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Will We Ever Classify Simply-Connected Smooth

4-manifolds?

Ronald J. Stern

Abstract. These notes are adapted from two talks given at the 2004 Clay
Institute Summer School on Floer homology, gauge theory, and low dimen-

sional topology at the Alfred Rényi Institute. We will quickly review what we
do and do not know about the existence and uniqueness of smooth and sym-
plectic structures on closed, simply-connected 4-manifolds. We will then list
the techniques used to date and capture the key features common to all these
techniques. We finish with some approachable questions that further explore
the relationship between these techniques and whose answers may assist in
future advances towards a classification scheme.

1. Introduction

Despite spectacular advances in defining invariants for simply-connected smooth
and symplectic 4-dimensional manifolds and the discovery of important qualitative
features about these manifolds, we seem to be retreating from any hope to classify
simply-connected smooth or symplectic 4-dimensional manifolds. The subject is
rich in examples that demonstrate a wide variety of disparate phenomena. Yet it
is precisely this richness which, at the time of these lectures, gives us little hope
to even conjecture a classification scheme. In these notes, adapted from two talks
given at the 2004 Clay Institute Summer School on Floer homology, gauge the-
ory, and low dimensional topology at the Alfred Rényi Institute, we will quickly
review what we do and do not know about the existence and uniqueness of smooth
and symplectic structures on closed, simply-connected 4-manifolds. We will then
list the techniques used to date and capture the key features common to all these
techniques. We finish with some approachable questions that further explore the
relationship between these techniques and whose answers may assist in future ad-
vances towards a classification scheme.

Algebraic Topology. The critical algebraic topological information for a closed,
simply-connected, smooth 4-manifold X is encoded in its Euler characteristic e(X),
its signature σ(X), and its type t(X) (either 0 if the intersection form of X is
even and 1 if it is odd). These invariants completely classify the homeomorphism
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type of X ([3, 12]). We recast these algebraic topological invariants by defining
χ

h
(X) = (e(X) + σ(X))/4, which is the holomorphic Euler characteristic in the

case that X is a complex surface, and c(X) = 3σ(X) + 2e(X), which is the self-
intersection of the first Chern class of X in the case that X is complex.

Analysis. To date, the critical analytical information for a smooth, closed,
simply-connected 4-manifold X is encoded in its Seiberg-Witten invariants [30].
When χ

h
(X) > 1 this integer-valued function SWX is defined on the set of spinc

structures over X . Corresponding to each spinc structure s over X is the bundle of
positive spinors W+

s
over X . Set c(s) ∈ H2(X) to be the Poincaré dual of c1(W

+
s

).
Each c(s) is a characteristic element of H2(X ;Z) (i.e. its Poincaré dual ĉ(s) =
c1(W

+
s

) reduces mod 2 to w2(X)). The sign of SWX depends on a homology orien-
tation of X , that is, an orientation of H0(X ;R)⊗detH2

+(X ;R)⊗detH1(X ;R). If
SWX(β) 6= 0, then β is called a basic class of X . It is a fundamental fact that the
set of basic classes is finite. Furthermore, if β is a basic class, then so is −β with
SWX(−β) = (−1)χ

h
(X) SWX(β). The Seiberg-Witten invariant is an orientation-

preserving diffeomorphism invariant of X (together with the choice of a homology
orientation). We recast the Seiberg-Witten invariant as an element of the integral
group ring ZH2(X), where for each α ∈ H2(X) we let tα denote the correspond-
ing element in ZH2(X). Suppose that {±β1, . . . ,±βn} is the set of nonzero basic
classes for X . Then the Seiberg-Witten invariant of X is the Laurent polynomial

SWX = SWX(0) +
n∑

j=1

SWX(βj) · (tβj
+ (−1)χ

h
(X) t−1

βj
) ∈ ZH2(X).

