pose fragments that are projected into the same voxel location in the
volume screen buffer. Figure 14 illustrates the rendering result; the
first column shows two poses of the hypercube, rendered without the
dual depth peeling; only one color is received per voxel as the object
is opaque in the 4D to 3D projection. The second and third columns
show corresponding stereo views, but with 4D transparency supported
by dual depth peeling; here, each voxel can receive multiple colors
originating from different boundary cubes in the projection along w.

Fig. 14. Rendering the 4D hypercube with and without 4D transparency,
in the right and left columns, respectively; stereo images with divergent
viewing are used in the transparent renderings.

5.4 The library API
The library API of GL4D is built on top of OpenGL 2.1, and it consists
of the following four groups of functions:

Initialization: First, we have gl4DInit to initialize various off-
screen rendering buffers (implemented using frame buffer objects in
OpenGL) and load the shader programs (vertex, geometry, and frag-
ment shaders) into the GPU memory.

Parameter settings: Next, we can employ gl4DParam to assign values
to various parameters in GL4D, including transformations, lighting,
material, texture, culling, opacity values in the w-dimension and z-
dimension accumulation, and various state enabling parameters.

Geometry input: There are two rendering modes in GL4D:

• Immediate mode: we can call gl4DBegin (with
GL4D TETRAHEDRONS or GL4D TETRAHEDRON STRIP)
to start an input session, followed by some number of calls
to gl4DNormal and gl4DVertex to input normals and vertices,
ending with gl4DEnd.

• Retained mode: we can also pass the entire 4D geometry through
various GL4D functions, e.g., gl4DSurface defines a paramet-
ric surface (with thickening) and gl4DHexahedralGrid creates a
hexahedral grid of 4D vertices.

Rendering control: Finally, we use gl4DClearBuffer to clear the
buffers , and gl4DRenderBegin and gl4DRenderEnd to define a ren-
dering session in GL4D; gl4DRenderBegin starts a GL4D rendering

1593CHU ET AL: GL4D: A GPU-BASED ARCHITECTURE FOR INTERACTIVE 4D VISUALIZATION

Fig. 12. Steiner surface: two stereoscopic views using divergent (wall-eyed) viewing.

session and activates the shaders, while gl4DRenderEnd ends the ses-
sion by performing GPU-accelerated volume rendering: it renders the
tetrahedron fragments that have accumulated in the volumetric buffer
into the standard frame buffer.

6 CONCLUSION

This paper proposes a carefully-designed visualization architecture
that adapts a state-of-the-art programmable rendering pipeline for the
visualization of 4D mathematical models. The proposed GL4D archi-
tecture is a highly-efficient GPU-based API, taking advantage of all
existing shader modules in the GPU hardware to efficiently process a
stream of tetrahedrons and produce volume-rendered views of 4D ge-
ometries. We incorporate visual effects into the GL4D framework, in-
cluding stereo viewing, texturing, a screendoor effect, self-intersection
flags, and 4D lighting, as well as the novel notion of 4D transparency
composition; the latter is supported by extending the dual depth peel-
ing method into the fourth w-dimension.

In future work, we hope to explore the inclusion of high-
performance ray tracing methods in GL4D to improve the rendering
quality and to extend the scope to include such effects as 4D shadows.
We would also like to apply the GL4D architecture to the visualization
of more types of mathematical models and additional classes of 4D in-
formation such as 3D scalar fields [22] and time-dependent data. A 3D
scalar field, for example, can be rendered as a 3-manifold of 4D height
values (like a top-down view of a 2D elevation map), whose normal
vectors result in extremely detailed 4D diffuse and specular shading
effects in the volume rendering. We also hope to integrate GL4D with
interaction methods such as haptic devices and the Wii Remote.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers, who provided in-
valuable comment to help the authors improve the manuscript. This
research was supported in part by MOE AcRF Tier1 Grant (RG 13/08)
and NSF-0430730.

REFERENCES

[1] E. A. Abbott. Flatland. Dover Publications, Inc., 1952.

[2] T. F. Banchoff. Visualizing two-dimensional phenomena in four-

dimensional space: A computer graphics approach. In E. Wegman and

D. Priest, editors, Statistical Image Processing and Computer Graphics,

pages 187–202. Marcel Dekker, Inc., New York, 1986.

[3] T. F. Banchoff. Beyond the third dimension: Geometry, computer graph-

ics, and higher dimensions. Scientific American Library, 1990.

[4] D. C. Banks. Interactive display and manipulation of two-dimensional

surfaces in four dimensional space. In Symposium on Interactive 3D
Graphics, pages 197–207, New York, 1992. ACM.

[5] D. C. Banks. Illumination in diverse codimensions. In Computer Graph-
ics, pages 327–334, 1994. SIGGRAPH 1994.

[6] D. C. Banks. Screen-parallel determination of intersection curves. Paral-
lel Computing, 23(7):953–960, 1997.

