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Much to everybody’s surprise, it was recently demonstrated that according to Einstein’s general
theory of relativity, very close to a compact star or a black hole the centrifugal force may attract
towards the center of a circular motion. We show here that Newtonian theory predicts exactly
the same effect, and that the geometrical reason for it is identical in both theories. The
centrifugal force always repels in the Jocal outward direction. However, in a curved space (or on
a curved surface) in which the perimeter of concentric circles decreases with the increasing
diameter, the local outward direction points towards the global center of the circles, and thus the

centrifugal force attracts to the center.

I. REVERSAL OF THE CENTRIFUGAL FORCE

Einstein’s general theory of relativity predicts that the
three-dimensional space close to a very compact star or a
black hole is not Euclidean, but very strongly curved. In
such strongly curved spaces one finds circular photon rays:
some of the light trajectories are bent so much that they
become perfect circles. Around a nonrotating (Schwarzs-
child black hole with the mass M the circular photon rays
are great circles on the sphere r=3GM/c?, located well
outside the spherical surface of the black hole, which itself
locates at 7=2GM/c. Note, that for a black hole with the
mass equal to that of the Sun, 2GM/c*=3 km. For a very
compact spherical star (with the mass M and the radius
R<3GM/c*) in addition to the external circular photon
ray at r=3GM/c’ there exist also circular photon rays
inside the star. In strongly curved spaces, several proper-
ties of rotating bodies predicted by Einstein’s theory appear
to be acutely paradoxical and puzzling, because they con-
tradict our intuition based on Newtonian theory. Some of
them are somehow connected to the existence of the circu-
lar photon rays in space.

For example, according to Newtonian theory, identical
test rockets moving with different orbital speeds v along a
fixed circular orbit with the radius » around a spherical
body with the mass M need to use a speed dependent
thrust, 7= (v%—vz) /r, in order to stay on the orbit. Here,

vg=(GM/r)"? is the orbital speed corresponding to a free
orbital motion. However, according to Einstein’s theory,!
test rockets moving along the circular photon ray around a
Schwarzschild black hole should all use, irrespective of
their different orbital speeds, the same rocket thrust
T=mc"/6GM in order to stay on this orbit.

According to Newtonian theory, a gyroscope moving
around a circle should always precess in the opposite sense
to its circular motion in order to point in a fixed direction
in space: gyroscopes on clockwise orbits precess anticlock-
wise and vice versa. However, according to general relativ-
ity,> very close to a Schwarzschild black hole (for
r<3GM/c?) orbiting gyroscopes precess in the same sense
as their orbital motion: gyroscopes on clockwise orbits pre-
cess clockwise.

The conventional and well-known Rayleigh criterion de-
mands that the angular momentum must increase out-
wards for stability. However, according to Einstein’s the-
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ory,3 close enough to a Schwarzschild black hole (for
r<3GM/c?), the Rayleigh stability criterion is reversed:
stable equilibria correspond to angular momentum de-
creasing outwards. Similarly, the well-known result from
the classical theory of thin accretion disks states that vis-
cous stresses always transport angular momentum out-
wards,? but according to Einstein’s theory,” close to a
Schwarzschild black hole (for r<3GM/c*), viscous
stresses in thin accretion disks transport angular momen-
tum inwards.

Newtonian theory predicts that when a rotating body
shrinks conserving angular momentum, it always becomes
progressively more flattened. In contrast to this, according
to Einstein’s theory® the ellipticity of quasistationarily con-
tracting rigidly rotating spheroids with fixed mass M and
fixed total angular momentum J decreases with decreasing
mean radius R when R < 5GM/c*. Similarly, and again in
contrast to Newtonian theory, general relativity predicts’
that rotation increases internal pressure of a sufficiently
compact body (having its radius, R <2.5GM/c?).

The above described situations are directly relevant for
studying some most important and difficult problems of the
modern astrophysics such as the gravitational collapse of
rapidly rotating stars, coalescence of binary pulsars (be-
lieved to be connected to the origin of the gamma ray
bursts) or the question of how fast a pulsar can spin. For
this reason they have been at focus of interest for quite
some time and many experts have tried to give an expla-
nation for the puzzling paradoxes connected with them.
However, these attempts were all unconvincing and math-
ematically incorrect. The correct explanation was found
only a short time ago by one of us.® It did not pass unno-
ticed. Several scientific journals, both professional’ and
popular,'® devoted editorial articles to it, and occasionally
some news appeared also in the general press.' This public
interest in a rather academic problem of classical general
relativity arose, probably, because of its particular predic-
tion which, if taken out of the context, sounds shockingly
perverse: the centrifugal force may attract to the center of a
circular motion.

