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Abstract—One way to provide global illumination for the scientist who performs an interactive sweep through a 3D scalar dataset
is to pre-compute global illumination, resample the radiance onto a 3D grid, then use it as a 3D texture. The basic approach of
repeatedly extracting isosurfaces, illuminating them, and then building a 3D illumination grid suffers from the non-uniform sampling
that arises from coupling the sampling of radiance with the sampling of isosurfaces. We demonstrate how the illumination step can be
decoupled from the isosurface extraction step by illuminating the entire 3D scalar function as a 3-manifold in 4-dimensional space. By
reformulating light transport in a higher dimension, one can sample a 3D volume without requiring the radiance samples to aggregate
along individual isosurfaces in the pre-computed illumination grid.

Index Terms—physically-based illumination, isosurface, level set, light transport.

1 ILLUMINATION FOR 3D DATA VISUALIZATION

This paper addresses the issue of displaying globally illuminated iso-
surfaces in real time. Its main contribution is the novel formulation
of the light transport equation that can be applied to the graph of a
scalar function in R

n+1 to pre-compute illumination for level sets of
the function in R

n. The idea is motivated by the following observa-
tion: level sets of a function can be stacked to produce the graph
of the function. For example, a scalar function of two variables has
isocurves as its level sets; the isocurves can be stacked to form a sur-
face (the graph of the function) in R

3. If the surface is illuminated
by a light source, the individual level sets are illuminated as well.
Many physically-based (also called “global”) illumination solvers al-
ready exist for surfaces in R

3, and could be employed to illuminate the
continuous stack of isocurves as a byproduct of illuminating the sur-
face that the isocurves fill, or foliate. There is thus no need to construct
and illuminate isocurves individually.

By analogy, if a global illumination solver were available for a vol-
umetric 3-manifold in R

4, it could be employed to pre-compute the
global illumination solution for all isosurfaces collectively, without the
need for constructing individual isosurfaces one by one.

Two problems arise with this plan, which we solve in this paper.
First, the result of illuminating the surface in R

3 is actually not quite
the same as illuminating each of its level sets in R

2, so naively illu-
minating the surface in R

3 as described above will not produce the
correct results. Second, in order to implement the idea of illuminating
the graph for functions of three variables rather than two, it is neces-
sary to develop a plausible model for light transport in R

4.
Previous research has addressed aspects of these concerns. The

problem of illuminating a 3-manifold in R
4 has been discussed by

Banks [1], Hollasch [8], and Hanson et al. [6], although only in the
context of diffuse and specular reflection for local illumination, not
global illumination.

The basic idea of pre-computing illumination of isosurfaces and
caching the result in a texture map has been explored by several peo-
ple. Stewart demonstrated the idea of texture-mapping pre-computed
illumination onto isosurfaces [16]. Beason et al. [4] applied pho-
ton mapping [11] during the batch processing phase of the pre-
computation, then texture-mapped the resulting illumination grid us-
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ing the isosurface engine in a commercial visualization system [15].
Parker et al. [12] used ray tracing for computing global illumination
on isosurfaces, and Wyman et al. [18] incorporated spherical harmon-
ics for nondiffuse surfaces, allowing view-dependent display.

The notion of restricting the propagation of electromagnetic radi-
ation to a subspace of lower dimension is currently being explored
within theoretical physics. According to one theory, the effect of
gravitation extends in many dimensions, but electromagnetism is con-
fined to the 4-dimensional subspace (called a membrane or “brane”)
of space-time that we are familiar with [13]. In a similar vein, we
show how light transport in R

n+1 can be restricted to an n-dimensional
subspace, and demonstrate the solution for n = 2 and n = 3. This ap-
proach permits an efficient sampling strategy for pre-computing global
illumination of isosurfaces to be developed, which can be used for de-
creasing the error in the resulting illumination grid or for reducing the
number of samples required to meet a desired error tolerance.

1.1 Local and Global Illumination

Visualizing a three-dimensional (3D) scalar function is an impor-
tant component of the workflow for visual data analysis in science,
medicine, and engineering. Many software systems for 3D data vi-
sualization offer only the default rendering capability provided by the
computer’s graphics card, which implements a graphics library such
as OpenGL at the hardware level to render polygons using local illu-
mination.

