does not *‘soft land,”’ that is, we assume that y’(7(8)) < 0,
where T(6) is the impact time. From (2) and the definitions
of f, and f,, we have

y'(t)=v sin Of3(t)—gfs(t)=e N (v sin 6~ gf3(1))

and hence the impact assumption is
v
f3(T(6))>§ sin 6. )

In terms of the function
R(0
p(0)= ;—ggs—);
we have by (1),
R(8)=x(T(6))=v cos 0f,(T(6))
and hence
T(6)=1; ' (p(6)).

The impact assumption (9) is therefore equivalent to

fg(f;’(p<a)>)>§ sin 6. (10)

Now, R(#8) is differentiable if and only if p(6) is differen-
tiable. By (3), p(8) is defined by P(p(8), 6)=0, where

P(p,8)=v sin 6p—gfs(f3 '(p)).

Finally, at p = p( ),

P o
2, =0 Sin 6=efi/2 (o) (p)

=v sin 6—gf3(f; '(p))<0

by (10), and hence p(6) is differentiable by the Implicit
Function Theorem.

1G. Galilei, Two New Sciences (Elzevirs, Leyden, 1638), translated with a
new introduction and notes, by Stillman Drake (Wall and Thompson, Tor-
onto, 1989), 2nd ed., p. 245.
2S. Drake and 1. Drabkin, Mechanics in Sixteenth-Century Italy (University
of Wisconsin Press, Madison, 1969), p. 91.
3K. Symon, Mechanics (Addison-Wesley, Reading, MA, 1953), p. 38.
“H. Erlichson, ‘‘Maximum projectile range with drag and lift, with particu-
lar application to golf,”” Am. J. Phys. 51, 357-361 (1983).
5T. de Alwis, “Projectile motion with arbitrary resistance,”” Coll. Math. J.
26, 361-366 (1995).
6], Lekner, ‘“What goes up must come down; will air resistance make it
return sooner, or later?,”” Math. Mag. 55, 26-28 (1982).
"R. Courant, Differential and Integral Calculus (Interscience, New York,
1961), Vol. I, p. 114.
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I. INTRODUCTION

Minkowski diagrams in configuration space, with points
representing events, are often used in undergraduate courses
on special relativity. Similar diagrams in momentum space
are seldom shown, and the object of this note is to demon-
strate their pedagogical usefulness in discussing particle in-
teractions. In configuration space each point has coordinates
(t,x); in momentum space the coordinates are (E,p). Two
examples should be sufficient to show how such diagrams
can be used.

II. EXAMPLES

A. Fission

In this example there is just one space dimension:
Minkowski space is two dimensional. A particle of mass m is
represented by its mass shell, a hyperbola opening in the
positive E direction, given by

2 f
(E) —p2?=(mc)>.

c
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Figure 1 shows two such mass shells belonging to masses
m and M>m, each labeled by its mass. The scale on the
energy axis is chosen as E/c rather than E, so the two mass
shells cross the E/c axis at mc and Mc, respectively. Each
point on an m mass shell represents a state of a particle of
mass m, i.e., possible values of its energy and momentum. A
vector from the origin to such a point represents the energy—
momentum (E—p) vector of that state.

Consider a particle of mass M at rest, say a uranium
nucleus, that undergoes fission to two particles of equal mass
m. The vertical arrow in Fig. 1 represents the original ura-
nium E—p vector. E~p conservation implies that the E-p
vectors of the two fission fragments add up to the original
one, and since the total momentum is zero, the momenta of
the two fission fragments must be negatives: their E—p vec-
tors have opposite p components. Symmetry of the m mass
shell about the E/c¢ axis then implies that their E/c compo-
nents are equal, and conservation then implies than each
E/c component is equal to Mc/2. It is clear from the dia-
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Fig. 1. Fission.

gram that each E/c¢ component is higher than the point at
which the m mass shell crosses the E/c axis, i.e., greater
than mc, so m<iM,

Mc—2mc=Amc>0.

As the fission fragments interact with their surroundings,
they slow down and eventually come to rest. Then their total
E/c is 2mc, so the energy they give up to their surroundings
is just AE=Amc?. This is the real content of the famous
equation E=mc?, involving measurable energy changes
rather than absolute values relative to some more or less
arbitrarily chosen zero of energy. Note that the mass of the
fission fragments is not determined. But because their ener-
gies are both 1M c?, the mass m and momentum p are related
by

(%Mc)z—p2=(mc)2.

The logical order in which to present this in class is first to
draw the M mass shell, then the two E—p vectors of the
fission fragments, and only then to draw in the m mass shell.

This example is easily generalized to fission fragments of
unequal masses. Also, a similar diagram can be used to il-

¥

Fig. 2. Compton scattering.

|
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D

Fig. 3. Compton scattering (detail).

lustrate fusion or the binding energy of the deuteron. Then
M is less than 2m, and the M mass shell crosses the E/c
axis below 2mc.

B. Compton scattering

Now take Minkowski space to be three dimensional, as in
Fig. 2. The mass shell is now a hyperboloid of revolution. In
the figure the intersection of the (E/c,p,) plane with the
electron mass shell is the hyperbola labeled m,, and the
intersection with the light cone consists of the two lines la-
beled y. The light cone is the mass shell of the photon,
whose equation is

5] =0

c

The vertical arrow in Fig. 2 is the E-p vector of an elec-
tron at rest, and the other arrow represents an incident pho-
ton. The system’s total E—p vector is represented by the
point labeled A (the vector to A is not drawn to avoid con-
fusion). After scattering, the electron E—p vector (again on
the electron mass shell) plus the scattered photon E-p vec-
tor (again on the light cone) must add up to A. A way to
draw this is to construct an inverted light cone L with its
vertex at A. The E—p vectors of all possible scattered pho-
tons arrive at A from the closed curve, almost a circle, at
which L intersects m, in this three-dimensional space~time
(in four dimensions this would be a closed surface, almost a
sphere).

Figure 3 is an enlargement of part of Fig. 2. One possible
combination of scattered electron and photon E—p vectors is
indicated with arrows. The direction of the scattered photon
is obtained by projecting its E—~p vector onto the (p;.p3)
plane, so the different lines on the cone represent photons
moving in different directions. It is immediately evident that
the photon energy E, and hence its frequency v and wave-
length A, are determined by its direction.

ITI. CONCLUSION

Other particle interactions can also be visualized on simi-
lar Minkowski diagrams. The goal of this note is to show
how the dynamics can be visualized, not to perform the cal-
culations. The equations of the mass shells can be used, how-
ever, as a starting point for going on to the calculations.

Notes and Discussions 800