The centrifugal force is a certain thing existing in nature,
a particular inertial force which occurs in a rotating refer-
ence frame. If the angular velocity of the rotating frame is
Q, and the distance of a particle (with mass m) from the
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axis of rotation of the frame is r, then there is a force acting
on the particle in the rotating frame which equals

Z=mQ X (rXQ). (1.1

It was C. Huygens12 who named the force (1.1) the cen-
trifugal force. In Latin this means escaping, avoiding, or
repelling from the center. In his 17th century Huygens
could not anticipate that physicists working two centuries
after him will demonstrate that the “centri-fugal” force
may indeed, in a curved space, attract to the center and
thus become “centri-petal.” Although in this case the name
“centri-fugal” becomes self-contradictory, it should be
kept unchanged, because it is already a part of our culture,
and every educated person knows it. When properly un-
derstood, the statement “centrifugal force attracts” would
never appear to be undefined or ambiguous. It faithfully
brings the physics to forefront, describing reality in the
most proper and adequate terms we have. The paradox
with the self-contradicting name is just one more example
of the often forgotten truth that by creating names we do
not create reality, and that properties of things existing in
nature may disagree with our linguistic creations—things
have been created before we started naming them.'?

More precisely, it was formally and rigorously demon-
strated that according to Einstein’s general theory of rela-
tivity, in the case of a Schwarzschild black hole the cen-
trifugal force repels from the center (as it always does
according to Newtonian theory) only for a circular motion
which goes (with an arbitrary orbital speed) along circles
with radii greater that of the circular photon ray, r>3GM/
¢’. For a motion (again with an arbitrary orbital speed)
along circles with radii » < 3GM/¢? the force attracts to the
center. It is exactly zero for a motion along the circular
photon orbit, r=3GM/c?. Obviously, this explains all the
puzzling examples given above, but how can one under-
stand the formal results without going into rather technical
details of general relativistic arguments and calculations?

In this paper we show that the attractive behavior of the
centrifugal force is not at all strange. It may also occur,
and indeed it occurs, in very familiar Newtonian situations,
for example on the Wall of Death. The Wall of Death is a
circus for motorcycle acrobatic shows. The public takes the
lower floor and the motorcycle acrobats ride on the inside
of the barrel-shaped wall of the circus. Each particular
Wall of Death is a two-dimensional surface of revolution.
It is symmetric with respect to the intrinsic rotation in
which all points move along concentric latitude circles,
around the fixed center C located at the bottom of the
Wall. Meridians emerge radially from the center and are
orthogonal to the latitude circles (Fig. 1). The shortest
paths (geodesic) between a point on the Wall and the
center goes always along a meridian joining them. From
the point of view of the three-dimensional geometry, the
center of the latitude circle O shown in Fig. 2 coincides
with the point C 3, but from the point of view of the
two-dimensional geometry intrinsic to the Wall, the center
of this circle coincides with the point C.

An acrobat who moves along a particular latitude circle
feels the centrifugal force Z in the noninertial reference
frame corotating (comoving) with him. In the three-
dimensional space with Euclidean geometry the centrifugal
force acts, obviously, in the direction outward from the
center of the circular motion, pushing the acrobat away
from the point C ;). However, one may consider the cen-

983 Am. J. Phys., Vol. 61, No. 11, November 1993

Meridian

latitude
circle

Center

Center

Fig. 1. Latitude circles and meridians on the Wall of Death with two
different shapes.

trifugal force Z' intrinsic to the two-dimensional surface of
the Wall by projecting Z into this surface. Then, as Fig. 2
clearly shows, the intrinsic centrifugal force attracts the ac-
robat in the direction towards the center of his circular mo-
tion, pulling him towards the point C.

This may look as a triviality not even worth mentioning,
but the very geometrical reason for the attractive two-
dimensional centrifugal force, projected on the curved sur-
face of the Wall, is identical as in the case of the attractive
three-dimensional centrifugal force in the curved space of
Einstein’s theory. It may therefore be useful to study the
links of the curved geometry of the Wall and the dynamics
of the motorcycle motion there as a model of the formida-
ble world of a curved space close to a black hole. Our
article is devoted exactly to this.

As far as we know and could check, nobody before has
noticed that according to Newtonian dynamics, on the
Wall of Death (and in similar situations on curved sur-
faces) the centrifugal force may attract to the center of a
circular motion.'* This should not be surprising: the notion
of an attractive centrifugal force was probably for all of us
a kind of a mental tabu, consciously or unconsciously im-
posed on our imagination, not so much by the real nature
of things, but by the meaning of the name of the force.
Mental tabus are often difficult to break. This one was

]
— i

z L= +C
|

Fig. 2. The centrifugal force paradox: Centrifugal force intrinsic to a
curved surface attracts to the center of a circular motion.
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Fig. 3. Normal components of pulling and pushing forces are balanced by
the Wall.

broken only when it had been rigorously proved, in an
abstract mathematical way, that according to Einstein’s
theory the “centrifugal” force may attract to the center in
some very wunfamiliar situations involving black holes.
Only then it was possible to realize that the same could
also be true in much more familiar situations fully de-
scribed by Newtonian dynamics.

