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Relativistic transformation equations for the 3-vector force are derived from the Lorentz force law
by using the well-known transformation equations for electromagnetic fields and velocity. The
derivation is a simple alternative to the conventional derivation based on relativistic expressions for
energy and momentum. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

Conventional derivations of relativistic force transforma-
tion equations involve rather lengthy and fairly complicated
operations with relativistic expressions for mechanical en-
ergy and momentum.'~> However, the historical and logical
foundation of the relativity theory is electrodynamics rather
than mechanics, and the basic equations of the relativity
theory (not counting the Lorentz transformation relations for
space and time) are the relativistic expressions for electric
and magnetic fields. But electric and magnetic fields are
force fields. It may be expected, therefore, that relativistic
force transformation equations could be derived simply and
directly from relativistic transformation equations for electric
and magnetic fields without any recourse to mechanics. Such
a derivation is presented in this paper.

It should be noted that the phrase ‘‘relativistic force trans-
formation equations” is somewhat ambiguous, because in
the standard presentations of the special relativity theory two
different ‘‘relativistic’” forces are used. One of them is the
3-vector force defined by

d mgv
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the other is the 4-vector force, also known as the Minkowski
force, defined by
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where p,, is the 4-vector momentum, and 7 is the ‘‘proper”
time. Only the latter force is Lorentz invariant and therefore
represents the true relativistic generalization of Newton’s
second law.

The transformations that we shall derive are for the
3-vector force given by Eq. (1). Equation (1) is basically an
empirical relation and reflects the fact that the equation
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is the correct equation of motion for charged particles in the
presence of electric and magnetic fields, although it is also a
plausible extension of Newton’s second law to charged par-
ticles moving at relativistic velocities.*

Naturally, the 3-vector force, Eq. (1), and the 4-vector
force, Eq. (2), are closely related. In fact, Eq. (2) is fre-
quently obtained (*‘constructed’’) as a Lorentz-invariant gen-
eralization of Eq. (1).° As a result, the spatial components of
the 4-vector force are proportional to the corresponding com-
ponents of the 3-vector force [the proportionality factor is
1/(1—v?/c?)"2). But even when Eq. (2) is constructed with-
out the use of Eq. (1), care is taken to demonstrate the com-
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patibility of Eq. (2) with the equation of motion, Eq. (3), as
an indirect proof of the viability of the 4-vector force. The
4-vector force is essentially significant only for theoretical
investigations, while for practical calculations the 3-vector
force is used.

One customarily refers to the 3-vector force simply as the
““force.”” Accordingly, in the derivation and discussion that
follows, we shall use force in lieu of ‘‘3-vector force.”’

II. THE DERIVATION

The force experienced by a point charge g moving with
velocity u in the presence of an electric field E and a mag-
netic flux density field B is given by the Lorentz force law

F=g(E+uXxB). 4)

This law does not depend on the inertial reference frame in
which g, u, E, and B are measured (in fact, it is frequently
used as the definition of E and B). Therefore in an inertial
reference frame X' moving with velocity » relative to the
laboratory (reference frame Z) in the direction of their com-
mon x axis, Lorentz force law can be written as

F'=q(E'+u’'xB’), (5)

where the primes are used to indicate quantities measured in
the moving reference frame (there is no prime on g because
the charge does not depend on the velocity with which it
moves). All we need to do to obtain an equation transform-
ing F' to F is to express E, u, and B in Eq. (4) in terms of
primed quantities and to group the latter together in the form
of Eq. (5).

However, when dealing with the relativistic transforma-
tion, it is usually much simpler to write the transformation
equations in terms of the Cartesian components of the vec-
tors involved rather than in terms of the vectors themselves.
In terms of the components, Egs. (4) and (5) are

F,=q(E,+u,B,~u.B)), (6)

F,=q(E,+u,B,~u,B,), (M

F,=q(E,+tuB,~u,B,), ®
and

F;=q(E;+u;Bz'—u;By'), 9)

F,=q(E,+u,B,—u,B}), (10)

F,=q(E;+u,B,—u,B,). (11)

The transformation equations for electric and magnetic
fields that we need are’

E.=E], (12)
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E,=vy(E,+vB)), (13)

E,=y(E;~vB)), (14)
and

B,=B!, (15)

B,=y(B,—vE]/c?), (16)

B,=y(B,+VE,/c?), (17)
where

v= (l—v;/c Y72 - (18)

We also need the following velocity transformation
equations.®

(u,+v)

- 19

Y 1+vul/c?’ (19)
u’

_— 20

“y y(1+vul/c?)’ 20)

and

ul

: (1)

= y(1+vul/c?)’

A. Transformation equation for obtaining the x
component of F

Substituting Egs. (12), (20), (17), (21), and (16) into Eq.
(6) and canceling 7y, we have

' ’ ’
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, VE,
X By‘—cz— . (22)
Adding and subtracting
vuyu,B,
c(1+vul/c?)’
we obtain
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X\By——7 ||+ 1.2 2 1.2
Y ¢ c“(1+vuy/c®) c*(1+vu,/c?)
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vE, vu,B
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(1+vul/c®y \v 7y TR
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Adding and subtracting u, B, inside the parentheses of the
first term and u,B, inside the parentheses of the second
term, we then have

ul
vu,

!
= 4
Fi=q\E, c2(1+vu;/cz)

2
¢
x(;BZ’+u;B;—u;BZ’+E;+uZ'BJ’C)

!
vu,

T A +oul/cd)