Physically-based illumination entails solving the light transport

(a) Side view (b) Local (c) Global

Fig. 1. Global illumination reveals imminent object contact between two
cylinders. In the top row the two cylinders are far apart; in the bottom row
they are close together. (a) A side view reveals the difference between
the two configurations. (b) and (c) When viewed from above, the two
poses are difficult to discriminate. (b) Under local illumination, the two
configurations are indistinguishable. (c) Shadows and inter-reflection
from global illumination convey that the two cylinders nearly touch in the
configuration in the bottom image.
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equation in a scene, which often yields realistic-looking images. The
difference between local illumination and physically-based illumina-
tion is illustrated in Figure 1, which shows a pair of cylinders in two
spatial configurations. In the first configuration (top row) the two
cylinders are far apart, separated by several diameters. In the sec-
ond (bottom row) they are close together, separated by less than one
diameter. When the scene is viewed from judiciously chosen positions
(Figure 1a) a gap appears between the silhouettes of the surfaces and
the amount of separation between the cylinders is evident. But from
other viewing positions, their separation distance must be inferred
from other visual cues. In Figure 1c shadows and inter-reflections
reveal that the surfaces are proximal to each other. Local illumination
does not provide these visual cues, making the two configurations in-
distinguishable in Figure 1b. From a viewpoint like that in Figures 1a
and 1b, the proximity of one cylinder to another can be better per-
ceived when shadows and inter-reflection are included, as from global
illumination. The total effect is superior to shadows alone or inter-
reflection alone [10], which invites the natural speculation that the hu-
man visual system is hard-wired to infer 3D shapes from images of
globally illuminated scenes.

Recent trials with human subjects found that perception of rela-
tive depth in a 3D scene (containing many tube-like surfaces) was im-
proved, as well as perception of aggregate shape, when physically-
based illumination was employed instead of local illumination [17].
If physically-based illumination offers superior scene perception, one
would expect it to be used widely for visualizing scientific datasets.
But this is not the case, as can be seen in the recent proceedings of
the most recent (2008) Scientific Discovery through Advanced Com-
puting (SciDAC) meeting. The US Department of Energy’s SciDAC
project provides US$60 million to fund high-performance computer
simulations in diverse fields of science using world-class supercom-
puting platforms. The 2008 meeting of the SciDAC principal inves-
tigators included experts from a broad range of sciences, and offers
a snapshot of the state-of-the-art in computational sciences and a de-
piction of the way scientists present the results of their simulations.
The proceedings [5] include 100 papers describing advances in as-
trophysics, chemistry, climatology, combustion, fusion, life sciences,
materials sciences, nuclear physics, quantum chromodynamics, and
applied mathematics, with approximately 800 figures. Roughly 50%
(418) of these figures are 1-dimensional (1D) plots, graphing one vari-
able against another or displaying 1D isocurves. Another 15% (134)
display a function of two variables using a colormap. Some 15% (128)
of the figures can be classified as diagrams or charts, often with edges
and nodes that illustrate a process. Roughly 5% (22) of the figures
are photographs (such as of experimental equipment). The remaining
20% (153) of the figures depict 3D curves, surfaces, volumes. None
of the figures include captions that describe the illumination model
applied. But the absence of shadows and interreflection indicates that
zero (0) of the 153 3D visualizations in the proceedings employed
physically-based illumination to render the scenes; instead, all of the
scenes appear to be rendered using either no illumination model or a
local illumination model.

It is somewhat surprising to find that the “market penetration” of
physically-based illumination in scientific visualization was nearly
zero in 2008, especially when one considers that some of the datasets
result from faithful simulation of transport/scattering phenomena
(and therefore could have incorporated physically-based illumination
within the simulation pipeline). Recent advances in hardware and al-
gorithms have brought physically-based illumination within reach for
interactive display of 3D geometry, and there is evidence (described
above) that perception is enhanced by physically-based versus local
illumination. One reason scientists give when asked about their use
of local illumination for visualizing 3D data is that physically-based
illumination is not available as an option in their workflow. Further in-
spection shows that the workflow sometimes involves legacy software
systems for which the scientist has no budget (or incentive) to replace.
Our experience has been that the typical scientist is not demanding
that physically-based illumination be available as a real-time render-
ing option for the desktop or the laptop; indeed, the typical scientist

(a) Level sets L(h2,c) (b) Waterlines L̂(h2,c)

Fig. 2. An example 2D heightfield h2 : R
2 → R. (a) Level sets of h2 for

several isovalues c. (b) Corresponding waterlines, or raised level sets,
on the graph H2.

is unlikely to use physically-based illumination at all unless it can be
employed within the software and hardware toolsets already in place
for data analysis. This cultural reality diminishes the usefulness of ad-
vances in hardware-supported rendering techniques and places added
value on finding ways to introduce contemporary rendering techniques
into existing data-analysis workflows.

One way to introduce physically-based illumination into an exist-
ing workflow without requiring a change to the rendering hardware
or the rendering engine is to cache the pre-computed radiance in a
3D illumination grid, then apply the cached values to isosurfaces at
visualization time via ordinary texture mapping. This strategy has
been demonstrated using off-the-shelf visualization software without
requiring any change to the software system [4] [2]. One drawback to
constructing a 3D illumination grid is that constructing and illuminat-
ing isosurfaces one at a time requires that the isosurfaces be chosen
to uniformly sample the volume they fill. Another drawback with re-
peated isosurfacing-and-illumination is that the radiance values (com-
puted, for example, using photon mapping) are thereby restricted to
isosurfaces and neglect the regions in the volume in between. The fol-
lowing section describes our solution to these drawbacks, permitting
illumination to be decoupled from isosurface extraction.