I1. TWO-DIMENSIONAL WORLD ON THE WALL
OF DEATH

The very reason that according to Einstein’s general rel-
ativity the centrifugal force may attract to the center of a
circular motion is the curvature of space. The three-
dimensional space of Newtonian theory is not curved but
flat, and thus described by Euclidean geometry. However,
one may consider Newtonian dynamics on a two-
dimensional curved surface thus bringing effects of the cur-
vature directly into Newtonian dynamics. This is a stan-
dard procedure, described in many textbooks.!* Its
importance comes from the fact that the two-dimensional
Newtonian dynamics can be studied not only theoretically,
but also directly experimentally on some models. This
gives an opportunity to experimentally illustrate how the
strong curvature of space influences dynamics, and thus to
visualize some of the apparently puzzling predictions of
Einstein’s theory by expressing them in familiar Newton-
ian terms.

Following this procedure, we discuss here the two-
dimensional gravitational and centrifugal forces as a part
of the two-dimensional world on the surface of the Wall of
Death. The geometry in this world is not Euclidean, but
curved. The curvature of the Wall influences the dynamics
in the same way as the curvature of space influences the
dynamics in Einstein’s general theory of relativity. Thus,
by studying the motion of the motorcycles on the Wall of
Death one can understand a lot about the motion of space-
craft and planets around black holes.

Of course, the motion of motorcycles on a real Wall of
Death is not truly two-dimensional, because the solid-body
reaction balances only these normal forces which push
against the Wall. Forces which pull along the normal are
not balanced. A fully two-dimensional model of Newton-
ian dynamics, with both the pushing and pulling normal
forces balanced, is shown in Fig. 3. The wall is split there
into two walls separated by a gap with a constant width
AR. The acrobats riding on the motorcycles are repre-
sented by small spheres, all with radius (AR)/2. They
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move without friction inside the gap. For the internal con-
sistency of the two-dimensional model in each point on the
Wall it must be

AR<R,. (2.1)

Here, %, is the smallest curvature radius *’R, measured in
the three-dimensional space, of the geodesic lines on the
two-dimensional surface crossing the point in question.
(The radius of curvature R is defined later.) If (2.1) is not
fulfilled, the internal structure of the particles would influ-
ence their motion. Thus, one cannot discuss within this
model distances smaller than AR and all the distances con-
sidered in this article must obey the condition,

d>AR. (2.2)

The two walls could be arranged to be perfect mirrors so
that the light bounces in the gap between them and this
way propagates along the Wall. From the Fermat principle
one deduces that the bouncing light propagates along the
rays which are geodesic lines in the curved geometry on the
Wall. Thus, the acrobats may use light rays in all their
measurements which involve construction of geodesic
lines.

By measuring things intrinsic to the Wall, and by giving
some physical interpretation to the two-dimensional ob-
jects defined by these measurements, the acrobats construct
a curved two-dimensional dynamics. In particular, they
may introduce the gravitational and centrifugal forces in-
trinsic to the Wall. It is quite obvious that the two-
dimensional gravitational and centrifugal forces should be
identical with their three-dimensional originals projected
into the Wall. This uniquely determines the only physically
correct definition of these forces in the curved two-
dimensional world on the Wall. However, the acrobats
have no information about the three-dimensional Euclid-
ean space around the Wall and thus they cannot “project”
from three to two dimensions. They must use a definition
of these forces based on terms intrinsic to the Wall, but at
the same compatible with the projection from three to two
dimensions. Later in this article we discuss such a Unigue
Definition.

III. GEOMETRY ON THE WALL OF DEATH

A geometrical object in a curved surface is called Jocal if
it is possible to construct it in such a way that the greatest
distance d involved in the construction is much smaller
than the smallest curvature radius, #,,

d<%,. 3.1

In the familiar Euclidean geometry on a plane it is not
possible to distinguish between local and global measure-
ments, because Zy=co and therefore condition (3.1) is
fulfilled for all geometrical constructions: all of them are
therefore “local.”

The (geodesic) radius of a latitude circle equals half of
its diameter measured along a meridian, R= D/2, and the
circumferential radius equals r=P/2w, with P being the
perimeter of the circle. It should be obvious that neither
the geodesic radius of the circle R, nor its circumferential
radius 7, can be measured locally.

In Euclidean geometry the ratio of perimeter to diameter
of a circle equals

P/D=m=3.141 592 653 6..., (3.2)
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Fig. 4. The circumferential radius r as a function of the radius R.

and thus sign(dr/dR)=e=+1. However, in the upper
hemisphere of the Wall of Death the circumferential radius
is a decreasing function of the radius (Fig. 4), and there-
fore it is e= -1 there. This has an interesting and impor-
tant consequence: the globally measured “outward direc-
tion” is exactly opposite to that measured locally.