X

2
C '
- By'+u;By'—u;By—E;+u;B;)}. (24)

Simplifying Eq. (24), we obtain

vu cA(1+vul/c?)
! Yy X ! rn’
F:=q|E, cA(1+vul/c?) v Rt
El IB! vuZ’
+E!+ulBl|— 5
yoouEr 62(1+vu;/cz)
2 )
c“(1+vu,/c) ,
X(%B;—u;BY—E;+u;B;”, (25)
or
’
_ ’ 1! rpt vuy
F.=q Ex+uyBZ—usz+ c—2(1+vu;/c2)

X(E,+u,B,—u.B;)
vu,
+ —_—
cX(1+vul/c?)
Comparing Eq. (26) with Egs. (9), (10), and (11), we rec-
ognize that Eq. (26) can be written as

(E;+u,B,—u,B))]. (26)

’ !
vu vu, ,

=F.+ 2 Fl+ F!,
F=F, A(1+vul/c®) Y A(1+vul/c?)  ?
(27)

which is the transformation equation for obtaining the x com-
ponent of the force measured in the laboratory system from
the x, y, and z components of the force measured in the
moving system.

B. Transformation equation for obtaining the y
component of F

Substituting Eqgs. (13), (21), (15), (19), and (17) into Eq.
(7), we have

r

F,=q| Y(E!+vB))+ —————_B’

y q ')’( y v Z) 7(1+Uu_;/c2) x
4t B+ E, 28
1T+ou /2 NP7 2% ) 28)

Factoring out

_r _
1+vul/c?’

simplifying, and rearranging, we obtain
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! v2 ! ! ’ U !
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y(1+vul/c?) =7 "ax TxTER
or, with Eq. (10),
F,= ! F! 30
YU y(1+vulic?) Y (30)

which is the transformation equation for obtaining the y
component of the force measured in the laboratory system
from the y component of the force measured in the moving
system.

C. Transformation equation for obtaining the z
component of F

Substituting Egs. (14), (19), (16), (20), and (15) into Eq.
(8) and proceeding as we did for deriving Eq. (30), we get

F,= ; (31)

[ — F .
y(1+wvul/c?) " *
which is the transformation equation for obtaining the z com-
ponent of the force measured in the laboratory system from
the z component of the force measured in the moving sys-
tem.

III. CONCLUSIONS

The transformation equations that we have obtained are
for transforming forces from the moving (primed) reference

frame to the laboratory (stationary) reference frame. The in-
verse transformations can be derived in the same manner.
However, as usual, the inverse transformations can be ob-
tained without additional derivations by simply switching
primes from the primed to the unprimed quantities and re-
versing the sign in front of v.

The method of deriving force transformation equations
presented in this paper is simpler and more direct than the
conventional method based on the use of mechanical energy
and momentum. It also has the advantage of closer relation
to electrodynamics, which is the logical and historical basis
of the relativity theory.” As has been kindly noted by an
anonymous reviewer, the calculations could make a good
detailed exercise for the student.

ISee, for example, A. R. French, Special Relativity (Norton, New York,
1968), pp. 205-225.
2See, for example, W. G. V. Rosser, Classical Electromagnetism via Rela-
tivity (Plenum, New York, 1968), pp. 9-15.
3Alan M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New
York, 1978), pp. 696-707.

%See, for example, Robert Resnick, Introduction to Special Relativity
(Wiley, New York, 1968), pp. 119-120.

3See, for example, (a) A. Sommerfeld, Electrodynamics (Academic, New
York, 1952), pp. 241-243 or (b) Emil J. Konopinski, Electromagnetic
fields and Relativistic Particles (McGraw-Hill, New York, 1981), pp.
393-396.

%See, for example, Roald K. Wangsness, Electromagnetic Fields (Wiley,
New York, 1979), pp. 557-559 and Ref. 5(b), p. 396 footnote; see also A.
Einstein, The Meaning of Relativity (Princeton U.P., Princeton, New Jer-
sey, 1950), 3rd ed., p. 47.

"See, for example, Ref. 2, p. 157.

8See, for example, Ref. 2, pp. 9-10.

The derivation is so simple and natural that it is difficult to believe that it
has been overlooked until now. Nevertheless I could not find this deriva-
tion in any of the 60, or so, textbooks on special relativity and electromag-
netic theory that I consulted before writing this article: the earliest of the
books was E. Cunningham, The Principle of Relativity (Cambridge U.P.,
London, 1914) and the latest was Mark A. Heald and Jerry B. Marion,
Classical Electromagnetic Radiation (Saunders, Fort Worth, 1995). It is
interesting to note, however, that for the special case of a particle which at
the given moment is at rest in the moving reference frame a similar deri-
vation is indicated in W. Pauli, The Theory of Relativity (Pergamon, New
York, 1958), p. 82 and in R. Becker and F. Sauter, Electromagnetic Fields
and Interactions (Blaisdell, New York, 1964), Vol. 1, p. 351.

that conscious reason is what makes us men.

249.

THE ROLE OF EMOTION IN TEACHING

It is particularly important to keep out emotion, or rather to control it carefully. Fathers and
mothers, husbands and wives, and people in authority very often forget this. When they explain,
they shout. Their faces become distorted with anger or urgency. They make violent gestures. They
feel that they are explaining things more forcibly. But in fact their emotion makes them difficult
to understand. A wife screaming at her husband, a sergeant roaring at a platoon, a father bellowing
at his son, create fear, and even hatred, but they do not manage to explain what they want done
and persuade their hearers to do it. Whenever we sink to believing that the more emotion we
display, the more effect we shall produce, we are reverting to our animal ancestry and forgetting

Gilbert Highet, The Art of Teaching (Vintage Books, New York, 1989; originally published by Alfred A. Knopf, 1950), p.
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