2 LIGHT TRANSPORT ON GRAPHS AND LEVEL SETS

A level set L(h,c) of a scalar function h is the locus of points x in
the domain of h such that h(x)− c = 0. Sweeping through level sets
by gradually changing the isovalue c is a standard way for a user to
examine scalar data. For a scalar function of two variables, perform-
ing this sweep is like gradually raising the water level with respect to
a partially submerged terrain. The height of the terrain is the scalar
function (with the terrain serving as the graph of the function); the wa-
ter meets the terrain at the waterline. When the water rises from a low
to a high level, the waterline sweeps out a solid strip of terrain. That
is, the terrain equals the union of all its waterlines. A point on the wa-
terline is also a point on the terrain, so one is free to consider a series
of waterlines individually or to think of the continuum of waterlines
as constituting the terrain.

A level set lies in the domain of the function whereas a waterline lies
on the graph of the scalar function. We first consider two-dimensional
(2D) scalar functions. Let x2 = (x1,x2) be a point in R

2 (where the
subscript of x indicates its dimension). The 2D scalar function

h2(x2) : R
2 → R

has as its graph the mapping

H2(x2) = (x1,x2, h2(x2))

which forms a surface in R
3. The level set L(h2,c) lies in the domain

R
2 of the function, and is defined as the locus of points x2 satisfying

L(h2,c) = {x2 : h2(x2)− c = 0}

for a given (scalar) value of c.
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The level set lies in the (x1,x2)-plane, not up at the waterline on
the terrain. To fit the waterline, the level set must be elevated up from
the domain a distance c, producing a raised level set L̂(h2,c) along the
intersection of the graph H2 and the plane at height c. A 3D point x3 on
a raised level set belongs both to the graph in R

3 and to the waterline
in R

3, and can be projected down to the level set in R
2.

2.1 Flattened Light Transport: R
3 to R

2

Our eventual goal is to illuminate isosurfaces in R
3 of a function h3 :

R
3 → R whose graph is a 3-manifold in R

4. But it is useful to first
consider the situation one dimension lower where it can be more easily
visualized. The lower-dimensional analog would be illuminating an
isocurve in R

2. Heckbert’s paper “Radiosity in Flatland” describes
how global illumination of curves can be performed in the plane [7].
We have the choice of illuminating these level sets L(h2,c) down in the
plane where they are defined (as in Figure 2a), or illuminating them as
raised level sets L̂(h2,c) up in the planes h2 = c along the waterlines
(as in Figure 2b).

For the function h2, the graph is a surface in R
3. Illuminating a

surface in R
3 is certainly more familiar than illuminating curves in

the 2D domain. If one wishes to pre-compute global illumination for
many curves in the plane, it is natural to prefer raising them up to the
waterline so that they become the graph. In a sense, an ordinary ren-
derer illuminates infinitely many (raised) level sets as a side effect of
illuminating a surface. But a subtle problem arises when one imagines
computing illumination in this way: light can strike the surface at one
height and reflect at an angle up to the surface at another height. This
unwelcome behavior is like illuminating one isosurface only to have
stray reflections leak over and shine on other isosurfaces.

The remedy we propose is to confine, or flatten, the emittance of
the luminaire and the reflectance of the surface so that an “ordinary”
renderer will produce an image of the surface as if each waterline had
been individually illuminated, alone within its plane, just like a level
set in flatland.

Scattering, or surface reflectance, can be flattened to coerce photons
emitted within a plane to reflect within the plane. The bidirectional
reflectance distribution function (BRDF)

f : S
2×S

2 → R

at a point on an ordinary surface in R
3 depends on an incident direction

and an exitant direction of the light, where each direction is chosen
from a sphere S

2. The flattened BRDF

f � : S
1×S

1 → R

depends on incident and exitant directions chosen from a circle S
1

within the given plane. The superscript � is the musical “flat” sign.

Flattened radiance L� is the quotient of a 1D length Λ and a 1D di-

rection �θ , i.e., the radiant flux per unit angle per unit projected length:

L�(�θ) =
d2

Φ

dΛ cosθ d�θ
,

where dΛcosθ is the projected differential length at position x receiv-

ing light from differential angle d�θ in direction �θ . The flattened nor-

mal N� is computed by projecting the graph’s normal N down to the
plane and scaling to unit length. The factor cosθ can be computed as

the dot product between �θ ′ and the flattened normal N�.
The ordinary rendering equation can be modified to produce flat-

tened light transport by using these flattened terms and by integrating
over the circle rather than the sphere:

Ordinary L(�ω) = Le +
∫

Ω

f (�ω, �ω ′)Li(�ω
′) (N · �ω ′) d�ω ′ (1)

Flattened L�(�θ) = L�
e +

∫
Θ

f �(�θ ,�θ ′) L�
i (�θ

′) (N� · �θ ′) d�θ ′ (2)

(a) Flatland illumination in the plane h2 = c

(b) Ordinary illumination of graph H2

Fig. 3. Illumination in R
2 versus R

3. (a) A point x3 on a raised isocurve
L̂(h2,c) lies in the plane at height c, and can be illuminated in 2D flatland.
The luminaire emits in the plane, and the point x3 scatters within the
plane. (b) The same point x3 lies on the graph H2, which is a surface
in R