Globally, outwards means the direction outside of the cen-
ter of the circle. This direction could be found in the fol-
lowing way [Fig. 5(a)]. Trace, in terms of a light ray, a
geodesic joining the point A on the circle with the center of
the circle C. In the Euclidean plane this would be a straight
line. On the curved surface of the Wall it is a meridian. The
outward direction is defined by the unit vector g, having
the same direction as the geodesic sector CA. The sector
|CA| could have its length d~%, and this is why the
construction is a global one.

Locally, outwards means the direction in which a small
arc of the circle is bent with respect to a tangent geodesic
line. The local outside direction can be found by the fol-

{b) %

Fig. 5. The global (a) and the local (b) measurements of the outward
direction for the latitude circles. The insert circle in the figure is very
small and its geometry does not differ from the Euclidean geometry. The
points A, A, and A, are located on the same latitude circle. Its curvature
is grossly exaggerated in the figure in order to show the details of the
construction.
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...and Unfold

Fig. 6. The curvature radius R. (a) Geometrical construction. (b) Local
measurement.

lowing construction [Fig. 5(b)]. Take a sufficiently small
piece of the surface such that its geometry could be con-
sidered as being Euclidean. On this small piece geodesics
lines defined by light rays do not differ from the straight
lines on a plane. Using the familiar Euclidean construction,
find two points A, and A, on the circle at equal distances
from A, such that the arcs AA, and AA, are equal. Next,
find two points P, and P, equally distant from the points
A, and A,, such that the lengths of the corresponding
sector are equal, |AP;|=|A,P|, and [AP,|=]A,P,|.
Join the points P, and P, by a straight line. Finally, mark
the point Py in which this line crosses the sector A A,. The
outward direction at the point A is defined by the unit
vector q which agrees with the direction of the sector
PyA. The longest distance on the small piece of the surface
used in this construction obeys d€Z#, and this is why the
construction is a local one.

From Fig. 4 one deduces that if the perimeter increases
with the increasing diameter (€= +1), then the locally
and globally defined outside directions are the same, but if
the perimeter decreases with the increasing diameter (e
= —1), then the locally and globally defined outside direc-
tions are opposite,

. (ar
e=s1gn(ﬁ), q=¢€qp. (3.3)
The radius of curvature R is a quantity determined by
the function 7(R). Figure 6(a) explains its construction
based on the fact that cones are intrinsically flat—they
could be cut, unfold and put flat on the plane. The latitude
circle O in this figure is shown together with a strip of the
surface of the Wall surrounding it. The strip is narrow
enough to be considered as a part of a perfectly conical
surface. After cutting and unfolding the strip, the circle O
becomes a fragment of a circle O' with the radius R which

is the curvature radius of the original circle O.
In order to see that R is a local quantity, we consider
now a different construction made on a very small part of
the strip. This construction [shown above in Fig. 6(b)]
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Fig. 7. Type 1 latitude circles.

determines the curvature radius in terms of a local mea-
surement intrinsic to the Wall, with no reference to the
three-dimensional Euclidean space in which the Wall is
embedded.

The local measurement of the curvature radius [Fig.
6(b)]. From a point A on the circle O construct a geodesic
which cross the circle in a point P,, which is located very
close to A. Denote the length of the sector AP, by d,.
From the point A construct another geodesic which
crosses the circle O in a point P,, located anywhere be-
tween Py and A. Denote the length of the sector AP, by d
and the angle /P,AP,; by a=a(d). Find, by repeating the
measurement,

ap= lim a(d), R=lim (34)

d—Ad daqSin(@—ag) ’
One always can measure R with a priori assumed accu-
racy Ad in a finite number of steps. The accuracy of the
measurement must be finite because of the condition (2.2);
AR < Ad<Z,. Note, that this construction works not only
for circles, but for any lines on a curved or flat surface.
In Euclidean geometry on a plane (where as we have
explained one cannot distinguish between local and global
geometrical objects) it is, of course, r=R=R, but in a
general two-dimensional non-Euclidean geometry on a
curved surface one has,

dr ! dr\~!
;ii —re(d—R) .

The inverse of the curvature radius, % =1/R, is called the
curvature of a line. Lines with zero curvature everywhere
are geodesic.

The three types of latitude circles on the surface of the
Wall of Death are shown in Figs. 7-9. Type 1: The perim-
eter increases with increasing diameter, e= + 1. The geo-
desic line tangent to the circle lies outside of the circle (in
the global sense) and the local outward direction points
outwards away of the global center. Circles in Euclidean
geometry are always type 1. Type 2: The perimeter does
not change with diameter, dr/dR=0. The curvature radius
is infinite, R= 0. The circle is identical with a geodesic
line. It is impossible to define locally the outward direction.
No such circles are present in Euclidean geometry. Type 3:
The perimeter decreases with increasing diameter, e=—1.

