Fourth component of relativistic forces
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The Lorentz scalar interaction gives rise to a fourth component of the relativistic four-force which
has a different form than that of the vector interaction, the difference arising from the variable
mass for particles interacting through the scalar potential as compared to the constant mass for
particles interacting through the vector potential. The Lorentz scalar potential, with its
pedagogically interesting dynamics, is rarely mentioned in intermediate-level or first- -year,

graduate-level textbooks.

L. INTRODUCTION

Although interactions involving particles with a con-
stant mass are the ones most frequently encountered in
physical situations, those for which the mass varies with
the potential (Lorentz scalar potential) or with the potential
and the particle velocity (tensor potential) are of interest to
theorists (meson interactions, gravitation), and would be
very instructive to the student. Pleas to include the Lorentz
scalar interaction in intermediate-level and first-year,
graduate-level textbooks have been largely ignored.'~ This
paper is in part another such plea, as well as an example of
when the fourth component of a relativistic force is not of
the form usually given in those texts which include relativ-
istic dynamics.

II. CONSTANT MASS

Let the mass m’ of a particle be defined by its four-mo-
mentum

P=m'U, (1)
where U is the four-velocity*
U = (1 — v*/c?)~ 3 (v,ic) = p(v,ic). (2)

The mass m’ might or might not be constant. If the particle
is acted on by a four-force

F = (F, iF,), (3)
then its equation of motion is

P®_F @)

dr

where 7 is the proper time for the particle.
The scalar product of this equation of motion and its
four-velocity, combined with the property

U.U=(1 — v*/c*) ™ Y(w,ic)(v,ic) = — c?, (5)
yields a relation between the mass m’ and the force®

~d(m'c})/dr =F.U. (6)
The mass m’ will be constant (proper mass) if and only if

F.U=0. (7

This holds for the vector potential (electromagnetic force),
but not for a Lorentz scalar potential or for a tensor poten-
tial. 2%

For any particle with constant mass, the spatial and the
fourth components of the four-force Eq. (3) are related

through Eq. (7):
F,=Fwv/c. (8)
This is the only case considered by most intermediate-level
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or first-year, graduate-level textbooks on electrodynamics,
mechanics, or modern physics. Sometimes Eq. (8) is pre-
sented without an explicit statement that it only holds for
interactions involving a constant mass.

II1. LORENTZ SCALAR POTENTIAL

The Lorentz scalar potential @ (r,z ) gives rise to the four-

force

F=—g0le, )
where g plays the same role as does charge in electromagne-
tism, and the quad is the four-dimensional differential op-
erator

E (v, J ) (10)

ic dt
However, the Lorentz scalar potential must not be con-
fused with the fourth component of the electromagnetic
vector potential, which is often called the scalar potential in
three-dimensional calculations; the latter is not Lorentz
invariant. Using the fact that

e ( )
=y{vv =ul], 11
ar N\t )
Eq. (6) can be written as
Am'e) _ py[p 892, (12)
dr dr’

therefore the mass m' is not constant but rather
m=m+gd/c (13)

where m is the constant of integration of Eq. (12) which is
identified as the field-free particle mass; hence the momen-
tum defined by Eq. (1) is

=(m +g® /cHU. (14)

These results can also be obtained using Lagrangian meth-
ods’*%7 which might not be appropriate for use at the in-
termediate level.

The relation of the fourth component to the spatial com-
ponents of the four-force is obtained by combining Egs. (6)
and (13):

2
—d{mc +g®) _ HF-v — Fyc) (15)
dr
so that
F,=Fv/c + gd® /cdt, (16)
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which by virtue of Eq. (11) is in agreement with Eq. (9),

F 4= g a¢ s

cot

but is not the same as that for a vector interaction Eq. (8).
The first term on the right-hand side of Eq. (16) can as usual
beinterpreted as the work done on the particle by the three-
force per unit time, while the second term can be interpret-
ed as power expended in changing the potential “environ-
ment” of the particle. Leibovitz points out® that the
potential energy contributes to the mass m’ and that the
potential energy is localized in the frame of the moving
particle.

(17)

IV. DISCUSSION

There are pedagogic advantages in discussing the Lor-
entz scalar potential in intermediate-level and first-year,
graduate-level textbooks:

(a) The significance of and conditions for Eq. (8) are im-
pressed on the student by including a counter-example.

(b) Using the standard techniques for elliptical orbital
motion of a point particle around a fixed force-center (the
field approximation), the relativistic equations of motion
can be used to calculate the perihelion advance when the
particle is in a vector potential, and the perihelion regres-
sion when it is in a Lorentz scalar potential.® This would be
most effectively done with one case being worked out as an

example and the other case left as an exercise for the stu-
dent. At present very few intermediate mechanics text-
books include these illustrative examples of dynamics.>
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The edge of a smoothly rotating turntable was used as a reflecting surface in a Michelson
interferometer configuration to demonstrate the Doppler effect on laser light. Attached to the
edge of the turntable was reflective tape which greatly enhanced the backscattered light.
Spectrum analysis of the detected signal indicated that all of the signal and noise components were
contained in a frequency range of about 15% of the central Doppler frequency. As a quantitative
test of the method, the wavelength of the laser source, known to be 633 nm, was measured to be
(612 + 43) nm using an oscilloscope as the output device and (634 + 12) nm using a spectrum
analyzer for the output. All components that were used with the exception of the spectrum
analyzer are commonly available items. The techniques described in this paper provide a
quantitative demonstration of the Doppler effect of light and overcome the usual problems caused
by motional instabilities associated with the moving mirror.

L. INTRODUCTION

Although the Doppler shift is a well-understood effect
that is usually introduced to undergraduate physics stu-
dents in elementary courses, its demonstration using light
is not a simple matter. Demonstration experiments are
usually performed with sound'~* or with microwaves.%'°
The main problem involved in using light is that the mov-
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ing mirror from which light is reflected cannot usually be
moved in a sufficiently smooth and uniform manner to
keep the level of noise well below that of the signal. An
uncontrollable “wobble” with excursions smaller than an
optical wavelength can cause serious noise problems. We
have attempted to observe the Doppler effect on light using
a mirror mounted on a motor driven screw and also a mir-
ror placed on the car of an air track. Although both these
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