3, and so can be illuminated with conventional 3D lighting. The
luminaire emits with a hemispherical distribution in R

3, and the point x3

scatters light in R
3.

where L�(�θ) is the flattened radiance leaving a point x3 in direction
�θ , L�

e is the flattened emittance, Θ is the set of directions in the circle

around x3 in the plane, f �(�θ ,�θ ′) is the flattened BRDF, L�
i (

�θ ′) is the

flattened radiance incident to x3 from incoming direction �θ ′, and N� is
the segment’s normal in the plane. This novel formulation of flattened
light transport allows us to either interpret a waterline as an isolated
curve in a 2D plane that intersects the graph, and as a portion of the
height field in R

3. More importantly, the flattened light transport equa-
tion can be applied one dimension higher to an isosurface considered
as a raised level set in a 3D hyperplane that intersects the graph, and
as a portion of the (volumetric) height field in R

4

Flattened light transport may seem purely theoretical, but it has a
practical application. Previous work on pre-computing global illu-
mination of isosurfaces either used the underlying data grid for sam-
pling the radiance, or explicitly constructed level sets and illuminated
them. The practical value of flattened light transport is that it forces
the graph of the scalar function hn : R

n → R to be illuminated within
n-dimensional hyperplanes, just as if the level sets were constructed
individually down in the domain. Consequently, a rendering engine
for surfaces in R

3 can be modified so that it illuminates them flatland-
style, with no light leaking from one height to another. Pre-computing
global illumination of the level sets can therefore be accomplished by

1597BANKS AND BEASON: DECOUPLING ILLUMINATION FROM ISOSURFACE GENERATION USING 4D LIGHT TRANSPORT 



(a) Flattened illumination (b) Ordinary illumination

Fig. 4. Comparison of flattened light transport within 2D planes versus
ordinary light transport in R

3. (a) Flattened transport produces shadows
with hard edges, and produces stronger color bleeding from the walls.
(b) Ordinary illumination allows light from the luminaire to pass over the
small bumps in front so they cast softer shadows on the large bump
behind.

assigning flattened emittance to the luminaire and flattened reflectance
to the graph, as opposed to implementing a completely different illu-
mination algorithm.

Flattened light transport is illustrated in Figure 3a, which shows
the graph H2 placed in a reflective box together with a rectangular
luminaire. The plane h2 = c intersects the graph, the box, and the lu-
minaire. Within this plane, the raised level set forms a pair of discon-
nected waterlines: the small circle cut from a bump near the luminaire,
and a larger circle cut from the bump near the wall farthest from the
luminaire. The waterlines are surrounded by a square bounding them
within the box, with one red edge (on the red wall) and one green edge
(on the green wall, which is not shown in the figure so that the interior
of the box may be seen; the indirect illumination off the green wall is
visible, however, on the graph of the function). The luminaire and the
walls of the “Cornell box” are distinct from the graph of the function
itself. The walls provide shape cues by capturing cast shadows and by
allowing indirect illumination of the scene. The walls can be thought
of as extrusions into the third (vertical) dimension of the boundary of
the domain.

The waterlines within the intersecting plane are illuminated by a
(horizontal) segment of the luminaire lying within the plane. The fig-
ure illustrates a photon leaving the luminaire and striking a point x3

on the waterline on the far bump of the graph. The semicircle around
a point on the emitting segment represents the possible directions in
which the photon can be emitted, which are confined within the plane.
When a photon strikes a point x3 on the waterline, it scatters strictly
within the same plane. This is illustrated by a set of arrows leaving the
point on the waterline. The flattened illumination can be understood
in two ways simultaneously: (1) photons from a 2D luminaire scatter
off a waterline within a 2D plane according to the “usual” model for
2D scattering; (2) the 2D luminaire and the waterline lie within a plane
in R

3, and so the usual model for 3D scattering must be modified to
constrain the photons to emit and reflect within the plane.

Figure 3b shows ordinary (not flattened) illumination of the point
x3. With ordinary light transport, a neighborhood of x3 belongs to
a surface (namely the graph) in R

3 and not just a curve (namely the
raised level set) in a plane. The luminaire is free to emit a photon
in any direction on a hemisphere, not just directions on a semicircle
in the plane. When the photon scatters in R

3 from the point x3, it is
free to follow any exitant direction on a hemisphere aligned with the
surface normal. Although the surface H2 is equal to the union of all of
the raised level sets, conventional light transport applied to the surface
H2 differs from flattened light transport applied within each plane.