R=r (3.5)
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Fig. 8. Type 2 latitude circles.

The geodesic line tangent to the circle lies inside the circle.
No circles of this type are possible in Euclidean geometry.

Figures 7-9 also show what an acrobat located at lati-
tude circles of different types would actually see. It is clear
that what he sees agrees with the local, but not global sense
of outwards.

The type of the circle can be found not only by geomet-
rical measurement of e=q-q, but also by a dynamical
measurement of the precession of an “optical gyroscope.”

A conventional gyroscope, which may consist of a rap-
idly spinning dreid], is a three-dimensional object. It would
not fit the two-dimensional world of the Wall. More prac-
tical for the purpose is the optical gyroscope which consists
of two parallel mirrors fixed in a tube, and two opaque
screens between them. There is a small hole in each screen
exactly on the optical axis of the device. Servomotors at-
tached to it assure that independently of its motion the
light moves exactly along the axis. The optical gyroscope is
a two-dimensional device and thus it can be used by the
acrobats on the Wall. A remarkable property of it is that its
precession agrees with the precession of the conventional
gyroscope. If the optical gyroscope moves along a light ray
then obviously, it does not precess (the servomotors do no
work). However, it does precess when it moves along a

Center : :

Rotation-Precession

%

\ Center
dr

Type 3
ype dR |

Fig. 9. Type 3 latitude circles.
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curved line. Figures 7-9 show that for the type 1 circles the
gyroscopes precess backwards with respect to the orbital
motion (anticlockwise precession for clockwise rotation
and vice versa), that they do not precess for the type 2
circles, and that they precess forwards for the type 3 cir-
cles.

IV, DYNAMICS ON THE WALL OF DEATH

The Unique Definition. The gravitational force depends
on the location but it does not depend on the speed. The
centrifugal force depends on the absolute value of the speed
but not on its szgn

Consider again a motorcycle which moves with no fric-
tion and with a constant orbital speed v along a latitude
circle. In general its motion cannot be free and should be
supported by a real force F' which keeps the motorcycle
moving with the assumed speed along the fixed circle. This
could be achieved by rneans of a sprlng attached to the
motorcycle (and then the F is the spring tension), or by a
supporting rocket engine pointing sideward (and then F' is
the rocket engine thrust). Independently of the definition
of the gravitational and centrifugal forces which one may
prefer, in the reference frame comovmg (corotating) with
the motorcycle the real force F', the gravitational force,
and the centrifugal force must be in a perfect balance,

real gravitational centrifugal
(force) ( force ) force

):0. (4.1)

Ina more general case other inertial forces should be con-
sidered.'® For example, if the Wall is spinning, the Coriolis
force will be present on the Wall. We shall return to this
point later.

The real force F' is, of course, a directly measurable
quantity and so is the orbital speed of the motorcycle v. We
show that from the Unique Definition and Eq. (4.1) it
follows how the centrifugal force can be measured. The
idea of the measurement was described by Newton in Prin-
cipia. Newton considered how the real force of the tension
of a rope connecting two balls which move around a circle
depends on the orbital speed. We adopt Newton’s idea for
the Wall of Death by considering two motorcycles with the
same mass m, which move on the same latitude circle
R=R,, but with different orbital speeds. The first motor-
cycle moves with the speed vy and the second one with the
speed v=vy+ 6v. The real force which supports the motion
of the first motorcycle equals F;f,. For the second motorcy-
cle it equals F}j + 8F". According to the Unique Definition,
the gravitational force is the same for both motorcycles.
Therefore, the difference in the real force must be caused
by the difference in the centrifugal force. Because the cen-
trifugal force does not depend on the sign of the orbital
speed, it is not the difference of the speeds which matters
here, but the difference of the squares of the speeds, 6(v2)
—v2—v0 The acrobats measure v, 8(v?), and SF', and
then combine results of these measurements into

5Ft

T8(%)

This is exactly the centrifugal force on the Wall of Death.
Proof. Let us denote by G=m[V®]3, and Z=m,(v*/
r)e the gravitational and centnfugal forces in the three-

dimensional space. Here [V®];, is the gradient of the
gravitational potential in the three-dimensional space, r is

v (4.2)
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Fig. 10. Projection of the gravitation and centrifugal forces.

the circumferential radius of the latitude circle, and e is the
unit vector normal to the axis of rotation in three-
dimensional space. We denote by G and Z' projections of
these forces onto the surface of the Wall of Death. Figure
10 shows that

2

R i T v
=7§§-3 |G|go=mVP, Z =R |Z|q=m0—ﬁq.
(4.3)

Here, V is the gradient operator and @ the gravitational
potential on the Wall. The curvature radius R and the unit
vectors q and q, connected to the local and global outside
directions have been discussed in the previous Section. We
can now write Eq. (4.1) explicitly,

