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Main result

Theorem (Rohlin (1951), Thom (1954), Lickorish (1962), Rourke (1985),
Matveev-Polyak (1994)). Every oriented, closed 3-manifold M is the bound-
ary f an oriented 4-manifold.

We’ll give yet another proof!

Try to control the complexity of the 4-manifold.

Definition. The complexity of a PL n-manifold M is the minimum, over all
triangulations of M , of the number of n-simplices in the triangulation.

Question. What is G3(k), the least function such that every orientable 3-
manifold of made of k tetrahedra is the boundary of a 4-manifold with at
most G3(k) 4-simplices? What is its asymptotic growth rate?

Theorem (CT). G3(k) = O(k2).

There is an obvious linear lower bound on G3; there is still a gap between
linear and quadratic.
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Elaborations

Theorem. G3(k) = O(k2).

As a result, you don’t lose too much by using a surgery diagram rather
than a triangulation to represent a 3-manifold. (A surgery diagram gives a
3-manifold and a 4-manifold bounded by it.)

Theorem. A hyperbolic 3-manifold with volume V is rational surgery on a
link with O(V 2) crossings.

For a clean statement for more general manifolds, we need to generalize
surgery diagrams to shadow diagrams.

Theorem. A shadow diagram for a geometric manifold M has at least Ω(M)
vertices and requires at most O(M2) vertices.
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Proof idea

Throw your 3-manifold at the screen.

That is, take a generic smooth map from M3 to R
2.

At regular value, inverse image is a 1-manifold, a disjoint union of circles.
Idea: Glue in disks to these circles.

Extend past singularities.
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Warm-up: n = 1

Overall question: when does an oriented n-manifold (without boundary)
appear as the boundary of an oriented (n + 1)-manifold?

n = 1: An closed 1-manifold is a disjoint union of circles. It is the boundary
of a disjoint union of disks.
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Warm-up: n = 2

Does every surface bound a 3-manifold? No, but every orientable one does.

Pick a generic, smooth function from surface to R (a Morse function). Inverse
image of a regular point is an oriented 1-manifold, a disjoint union of circles.
Idea: glue in disks to each of these circles.

−→

But how to continue past the critical points?
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Warm-up: n = 2, analysing singularities

A critical point (locally in domain) is either a saddle, a maximum, or a
minimum.

The orientations of the level set around a saddle point must alternate:

−→ and

Therefore the inverse image of a saddle value is a figure 8, and the inverse
image of its neighborhood is a pair of pants.

After attaching disks at the regular values, we are left with a 2-sphere bound-
ary component. Fill it in with a 3-ball to construct the 3-manifold.
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The Stein factorization: a more global point of view

For a map f from a compact Σ2 to R, let

X = {connected component of f−1(x) | x ∈ R
2}

Then we can write f = g ◦ h, where the fibers of h are connected and g is
finite-to-one. This is the Stein factorization of f .

−→ −→

At generic points, Σ is a circle bundle over the Stein graph and the 3-manifold
is a disk bundle. Alternatively, the 3-manifold collapses onto the Stein graph.
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The main case: n = 3

Throw your 3-manifold at the screen.

That is, take a generic smooth map from M3 to R
2.

At regular value, inverse image is a 1-manifold, a disjoint union of circles.
Idea: Glue in disks to these circles.

Extend past singularities, which were first analyzed by H. Levine (1988).
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The main case: n = 3

In the case of 3-manifolds mapping to R
2, the Stein factorization will give

a surface with some type of singularities. In codimension 1 the singularities
look like the previous singularities (surface to R), crossed with an interval.

In codimension 2 locally in the domain, the only new singularity is a kind of
cusp where two critical points of index 0 and 1 meet and cancel.

However, this singularity turns out to play little role. More interesting is the
crossing of two codimension 1 saddle-type singularities.
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Crossing singularities

In the inverse image of a crossing of two saddle type singularities, there are
two singular points. There are two ways to connect up these two singularities
to get a connected, oriented fiber.

(a) (b)

We will assume that our generic map has no singularities of type (b), since:

• Type (b) is similar to type (a), only slightly more complicated;

• A singularity of type (b) can be C0 perturbed to get two singularities
of type (a).
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Analyzing the singularity

In a neighborhood of a singularity of type (a), the inverse image of a generic
point is one of the 4 ways of resolving the singular graph into a 1-manifold.