When χ
h

= 1 the Seiberg-Witten invariant depends on a given orientation of
H2

+(X ;R), a given metric g, and a self-dual 2-form as follows. There is a unique
g-self-dual harmonic 2-form ωg ∈ H2

+(X ;R) with ω2
g = 1 and corresponding to the

positive orientation. Fix a characteristic homology class k ∈ H2(X ;Z). Given a
pair (A,ψ), where A is a connection in the complex line bundle whose first Chern

class is the Poincaré dual k̂ = i
2π

[FA] of k and ψ a section of the bundle W+ of
self-dual spinors for the associated spin c structure, the perturbed Seiberg-Witten
equations are:

DAψ = 0

F+
A = q(ψ) + iη

where F+
A is the self-dual part of the curvature FA, DA is the twisted Dirac operator,

η is a self-dual 2-form on X , and q is a quadratic function. Write SWX,g,η(k) for
the corresponding invariant. As the pair (g, η) varies, SWX,g,η(k) can change only
at those pairs (g, η) for which there are solutions with ψ = 0. These solutions occur

for pairs (g, η) satisfying (2πk̂ + η) · ωg = 0. This last equation defines a wall in
H2(X ;R).

The point ωg determines a component of the double cone consisting of elements
of H2(X ;R) of positive square. We prefer to work with H2(X ;R). The dual com-
ponent is determined by the Poincaré dual H of ωg. (An element H ′ ∈ H2(X ;R) of

positive square lies in the same component as H if H ′ ·H > 0.) If (2πk̂+η) ·ωg 6= 0
for a generic η, SWX,g,η(k) is well-defined, and its value depends only on the sign of

(2πk̂+ η) ·ωg . Write SW+
X,H(k) for SWX,g,η(k) if (2πk̂+ η) ·ωg > 0 and SW−

X,H(k)
in the other case.
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The invariant SWX,H(k) is defined by SWX,H(k) = SW+
X,H(k) if (2πk̂)·ωg > 0,

or dually, if k ·H > 0, and SWX,H(k) = SW−

X,H(k) if H · k < 0. The wall-crossing

formula [15, 16] states that if H ′, H ′′ are elements of positive square in H2(X ;R)
with H ′ ·H > 0 and H ′′ ·H > 0, then if k ·H ′ < 0 and k ·H ′′ > 0,

SWX,H′′ (k) − SWX,H′(k) = (−1)1+
1
2d(k)

where d(k) = 1
4 (k2−(3 sign+2 e)(X )) is the formal dimension of the Seiberg-Witten

moduli spaces.
Furthermore, in case b− ≤ 9, the wall-crossing formula, together with the fact

that SWX,H(k) = 0 if d(k) < 0, implies that SWX,H(k) = SWX,H′(k) for any H ′

of positive square in H2(X ;R) with H · H ′ > 0. So in case b+X = 1 and b−X ≤ 9,
there is a well-defined Seiberg-Witten invariant, SWX(k).

Possible Classification Schemes. From this point forward and unless oth-
erwise stated all manifolds will be closed and simply-connected. In order to avoid
trivial constructions we consider irreducible manifolds, i.e. those that cannot be
represented as the connected sum of two manifolds except if one factor is a homo-
topy 4-sphere. (We still do not know if there exist smooth homotopy 4-spheres not
diffeomorphic to the standard 4-sphere S4).

So the existence part of a classification scheme for irreducible smooth (symplec-
tic) 4-manifolds could take the form of determining which (χ

h
, c, t) ∈ Z × Z × Z2

can occur as (χ
h
(X), c(X), t(X)) for some smooth (symplectic) 4-manifold X . This

is referred to as the geography problem. The game plan would be to create tech-
niques to realize all possible lattice points. The uniqueness part of the classification
scheme would then be to determine all smooth (symplectic) 4-manifolds with a fixed
(χ

h
(X), c(X), t(X)) and determine invariants that would distinguish them. Again,

the game plan would be to create techniques that preserve the homeomorphism
type yet change these invariants.

In the next two sections we will outline what is and is not known about the
existence (geography) and uniqueness problems without detailing the techniques.
Then we will list the techniques used, determine their interplay, and explore ques-
tions that may yield new insight. A companion approach, which we will also discuss
towards the end of these lectures, is to start with a particular well-understood class
of 4-manifolds and determine how all other smooth (symplectic) 4-manifolds can
be constructed from these.

2. Existence

Our current understanding of the geography problem is given by Figure 1 where
all known simply-connected smooth irreducible 4-manifolds are plotted as lattice
points in the (χ

h
, c)-plane. In particular, all known simply-connected irreducible

smooth or symplectic 4-manifolds have 0 ≤ c < 9χ
h

and every lattice point in that
region can be realized by a symplectic (hence smooth) 4-manifold.