>l
Ff+moV<I>+m0(—)q=0. (4.4)

R
From the Unique Definition it then follows that the grav-
itational and centrifugal forces on the Wall are given by

( gravitational

force ) =meV e,

(4.5)

centrifugal v
( force ) =Mogd

Thus, the intrinsic centrifugal force on the Wall of
Death, defined by the Unique Definition, is identical with
the projection of the three-dimensional centrifugal force
into the surface of the Wall. The centrifugal force can be
measured by the experiment (4.2)

centrifugal 5F' )
( force )—_6(02) Yo

The force always repels in the local outside direction q.
However, motorcycles moving along type 3 circles are at-
tracted by the centrifugal force towards the global center
because for this type of circles g= —gq,. The centrifugal
force is identically zero for all the motorcycles moving,
with any orbital speed, along type 2 circles, because € =1/
R=0 there. These statements may sound paradoxical, but
one look at Fig. 11, which is a slightly changed Fig. 8,

(4.6)
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Fig. 11. Centrifugal force at latitude circles of different types.

should be enough to demonstrate that they are in accord
with everybody’s intuition!

The real force needed to support motorcycle motion
along type 2 circles equals Ff=m V®, independently of
the orbital speed. Note, that the free motion is possible
only for circles of type 1, because only for these circles the
gravitational and centrifugal forces point to opposite direc-
tions and thus they could balance each other. No free mo-
tion is possible for circles of types 2 and 3.

In general, the two-dimensional surface of the Wall .%*
may be described, in cylindrical coordinates (7,z,¢), by the
equation z=z(r). In the three-dimensional space the whole
surface . lies above the plane z=0 and it is tangent to this
plane in the point C, which is the center of all the latitude
circles on the Wall. The inner geometry of % has the form,

dz\*
d12=ll+ (d—r) ]d,l+,2 d¢*=dR*+P(R) d¢*. (4.7)
Here R is geodesic distance from the center,

’ dz 2,172
R(r)=J‘0 1+(E)} dr.

A latitude circle has the circumferential radius r and the
curvature radius [cf. Eq. (3.5)]

dr 1

(4.8)

(4.9)

The locally defined outside pointing vector q has the only
nonzero component

dr\ dr,"!
Q(R)=(d_R) =€. (4.10)

dR
The sign of gz, is the same as the sign of the function
dz/dr. The latitude circles with 1/R=0 are geodesic, be-
cause they coincide with geodesic lines. Geodesic circles
are located in places where the surface ./ is tangent (in the
three-dimensional space) to cylinders dz/dr= o coaxial
with rotation axis.

From Eq. (4.7) one deduces that the Lagrangian for a
particle motion on the Wall is

L=im[R*4+P(R)$*] —®(R), (4.11)
and the associated equation of motion,
mR=mr(R) ar(R) q$2—dq>(R) , (4.12a)
dR dR
P(R)d=const. (4.12b)
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Fig. 12. Centrifugal force repels from unstable and attracts towards stable
free circular photon orbits.

Both the energy & and the angular momentum £ =
are constants of photon motion on the Wall. The momen-
tum of a photon must be a null vector, #*=c*%?2=0 in
the spacetime, and therefore

=3P, P =P+ 7],

Here Z7 is the momentum in the radial direction.
Equation (4.13) can also be rewritten in a form familiar
from Newtonian theory,

Pr=(8Y)~ U o, (4.14)
where % . is the effective potential for the photon motion,
Ug=L1 (4.15)

The condition for a circular photon orbit, d% .4/dR =0,
is equivalent to dr/dR=0 and therefore to 1/R=0. Stable
circular orbits correspond to d’% .4/dR*>0, i.e., minima
of the potential, while the unstable orbits correspond to
d®% 4/dR? <0, i.e., maxima of the potential. Therefore,
the circular photon orbits are located at the extrema of the
function r(R): the stable circular orbit at the maxima of
r(R), and the unstable circular orbit at the minima of this
function:

(4.13)

stable circular photon orbit:

dr 0 d*r 0
R darR ="

unstable circular photon orbit:

dr d*r
=" ar”°

From this one concludes that q always points in the
direction towards the stable circular photon orbits and out-
wards the unstable photon orbits (Proof: see Fig. 11).
Therefore, the centrifugal force attracts towards the stable
circular photon orbits and repels from the unstable ones
(Fig. 12).

As an instructive example we shall now discuss a per-
fectly spherical Wall of Death located at the surface of
Earth. In this case the two-dimensional geometry on the
Wall has constant curvature ¥ =1/R,, where R, is the
radius of the Wall. Gravitational force is due to the Earth
surface gravity, g,=9.8 cm/ s?,

(4.16)
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Table 1. Spherical Wall of Death at the surface of the Earth.