−→

We want to find the inverse image N of a neighborhood of this point, which
is a 3-manifold with boundary. The boundary has a map to the circle. The
Stein graph is

Therefore the boundary is a genus 3 surface.

Each regular point in the singular fiber gives us a disk in the boundary that
bounds in N . Considering enough of these, we see that N is S3 minus an
unknotted tetrahedron graph.
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Constructing the 4-manifold

Now assemble the pieces to construct a 4-manifold W 4 bounded by our 3-
manifold M3.

• Start with M × [0, 1]. We want to kill one boundary component.

• Attach a 2-handle along each circle in the inverse image of a regular
point.

• Attach a 3-handle transverse to each codimension 1 singularity.

• The remaining boundary components are all 3-spheres, by the anal-
ysis of the singularities. (The graph was filled in by the other com-
ponents, just as the pair of pants was filled.) Attach 4-balls to them.
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Why quadratic?

We have been working with generic smooth maps. To bound the complexity,
we want to start from a triangulation.

Start with a triangulation and pick a generic piecewise linear map to the
plane: Pick an arbitrary map from the vertices of the triangulation and extend
linearly over the simplices.

Codimension 1 singularities come from the images of edges of triangulation.

Codimension 2 singularities may come from the crossing of the image of two
edges. The number of such crossings is at most quadratic in the number of
tetrahedra.
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Shadow surfaces: first glimpse

As in the case of surfaces mapping to R, we can consider the Stein factoriza-
tion of our map from M3 to R

2.

The resulting Stein surface is a 2-complex. It has a number of local models,
including

• the plane R
2 at regular points;

• a 3-page book from codimension 1 singularities; and

• the cone over the graph we found around the crossing of singularities.

among a few others (which can be removed).

The 3-manifold is generically a circle bundle over the Stein surface and the
4-manifold is generically a disk bundle.
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The shadow world

These Stein surfaces are examples of shadow surfaces, as introduced by Tu-
raev.

As representations of 3- or 4-manifolds, they have many advantages: they

• Generalize many other representations;

• Let you compute quantum invariants;

• Provide efficient representations for small manifolds;

• Relate to hyperbolic geometry (and Gromov norm); and

• Arise naturally in proofs.

But basic questions are unknown:

• Simple moves relate any two shadows represent the same 3-manifold
(CT), but

• Finding such moves for 4-manifolds is related to the Andrews-Curtis
conjecture.
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Definition of shadows

A soap bubble locally looks like:

• A plane;

• A 3-page book; or

• A cone over the tetrahedron graph.

Region Edge Vertex

A 2-complex Σ whose only singularities are in the list above is called a simple
polyhedron.

If such a Σ is embedded in a 4-manifold W in a locally flat way, and W
collapses onto Σ, then we call Σ a shadow presentation of W and its bound-
ary ∂W .
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Shadows in 2 dimensions

Contrast shadows with standard spines for 3-manifolds, where the 3-manifold
is generically an interval bundle over Σ, rather than a circle/disk bundle.

One dimension down, trivalent graphs Γ represent surfaces in two ways:

• N(Γ), Γ ⊂ Σ2, is a ribbon graph dual to a triangulation.

• N(Γ), Γ ⊂ M3, is a handlebody; the surface on the boundary has a
pair of pants decomposition.
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Shadows in 3 dimensions

In 3D, the basic building block of shadows is the complement of the tetrahe-
dron graph.

The pairs of pants around vertices are glued according to the singular graph.

The result has torus boundary components; these are filled in with a solid
torus for each region of the shadow (if regions are disks).

To determine the 4-manifold W from the 2-complex Σ, we also need to specify
some integers or half-integers (the gleams) on the regions. These can be
thought of as framings or relative Euler classes.
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Shadow number and hyperbolic volume

Definition. The shadow number of a 3-manifold is the minimum number of
vertices in a shadow representation of the manifold.

Note that there are an infinite number of 3-manifolds of fixed shadow number.
Contrast with complexity.

Theorem. A geometric manifold with Gromov norm ‖M‖ has shadow num-
ber S with

vtet

2voct
‖M‖ ≤ S ≤ C‖M‖2

for a suitable constant C.

For lower bound, the manifold before gluing in the regions has an explicit
hyperbolic structure: each block is the double of a regular ideal octahedron
along half its faces. The Gromov norm only decreases under surgery.