Figure 4a and Figure 4b show this difference. The image in Fig-
ure 4a was rendered with flattened light transport while Figure 4b was
rendered with ordinary light transport. With flattened light transport,
the shadows are sharper and the color bleeding stronger than with
ordinary light transport. Shadows and indirect illumination provide

visual cues for perception of shape in a scene; incorrectly allowing
photons to “leak” from sections of the luminaire situated at heights
above and below a given waterline, as in Figure 4b, causes lighting
artifacts (such as one shape failing to cast a perceptible shadow on an-
other one). These phenomena can be understood based on the diagram
in Figure 3a, which shows that restricting light from the luminaire to
flow strictly within a plane causes the smaller bumps near the light to
block photons from reaching the larger bump behind. Indirect illumi-
nation from the red and green walls fills the shadows with pronounced
red and green colors. By comparison, light from the luminaire in Fig-
ure 3b is able to “leak” out-of-plane over the small bumps and onto
the larger bump behind, resulting in a softer shadow being cast, and
softening the color reflecting off the side walls. The differences in the
flattened illumination and ordinary illumination depend on the geom-
etry of the luminaire and the graph. They are particularly noticeable in
the case where the light leaks from the top part of the luminaire over
the small bumps (maxima of the scalar function) that lie closer to the
luminaire than the large bump on which they cast shadows. The corrre-
sponding situation for scalar functions of R

3 would be that the “usual”
process of four-dimensional (4D) scattering would permit photons to
leak from one 3D hyperplane to another, thereby introducing different
results than for illumination of an isosurface in R

3.

2.2 Sampling Flattened Radiance on Graphs in R
3

With flattened light transport, the construction and illumination of in-
dividual level sets is unnecessary and radiance samples can be decou-
pled from lattice points of the data. For example, radiance samples
can be distributed uniformly, as illustrated in Figure 5c and Figure 5d.
In the top row of the figure, 20,000 radiance samples are distributed
strictly along level sets. As a result, the interior of the square domain is
sampled very non-uniformly. When the scattered samples (Figure 5a)
are interpolated onto a uniform 2D illumination grid in Figure 5b, sam-
pling artifacts are evident in the form of bands that follow the pattern
of individual level sets. The level sets are oversampled while the re-
gions between them are undersampled. In the bottom row of Figure 5,
the 20,000 radiance samples are uniformly distributed in the domain
of the function, and sampling artifacts can no longer be seen.

Flattened light transport allows radiance to be calculated at the sam-
ple point on the graph itself (in R

3) rather than in 2D flatland. The
sampling of the radiance is thereby decoupled from the sampling of
the level sets. Not only is the process of generating level sets by-
passed, but a given number of samples can be better distributed in
order to reduce error in the illumination grid. In the case of the 20,000
samples in the figure, dense sampling of 10 level sets yields a root-
mean-square (RMS) error of 7.4% after interpolation onto the 2D grid
(using Shepard’s method [14]). Uniformly distributing the 20,000 ra-
diance samples yields an RMS error of 2.2%. Sampling the graph, but
illuminating with flattened light transport, thus produces a smaller av-
erage error in this example. Generating an optimal pattern of sampling
is an area for future research.

2.3 Sampling Flattened Radiance on Graphs in R
4

We next consider the higher-dimensional case of scalar functions of
three variables whose level sets are isosurfaces in R

3 and whose graphs
are 3-manifolds in R

4. In the previous section we described how to
flatten 3D illumination by starting with light transport in R

3 and re-
stricting the emittance, reflectance, and surface normal to a lower di-
mension. By analogy, to flatten 4D illumination we could begin with
“ordinary” light transport in R

4. Although it is not obvious how a
4D version of light transport should be written, our goal is merely to
illuminate raised level sets lying in 3D subspaces of R

4; thus we sim-
ply stipulate that flattened 4D illumination be identical to ordinary 3D
illumination when restricted to an isosurface in R

4.
For a 3D scalar function

h3(x) : R
3 → R

the level set L(h3,c) is the locus of points x3 defined by

L(h3,c) = {x3 : h3(x3)− c = 0}
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(a) Sampling confined to level sets (b) Interpolated values

(c) Sampling decoupled from level sets (d) Interpolated
values

Fig. 5. Sampling and interpolation of radiance samples of the function
h2. (a) 20,000 radiance samples restricted to level sets. (b) Interpo-
lation onto a high-resolution 2D illumination grid exhibits sampling ar-
tifacts, visible as bands that follow the level sets. (c) 20,000 uniformly
distributed radiance samples, decoupled from level sets or underlying
grid. (d) Interpolation shows no banding.

for a given value of of the scalar c. Physically-based illumination can
be (pre-)computed on individual isososurfaces, with the scattered sam-
ples of the radiance then interpolated onto a 3D grid for later use as
a texture map. Figure 6a illustrates this process for a scalar function
h3 having a three small “bumps” and one large “bump” on its graph in
R

4. Each isosurface is placed in a 4D Cornell box when illumination is
performed. The box contains a red polygonal wall pr opposite a green
polygonal wall pg; the effect of these walls is visible as color bleeding
on the isosurfaces. A polygonal luminaire pl shines into the box. The
scene is analagous to that in Figure 5a, only one dimension higher. A
total of 106 radiance samples were calculated over several level sets,
then interpolated to produce the 3D texture in the middle image of Fig-
ure 6a. The rightmost image is an isosurface whose vertices index into
that texture map.