Circumferential radius: x=r/Ry=sin X
Radius: X=R/R,=arcsin x

R x
Curvature radius: & =—= = |tan X|
Ry 1—
N tan X
Local outward direction: g=eq, e=-|tan—XT

v
Orbital speed: u=7—
goRo

- 9 1
Gravitational potential: ® = goRe"3 sin? X
0

Real force: F'=F!/, gomo= F! qo
Gravitational force: G'=G'/gym,= G go=—sin Xqq

= I - w? 1
i s B =Zlq=e 12| — =13 —
Centrifugal force: Z =z Zlqg=¢€41 (x )qo u (tan X)qo

*%I=

o' JR
Precession rate of the gyroscope: ﬂT:T_\/—=

(curvature radius)
0 )

of the Wall
. (4.17)
(gravitatlonal acceleration)
8=

on the Wall

Table I shows how Ry and gy are used to scale all the
geometrical and physical quantities relevant for our discus-
sion, and how to express them as explicit functions of the
circumferential and geodesic radii.

The general equation of motion specified to the spherical
Wall takes the form,

~ 1
FT—x+eu2; 1—-x*=0. (4.18)
The function F'(x) is shown in Fig. 13 for the three types
of the latitude circles. The dynamical aspect of the centrif-
ugal force reversal and vanishing of the centrifugal force

c
<

e
+
[N NP S
-

!
Us-oo U=0  U=+too u=eo U=0  U=loo

i i
U=-00 U=0  U=+eo

Type 1 Type 2 Type 3

Fig. 13. Real force in function of orbital speed for the three types of
latitude circles. Note that the curves Ft=Ft (u) are symmetric with re-
spect to the vertical axis, Ft (W)= =Ft (—u). If the Wall is spinning unbe-
knownst to the acrobats, then in addition to the gravitational and centrif-
ugal forces there will be also the Coriolis force acting on the motorcycles.

This will manifest as an asymmetry in the curves F (). One introduces
the ggawtatlonal centnfugal and Coriolis forces lzy con51der1ng quantities
G=F'(0), Z'=H{F'(w)+F'(—w)]-F'(0), C'=3[F(u)—F'(—u)],
which obviously may be measured experimentally. A similar construction
may be introduced in the most general case when the shape of the Wall
has no symmetries, rotates and changes in time in any arbitrary way
Ref. 16.

989 Am. J. Phys., Vol. 61, No. 11, November 1993

for type 2 circles are clearly visible in this figure. It is also
clear that in the upper hemisphere, i.e., for the type 2 and
3 circles the free motion is impossible because the centrif-
ugal and gravitational forces cannot balance, as they both
point towards the center.

In the lower hemisphere, i.e., for type 1 circles, the free
motion is possible for any assumed value of the radius,
0<x<1 and any assumed value of the orbital speed
0<u*< o. The free orbital speed at a given radius is given
by

x2

2

U= ,

K ,Il —x ,

and the radius corresponding to a free motion for a given
orbital speed by,

1 4
x§(=§ u"'("l +oa— 1).

Very close to the geodesic circle x=1 this formula gives

1 1
1) +o()

which means that for all motorcycles with orbital speed
u>1, ie., for these which move much faster than v,

= yRg, the free orbit is practically at x=1. The physical
reason for this is obvious: gravitational force is irrelevant
for ultra-fast (v>uv,) objects because the centrifugal force
increases with increasing orbital speed while the gravita-
tional force, which is speed independent, does not. Thus,
for a very high orbital speed the centrifugal force always
dominates.

(4.19)

(4.20)

(4.21)

V. PROPERTIES OF THE INERTIAL FORCES:
INERTIAL FORCES IN EINSTEIN’S THEORY

The discussion in the previous sections made us pre-
pared to list some important properties of the gravitational
and centrifugal forces (in the reference frame comoving
with the particle) on the Wall of Death.

(1) The condition for the occurrence of the centrifugal
force is a nonzero curvature of the trajectory of the mov-
ing body. The force acts only on bodies which move
along curved trajectories, and does not act on those
which move along geodesics lines in space which coin-
cide with the light rays. Gyroscopes do not precess when
move along geodesics.
(2) The centrifugal force always pushes bodies in the
local outward direction. The local outward direction
may point to the global center, and thus the centrifugal
force may attract to the center of a circular motion. This
happens if and only if perimeter is a decreasing function
of diameter for concentric circles. In such situation free
motion is not possible.

(3) The centrifugal force attracts towards stable circu-

lar rays of light and repels outward from the unstable

ones.

(4) The gravitational force per unit mass equals to the

gradient of the gravitational potential and is not con-

nected in any way to the curvature of space. The gravi-
tational force does not depend on the speed.