For upper bound, use a version of main theorem for ideal triangulations.

Corollary. A map from a 3-manifold M to R
2 has at least ‖M‖/10 crossing

singularities.
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Related Questions and Future Directions
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Questions on shadows

• Is the shadow number additive under connect sum? This implies an
explicit linear bound on G3: a standard spine for M is a shadow for
M#M̄ .

• Is the shadow number additive under torus connect sum? This implies
an upper bound on the shadow number in terms of hyperbolic volume.

• For hyperbolic manifolds, can you find shadow representatives so that
hyperbolicity is automatic? (Compare: alternating knots.)
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Related question: bounding knots

An unknotted circle in space is the boundary of an embedded disk.

Question. What is the least function Gdisk so that every unknot with k
straight line segments bounds a disk made of Gdisk(k) flat triangles?

Theorem (Hass-Lagarias-Snoeyink-W. Thurston). c1A
k ≤ Gdisk(k) ≤ c2B

k2

for suitable constants c1, c2, A, B.

A polygonal non-intersecting curve in space is the boundary of a surface.

Question. What is the least function Gsurf so that every polygonal curve
with k straight line segments bounds a surface made of Gsurf(k) flat triangles?

Theorem (Hass-Lagarias). 1
2k2 − ck ≤ Gsurf(k) ≤ 7k2 for a constant c.

Question. What is the bound GPachner of the number of Pachner moves
required to turn a triangulation of S3 with k tetrahedra into a standard one?

Theorem (King, Mijatović). GPachner(n) ≤ c1A
n2

for constants c1, A.
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Embedded Andrews-Curtis

• What moves suffice to relate any two shadow surfaces representing
the same 4-manifold?

• Given two 2-dimensional spines of a 4-manifold. Are they equivalent
by embedded 3-deformations?

• (Andrews-Curtis, group theory version) Are any two balanced pre-
sentations of the trivial group related by Nielsen transformations?

We have a set of moves relating any two shadow surfaces representing the
same 3-manifold. In general, finding set of moves is not hard once you allow
any sort of stabilization that increases the second homology of the 4-manifold.
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4-manifolds bounding 5-manifolds?

Why doesn’t this proof work to show that 4-manifolds bound 5-manifolds?
Start the same way: pick a generic map from your 4-manifold to R

3. . .

There are some new codimension 3 singularities. For some of them, the
inverse image of a neighborhood, filled in around the boundary, is not S4,
but rather CP

2 or CP
2
.

This does give a proof that every smooth 4-manifold is cobordant to a union
of CP

2 and CP
2
’s.

If you want to get bounds on the complexity, you also need to worry about
generic PL maps which are not generic smooth maps in codimension 2.

Similarly, not ever unoriented surface is the boundary of a 3-manifold. For
unoriented surfaces, there is another possible structure of the singular level,
which yields an RP

2 on the boundary.
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Questions on bounding manifolds

• Lower bounds or better upper bounds for G3, 3-manifolds bounding
4-manifolds.

• Lower bounds for GPachner, Pachner moves to make a triangulation
of S3 standard.

• Bounds for 3-manifolds to bound special 4-manifolds, like simply-
connected or spin.

• Lower bounds with a coarser notion of the complexity of the 4-
manifold (e.g., the order of the second homology).

One approach to a lower bound for G3:

• Pick an invariant I of 3-manifolds that is defined from a 4-manifold
bounded by the 3-manifold;

• Show that I is linearly bounded by the complexity of the 4-manifold;

• Find a family of 3-manifolds for which I grows quadratically in the
complexity of the 3-manifold.
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Previous work

Each constructive proof that 3-manifolds bound 4-manifolds gives, in princi-
ple, an estimate for G3(n).

• Rohlin (1951): Based on a generic map f : M3 → R
5. Probably gives

G3(n) ≤ kn4.

• Thom (1954): Homotopy-theoretic. Hard to get explicit bounds on
G3(n).

• Lickorish (1962), Rourke (1985), Matveev-Polyak (1994): Inductive
proofs, based on mapping class group. Use the inductive hypothesis
twice, so get exponential bounds for G3(n) at best.

• Costantino-T.: Based on a generic map f : M3 → R
2. Gives G3(n) ≤

kn2.
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