In the 4D example, the domain of h3 is a regular 3D lattice, and
the graph of h3 is composed of cube-shaped hexahedral cells. Let the
interval I = [hmin,hmax] denote the range of the function h3. The polyg-
onal luminaire pl is extruded “upward” in the h3 direction to form a
volumetric luminaire pl × I in R

4. Likewise, each wall of the box is
extruded to form a solid in R

4; for example, the red wall becomes
pr× I. The extruded luminare is allowed to shine onto the volumetric
mesh contained within the volumetric box in R

4, subject to flattened
light transport. Although the 4D scene may be difficult to visualize,
ray-intersection can be adapted to operate within it. Parker derived the
necessary equations for intersecting a ray with a hexahedron [12]; we
essentially used his derivation in order to implement a modified photon
mapper in R

4. If the 3D domain happened to be organized in another
format, such as a tetrahedral mesh, the corresponding intersection cal-
culation would be used.

Illuminating the graph of h3 with flattened light transport permits
sampling of the radiance to be decoupled from sampling of the volu-
metric grid of the isosurfaces. Figure 6b illustrates this observation.
In the left-hand image, 106 radiance samples are computed on planar
slices of the graph. When a level set is illuminated, the net result is
merely a collection of radiance samples that may happen to lie on a
surface within the volumetric graph. But the graph could be foliated

(a) Sampling radiance along individual isosurfaces

(b) Sampling radiance along parallel planes

(c) Uniform sampling within 3D domain

Fig. 6. 106 radiance samples of function h3. Each row shows the pattern
of the radiance samples (left), the resulting 3D interpolated illumination
grid (middle), and the grid applied as a texture map to an actual isosur-
face of h3. (a) Samples distributed across isosurfaces of h3 yield visible
bands in the illumination grid and overly soft shadows on the large blob
when the texture is applied. (b) Samples distributed across diagonal
planes in the domain of h3 yield visible bands as well when interpolated
onto the illumination grid. The gaps between sample planes leave shad-
owed portions of the blobs undersampled. (c) Uniform sampling yields
a more accurate illumination grid.

in many different ways, perhaps by parallel diagonal sheets as shown
in the image. When the radiance samples are interpolated onto a 3D
grid (middle image), banding artifacts are evident along the direction
of the sheets. The rightmost image shows an isosurface of h3 whose il-
lumination comes from this 3D texture. Evidently the top left blob lies
between sheets of radiance samples, since it lacks shadowing and re-
flection from the red and green walls. The correct illumination would
have been sampled had the sheets been more closely spaced. It is de-
sirable to distribute the radiance samples in a more optimal way than
merely along level sets or other parallel planes in R

4.

In Figure 6c, the 106 samples are distributed uniformly. The left-
hand image shows the volume of samples projected down to the 3D do-
main of h3, just as Figures 5a-d shows an overhead view of the surface
projected down to the 2D domain of h2. When the uniform samples
in Figure 6c (left image), are interpolated onto a 3D texture (middle
image), the result avoids the sampling artifacts visible in the interpo-
lated textures above it (Figures 6a-b). The only bands in the new 3D
texture are regions of isoradiance that actually exist when level sets
sweep through the scene. The image on the right shows an isosurface
with texture-mapped global illumination using this illumination grid.

3 RESULTS AND DISCUSSION

We tested pre-computed illumination using flattened 4D light trans-
port against rendering isosurfaces using photon mapping. Figure 7
illustrates the use of two illumination grids for isosurfaces of the den-
sity of protons (red) and neutrons (white) in a computational simu-
lation of the arrangement of nucleons in a neutron star. The nucleon
dataset was calculated by Jorge Piekarewicz, Department of Physics at
Florida State University; the convolution of the particles with a point
spread function to produce continuous 3D density functions was per-
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formed by Brad Futch in our lab. It is predicted by simulation that
protons and neutrons form clusters at subnuclear densities of around
1014 g/cm3 [9]. The isodensity surfaces for the clusters of protons
and neutrons have complicated spatial structure, and thus are candi-
dates for global illumination to improve the user’s 3D perception of
their shape. Figure 7a shows the scene rendered with local illumina-
tion using OpenGL. Figures 7b-c show the scene rendered with global
illumination. In Figure 7b, flattened 4D light transport was used to
illuminate points on the volumetric graphs of the proton density and
of the neutron density in R

4. The resulting radiance samples were in-
terpolated onto a 3D illumination grid and applied as textures to the
isodensity surfaces. Figure 7c is a reference image in which photon
mapping was applied directly to the isodensity surfaces in R

3.
The nucleon dataset consists of two components: the proton

density and the neutron density, each a uniform grid of resolution
101×101×101. Rendering them simultaneously required generating
two textures, one for each density, then extracting and texturing an
isosurface from each convolution. The radiance values on the height
field were calculated with direct lighting using ray tracing and indirect
lighting using the photon map containing about 15 million photons,
then were projected and interpolated into a 3D texture. Generating and
texturing the level set for each isovalue required an average of 0.885
seconds; after level-set generation, the globally illuminated level set
could be rotated in real time (60 Hz) using OpenGL. By comparison,
the reference photon-mapped image took 2155 seconds to render using
the CPU.