It is remarkable that these properties are identical in the
case of particles and photons motion close to compact as-
tronomical objects such as very dense stars and black
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stable

Fig. 14. The embedding diagram, showing the curvature of space inside
and around a very compact star with constant density.

holes, which are described by Einstein’s general theory of
relativity. According to the Einstein theory the geometry
of space very close to a compact object is not Euclidean,
but strongly curved. The curvature of space increases with
the compactness which could be measured, for a spherical
object with the mass M, as the ratio of the gravitational
radius R of the object, to its radius R,

c_Ro_2GM_ (29 km\( M
%= 3tg)

Here, G denotes the gravitational constant, ¢ the speed of
light and M, the mass of the Sun. Neutron stars have radii
not much different than R~ 10 km and masses not much
different than that of the Sun, and therefore C~0.3 for
them. For nonrotating black holes it is always C=1.

We shall now consider a spherical star about twice times
more compact than a typical neutron star, 8/9<C<2/3.
Geometry of the equatorial plane both inside and outside
of such a star is illustrated in Fig. 14 by so-called embed-
ding diagram. It consists of a curved two-dimensional sur-
face of revolution embedded in the familiar three-
dimensional Euclidean geometry. The model surface has
the same inner geometry as the two-dimensional equatorial
plane of the star, embedded in the curved three-
dimensional non-Euclidean geometry. The geometry on
the embedded diagram is based on measurement of dis-
tances with the help of the light signals. In particular, the
distance d (5 between two points 4 and B equals half of the
round trip travel z,p time (multiplied by the speed of
light), in which light moves from A4 to B and after reflec-
tion at B goes back to 4,

(5.1)

(5.2)

The time ¢ is measured by static observers who use syn-
chronized clocks. This way of measuring distances defines
the optical reference geometry.

It differs from more often used alternative geometry in
which the measurements of distances are based, in princi-
ple, on the use of rigid rulers. Both geometries are just
some particular ways to make maps of a curved space, and
none should be a priori consider better than the other one.
The difficulty with mapping here is quite similar to that in
the case of conventional cartography where it is impossible
to represent accurately the spherical surface of the Earth

1
d4p=2Ctas-
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on a flat plane without some kind of distortion. Several
types of projections are used in cartography to minimize
the distortion of the features of interest, while some other
features may be at the same time distorted beyond recog-
nition. The choice of a particular projection depends on the
purpose of the special map. For example, the well-known
Mercator projection exaggerates polar regions to an enor-
mous extent, but it is invaluable to navigators as it shows
all lines of constant directions as straight lines. The optical
geometry turns out to be extremely useful for studying
light propagation and dynamics, because the geodesic lines
in optical geometry are a dynamical models for “straight
lines.” (In particular, for static spacetimes, light moves in
the optical geometry along geodesic lines.) This helps to
isolate particular and complicated technicalities from the
basic geometrical and physical issues.

In Fig. 14 the two circular photon orbits are indicated by
heavy lines. Exactly as in the case of the two-dimensional
Newtonian dynamics, stability [cf. Eq. (4.10)] of the orbit
is connected to the sign of the second derivative of the
function r=r(R). The centrifugal force attracts to the sta-
ble, and repulses from the unstable circular photon orbit.

This explains, in exactly the same way as in the case of
the Wall of Death, the paradoxical and astrophysically im-
portant effects mentioned at the beginning of this article.
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Two classes of differential equations which have Kepler-like and oscillatorlike elliptical orbits
are shown to have generalizations of the conserved angular momentum, energy, and Laplace—
Runge-Lenz vector (Jauch-Hill-Fradkin tensor for the oscillator case). Both possess a
generator of self-similar transformations and the related period—semimajor axis relation is a
generalization of Kepler’s third law in which the constant of proportionality depends explicitly

on the eccentricity of the orbit.

I. INTRODUCTION

It is well known that the Kepler problem, described in
reduced coordinates by the equation of motion

i‘+'l§=0, (1.1)

where p is a positive constant, possesses the constants of
the motion, energy

E=4- it (1.2)
r

angular momentum

L=rxXI, (1.3)
Hamilton’s vector!

K=i-—% 0 (1.4)
and Laplace—Runge-Lenz vector*™

J=KXL=FXL-—uf, (1.5)

where £ and @ are the unit vectors in plane polar coordi-
nates in the plane of the motion. If @ is measured from J,
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the scalar product of r with Eq (1.5) leads to the equation
of the orbit

L2

r= T es (1.6)

which is an ellipse, parabola, or hyperbola according to
whether u>J, u=J or u<J.

The equation of motion (1.1) is invariant under the ac-
tions of the second extensions of the three elements of the
rotation group SO(3), time translation G=4d/d¢, and self-
similarity

G da 2 4
='a%t3 o
(In the case of the generator of self-similar transforma-
tions, for example, the second extension is

3 29 1.9 4._3)

(1.7)

2l _, e e i
G =tat375 3" 3 %

This last symmetry is generally associated with the

Laplace-Runge-Lenz vector and Kepler’s third law of
planetary motion

2
TR—3/2= ,
a7
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