[7] L. Bavoil and K. Myers. Order independent transparency

with dual depth peeling, 2008. White paper, NVidia,

http://developer.download.nvidia.com/SDK/10/opengl/src/

dual depth peeling/doc/DualDepthPeeling.pdf.

[8] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in higher dimen-

sions. In Proc. of IEEE Visualization 2000, pages 267–273, 2000.

[9] P. Brown and B. Lichtenbelt. Ext geometry shader4 extension specifica-

tion, 2007. http://developer.download.nvidia.com/opengl/spe

cs/GL EXT geometry shader4.txt (last modified: May 2007).

[10] S. A. Carey, R. P. Burton, and D. M. Campbell. Shades of a higher di-

mension. Computer Graphics World, pages 93–94, October 1987.

[11] R. A. Cross and A. J. Hanson. Virtual reality performance for virtual

geometry. In Proc. of IEEE Visualization 1994, pages 156–163, 1994.

[12] K. L. Duffin and W. A. Barrett. Spiders: a new user interface for rotation

and visualization of n-dimensional point sets. In Proc. of IEEE Visualiza-
tion 1994, pages 205–211, 1994.

[13] R. Egli, C. Petit, and N. F. Stewart. Moving coordinate frames for repre-

sentation and visualization in four dimensions. Computers and Graphics,

20(6):905–919, 1996.

[14] E. Eisemann and X. Décoret. Fast scene voxelization and applications.

In Proc. of the 2006 symposium on Interactive 3D graphics and games,

pages 71–78, 2006.

[15] C. Everitt. Interactive order-independent transparency, 2001.

White paper, NVidia, http://developer.nvidia.com/object

/Interactive Order Transparency.html.

[16] S. Fang and H. Chen. Hardware accelerated voxelization. Computers &
Graphics, 24(3):433–442, 2000.

[17] S. Feiner and C. Beshers. Visualizing N-dimensional virtual worlds with

N-vision. In SIGGRAPH 1990, pages 37–38, 1990.

[18] A. R. Forsyth. Geometry of Four Dimensions. Cambridge U. Press, 1930.

[19] G. K. Francis. A Topological Picturebook. Springer Verlag, 1987.

[20] A. J. Hanson. A construction for computer visualization of certain com-

plex curves. Notices of the Amer. Math. Soc., 41(9):1156–1163, 1994.

[21] A. J. Hanson and R. A. Cross. Interactive visualization methods for four

dimensions. In Proc. of IEEE Visualization 1993, pages 196–203, 1993.

[22] A. J. Hanson and P. A. Heng. Four-dimensional views of 3D scalar fields.

In Proc. of IEEE Visualization ’92, pages 84–91, 1992.

[23] A. J. Hanson and P. A. Heng. Illuminating the fourth dimension. IEEE
Computer Graphics and Applications, 12(4):54–62, July 1992.

[24] A. J. Hanson and H. Zhang. Multimodal exploration of the fourth dimen-

sion. In Proc. of IEEE Visualization 2005, pages 263–270, 2005.

[25] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea,

New York, 1952.

[26] C. M. Hoffmann and J. Zhou. Some techniques for visualizing surfaces

in four-dimensional space. Computer Aided Design, 23(1):83–91, 1991.

[27] S. Hollasch. Four-space visualization of 4D objects, 1991. Master thesis,

Arizona State University.

[28] E. Lindholm, M. J. Kligard, and H. Moreton. A user-programmable ver-

tex engine. In SIGGRAPH 2001, pages 149–158, 2001.

[29] I. Llamas. Real-time voxelization of triangle meshes on the GPU. In

ACM SIGGRAPH 2007 sketches, page 18, 2007.

[30] Miller and Gavosto. The immersive visualization probe for exploring n-

dimensional spaces. IEEE Comp. Graph. and App., 24(1):76–85, 2004.

[31] N. Neophytou and K. Mueller. Space-time points: 4D splatting on ef-

ficient grids. In Proc. of IEEE Symposium on Volume Visualization and
Graphics, pages 97–106, 2002.

[32] A. M. Noll. A computer technique for displaying N-dimensional hyper-

objects. Communication ACM, 10(8):469–473, 1967.

[33] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A real-time

procedural shading system for programmable graphics hardware. In SIG-
GRAPH 2001, pages 159–170, 2001.

[34] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar

volume rendering. volume 24, pages 63–70, 1990. SIGGRAPH 1990.

[35] K. V. Steiner and R. P. Burton. Hidden volumes: The 4th dimension.

Computer Graphics World, pages 71–74, February 1987.

[36] H. Zhang and A. J. Hanson. Shadow-driven 4D haptic visualization. In

Proc. of IEEE Visualization 2007, pages 1688–1695, 2007.

[37] Y. Zhou, W. Chen., and Z. Tang. An elaborate ambiguity detection

method for constructing isosurfaces within tetrahedral meshes. Comput-
ers & Graphics, 19(3):355–364, 1995.

1594 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