We measured the error between texture-mapped global illumination
of isosurfaces using flattened 4D light transport and global illumina-
tion of the isosurface itself. For a single vertex, the squared error be-
tween the reference surface and the textured surface was calculated
as |(rt ,gt ,bt)− (r,g,b)| where (rt ,gt ,bt) represents the RGB colors
of the texture-mapped vertex, each normalized to the interval [0,1],
and (r,g,b) represents the RGB colors for the vertex in the reference
surface. The percent RMS error was computed as

100
√
〈Squared vertex error〉

The RMS error for the vertex colors between the texture-mapped iso-
surface and the photon-mapped isosurface in Figures 7b-c is 5.61%.
There are two sources of error: 1) the rendering approximation of es-
timating indirect illumination directly from the photon map without a
final gather, and 2) interpolating the radiance onto a texture and then
texture-mapping the radiance onto the level set.

Interpolating the radiance onto a uniform texture reveals sensitivity
to the radiance sampling strategy. We compared the accuracy of three
different radiance-sampling strategies head to head. These sampling
strategies are described below, and are illustrated in Figure 6.

In strategy 1 (level set), the radiance is sampled strictly along level
sets. Strategy 1 could be accomplished, for example, by generating
several level sets and illuminating each one with a 3D renderer. In-
tuitively, the photons congregate on the level sets, leaving voids in
between.

In strategy 2 (planes), the radiance is sampled strictly along oblique
parallel planes in the volume; this is a straw-man strategy, chosen not
because of any expectation that it yields an accurate 3D illumination
texture, but because it illustrates that the surfaces on which photons
congregate can be completely unrelated to the isosurfaces that are ul-
timately displayed. Note that each sample captures the radiance of the
level set passing through the point, not the radiance resulting from illu-
minating the plane itself. The situation may be more easily understood
by imagining an (admittedly ineffecient) algorithm for producing the
samples: for each isosurface, flood the scene with photons to deter-
mine the radiance at each point on the isosurface, then discard all of
the radiance samples except those that happen to lie on (or near) the
sampling planes. The result of such a process would be a collection of
radiance samples congregating along the oblique planes, even though
the samples had been first computed in the context of one isosurface
at a time.

In strategy 3 (uniform), the radiance samples are uniformly scat-
tered throughout the volume. The situation can be understood by

Fig. 7. Isosurfaces of proton density and neutron density in a compu-
tational simulation of stellar crust. Top (a): Scene rendered with local
illumination (OpenGL). Middle (b): Physically-based illumination applied
via texture map from pre-computed illumination grid using on flattened
light transport. Bottom (c): Physically-based illumination applied via
photon mapping to actual isosurfaces.
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imagining an even more inefficient algorithm: for each radiance sam-
ple, generate an isosurface through that point; flood the scene with
photons to illuminate the isosurface; then discard all the photons ex-
cept the one at the original sample point. If one only has a 3D model
available for physically-based illumination, then it is problematic to
decouple the radiance-sampling strategy level-set generation. As a re-
sult, the radiance samples leave voids between the level sets: where
there is no surface, there is no method for calculating the radiance.
In order to fill the voids in the radiance samples, one might generate
many more level sets, thereby oversampling radiance in regions of the
volume where the gradient of the scalar function is large and hence the
level sets are packed close together. Such behavior can be seen, for ex-
ample, in Figure 5a, where level sets (isolines) along the left bump are
packed closely together, while level sets near the luminaire (bottom of
image) are far apart, leaving voids in between.

By considering the level sets as waterlines of a height field, it
becomes possible to sample the radiance of the height field itself,
according to a pattern unrelated to the shape of the level sets that
foliate it. This is the actual approach we followed with the three
sampling strategies, not the pedagogic algorithms (with isosurfaces
temporarily generated and then many of their radiance samples
discarded) presented above. The error in the sampling strategies is
summarized in the table below. The calculations correspond to the
scalar function shown in Figure 6. The error is averaged over a level
set compared to a reference solution for the level set.

Strategy samples=106 samples=107

% err % err
1. Level Set 3.59 3.47
2. Planes 9.55 9.57
3. Uniform 1.29 1.08

The error in strategy 1 is smallest at values corresponding to level
sets that were used for sampling the radiance, and largest midway be-
tween them; the error in strategy 3 is fairly insensitive to the choice
of isovalue. These results quantify the difference that is evident qual-
itatively in the 2D example of Figure 5. To compare worst-case error,
we chose an isovalue (47.0) that lies midway between those (39.0 and
56.7) of two level sets used by strategy 1. The error was found to be
lower for the uniform sampling strategy than for the level-set sampling
strategy. The 4D lighting model permits the radiance samples to be de-
coupled from the generation of the level sets, which in turn allows the
overall error of the pre-computed illumination texture to be reduced
for a fixed number of radiance samples.

It can also be seen that when the number of photons increased, the
average error in uniform sampling decreased (improved) more than in
parallel-plane sampling or level-set sampling. This behavior can be
understood by recognizing that additional photons fill the voids in uni-
form sampling, but the voids between level sets remain empty when
additional photons are introduced using strategies 1 and 2, which re-
quire the photons to adhere to level sets or planes. One could insert ad-
ditional level sets or planes for precomputing radiance values in strate-
gies 1 and 2, but when the total number of photons is held constant, in-
creasing the number of planes or level sets reduces the number of pho-
tons sampled on each. In the limit, there would be many level sets (or
planes), each having a single photon. This limiting behavior demon-
strates the need to rethink the idea of sequentially generating closely
spaced surfaces in a volume and individually illuminating them with a
3D lighting model. Once the dense sequence of level sets is viewed as
a continuum (the heightfield in R

4) and the lighting model adjusted,
the radiance samples need not be constrained to the level sets at all.

We calculated the RMS error for renderings of additional scalar
datasets, including a 3D molecular dynamics simulation of a nano-
fluid, (Figure 8a), 3D magnetic resonance imaging (MRI) of the
human brain, (Figure 8b), and 3D confocal microscopy of a mouse
neuron (Figure 8c). In these other test cases the RMS error ranged
from between 5.7% and 8.1% for texture-mapped illumination and
photon mapping of the actual isosurfaces. The grid resolution, number

Fig. 8. Example scalar datasets from different domains and displaying
different characteristic shapes and topologies. Top (a): Nanofluid simu-
lation with multiple distinct connected components. Data courtesy of M.
Yousuff Hussaini, Kayne Smith, and Simon Serge Sablin, Department
of Mathematics, Florida State University. Middle (b): Cortex of the brain
with multiple folds. Data courtesy of Colin Holmes, McConnell Brain
Imaging Center at the Montreal Neurological Institute, McGill University.
Bottom (c): Mouse neuron. Data courtesy of Charles Ouimet and Karen
Dietz, Department of Biomedical Sciences, Florida State University.
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of 4D photon samples, time (in seconds) to sample the radiance, and
error for these datasets are summarized in the table below. Additional
details about timings and errors can be found in [3].

Dataset Grid Photons 4D illum (s) % err

Nucleon 1013 11,000,000 9,685 5.61

Fluid 1203 15,200,000 5,565 8.06

Brain 2173 7,600,000 5,452 6.53

Neuron 1503 11,700,000 4,587 5.70

Although our code used multiple threads to compute the photon
maps, the focus of our attention was not on the speed or parallelization
of the precomputation phase. Rather, the focus was on demonstrating
that a 4D illumination model can be developed for precomputing illu-
mination of level sets, and that such a model permits radiance sampling
to be decoupled from level-set sampling. Important questions of both
theoretical and practical interest for future research include how to
optimally distribute radiance samples to ensure that a given error con-
straint is met, and how to parallelize the precomputation efficiently.

This paper proposes a model of flattened light transport that oper-
ates within n-dimensional hyperplanes of R

n+1. The purpose of the
model is to permit a luminaire to shine horizontally onto the graph of
a scalar function in such a way that light does not leak between dif-
ferent horizontal layers. Since each layer captures a waterline along
the graph, the flattened lighting effectively samples the radiance that
would have been computed for the corresponding level set down in the
domain, one dimension lower. The model can, in principle, be applied
to higher-dimensional scalar functions such as time-varying density or
pressure.

Flattened light transport allows points on the luminaire to be ran-
domly sampled and points on the graph to be randomly sampled. As
a result, sampling of the radiance on the graph is decoupled from con-
structing level sets, thereby allowing a fixed number of samples to be
distributed throughout the 3D domain of a scalar function according
to any desired criterion, rather than being distributed strictly on level
sets. In particular, the voids between level sets can easily be sampled
using the flattened 4D model in order to generate an illumination grid
that does not exhibit stairstep interpolation artifacts. The illumination
grid can be used as a texture map to illuminate isosurfaces on the fly
as they are produced by an isosurface engine in a 3D visualization
system.

Illumination grids provide a mechanism for the data analysis work-
flow to incorporate physically-based illumination on current and
legacy visualization systems without requiring any modification to the
internal rendering engine or any change to the graphics hardware. The
technique described in this paper enhances illumination-grid genera-
tion by decoupling the sampling of the radiance from the sampling
of the level sets during grid generation. Consequently, radiance sam-
ples can be distributed uniformly through a 3D volume rather than
being confined to level sets, thereby improving the sampling charac-
teristics of the pre-computation step. We have demonstrated the fea-
sibility of this proposed workflow by incorporating a pre-computed
illumination grid as a 3D texture within a commercial visualization
software product: without any change to the rendering engine, we
demonstrated real-time sweeps through isosurfaces that we textured
with pre-computed physically-based illumination.
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