
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 358, Number 5, Pages 2091–2104
S 0002-9947(05)03748-7
Article electronically published on April 22, 2005

STABLE MAPPING CLASS GROUPS
OF 4-MANIFOLDS WITH BOUNDARY

OSAMU SAEKI

Abstract. We give a complete algebraic description of the mapping class
groups of compact simply connected 4-manifolds with boundary up to con-
nected sum with copies of S2 × S2.

1. Introduction

It has been shown in [15] that two orientation preserving homeomorphisms of
a closed simply connected 4-manifold are homotopic if and only if the induced
automorphisms on the second homology group coincide with each other (see also
[4, §5]). Using this, Quinn [15] has shown that two homeomorphisms inducing
the same automorphism on the second homology group are actually topologically
isotopic (see also [13]). Quinn has also shown that two diffeomorphisms inducing
the same automorphism are smoothly isotopic after the connected sum with the
identity diffeomorphism of some copies of S2 × S2. In this paper we give a similar
smooth stable isotopy criterion for the case where the simply connected 4-manifold
has nonempty connected boundary.

Let M be a compact 1-connected 4-manifold with nonempty connected bound-
ary. In this paper we first give an algebraic criterion for two diffeomorphisms of M
to be stably isotopic (see §2), where two diffeomorphisms h0 and h1 of M which
are the identity on the boundary are stably isotopic relative to boundary if h0�k(id)
and h1�k(id) are smoothly isotopic relative to boundary as diffeomorphisms of
M�k(S2 × S2) for some k ≥ 0. We will see that certain homomorphisms

H2(M, ∂M ;Z) → H2(M ;Z),

called variation maps, associated with such diffeomorphisms play an essential role.
Then in §3, we introduce the notion of the stable mapping class group of M

and give its complete algebraic description using the result of §2. The algabraic
objects that play an important role here are homomorphisms, called variational
homomorphisms, H2(M, ∂M ;Z) → H2(M ;Z) which are defined to be abstract
homomorphisms satisfying certain algebraic conditions. We will see that the set of
variational homomorphisms form a group with respect to a certain multiplication.
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The main content of §3 is a construction of a diffeomorphism which realizes a given
variational homomorphism.

In §4, we study the relationship between the group of variational homomorphisms
and the group of isometries of H2(M) endowed with the intersection form, which
will be used in §5.

In §5, we consider the stable mapping class group of boundary-free diffeomor-
phims of 4-manifolds whose boundaries are certain spherical 3-manifolds.

Throughout the paper, we work in the smooth category unless otherwise speci-
fied. All the homology and cohomology groups are with integer coefficients unless
otherwise indicated. We use the symbol “∼=” to denote a diffeomorphism between
smooth manifolds or an appropriate isomorphism between algebraic objects.

The author would like to thank the referee for drawing his attention to Kreck’s
paper [10]. He also would like to thank the people at IRMA, Strasbourg, for their
hospitality during the preparation of the manuscript.

2. Isotopy of 1-connected 4-manifolds with boundary

Let M be a compact 1-connected 4-manifold with nonempty connected boundary.
We first define the variation map associated with a diffeomorphism of M , which
will play an important role throughout the paper.

Definition 2.1. Let h : M → M be a diffeomorphism which is the identity on the
boundary. We define the variation map ∆h : H2(M, ∂M) → H2(M) as follows. For
a homology class γ ∈ H2(M, ∂M), take a 2-cycle (D, ∂D) in (M, ∂M) representing
γ. Then D ∪ (−h(D)) is a 2-cycle in M and we define ∆h(γ) to be the class
represented by D ∪ (−h(D)). Note that this does not depend on the choice of
(D, ∂D) and that ∆h is a homomorphism. See also [8].

Note that if two diffeomorphisms of M which are the identity on the boundary
are isotopic relative to boundary, then their variation maps coincide with each
other. The main result of this section is that the converse is also true “stably” as
follows.

Theorem 2.2. Let M be a compact 1-connected 4-manifold with nonempty con-
nected boundary. Suppose that h0 and h1 : M → M are two diffeomorphisms with
h0|∂M = h1|∂M being the identity map. Then h0 and h1 are stably isotopic relative
to boundary if and only if ∆h0 = ∆h1 : H2(M, ∂M) → H2(M).

Proof. In the following, for an integer k ≥ 0, Mk will denote the 4-manifold
M�k(S2 × S2).

If h0 and h1 are stably isotopic relative to boundary, then it is easy to see
that their variation maps coincide with each other, since on the direct summand
of H2(Mk, ∂Mk) corresponding to H2(�kS2 × S2), the variation maps of hj�k(id),
j = 0, 1, are the zero homomorphisms.

In order to prove the converse, let us consider the following construction, which
is called an open book construction (see [8]). For a diffeomorphism h : M → M
which is the identity on the boundary, let Lh be the 5-dimensional manifold with
boundary obtained from M × [0, 1] by identifying M × {1} with M × {0} using
h : M × {1} → M × {0}. Note that ∂Lh is canonically diffeomorphic to ∂M × S1.
Then, let Nh be the closed 5-dimensional manifold obtained by attaching ∂M ×D2

to Lh along the boundary. Note that Nh is 1-connected and that M is naturally
identified with M × {0} ⊂ Nh.
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Then, by an argument similar to that in [9, §2], we easily obtain the following.

Lemma 2.3. A diffeomorphism h : M → M which is the identity on the boundary
is pseudo-isotopic to the identity relative to boundary if and only if Nh bounds a
compact 1-connected 6-dimensional manifold W such that πj(W, M) = 0 for all j.

We also have the following.

Lemma 2.4. Let h : M → M be a diffeomorphism which is the identity on the
boundary. Then we have the following exact sequence:

0 → H3(Nh) → H2(M, ∂M) ∆h−→ H2(M) → H2(Nh) → 0.

Proof. Consider the exact sequence for the pair (Nh, M):

(2.1) 0 → H3(Nh) → H3(Nh, M) ∂−→ H2(M) → H2(Nh) → H2(Nh, M).

Let M̃ ∼= M × [0, 1] be a normal 1-disk bundle neighborhood of M in Nh. Note
that the closure of Nh � M̃ is again diffeomorphic to M × [0, 1]. Hence, by excision
together with Poincaré-Lefschetz duality, we have

Hi(Nh, M) ∼= Hi(Nh, M̃) ∼= Hi(M × [0, 1], ∂(M × [0, 1]))
∼= H5−i(M × [0, 1]) ∼= H5−i(M) ∼= Hi−1(M, ∂M).

In particular, we have H2(Nh, M) ∼= H1(M, ∂M) = 0, since M is simply con-
nected and ∂M is connected. Furthermore, under the isomorphism H3(Nh, M) ∼=
H2(M, ∂M) given above, the boundary homomorphism ∂ : H3(Nh, M) → H2(M)
appearing in (2.1) is identified with the variation map ∆h : H2(M, ∂M) → H2(M).
This completes the proof of Lemma 2.4. �

Let us go back to the proof of Theorem 2.2. Let h0 and h1 : M → M be
diffeomorphisms which are the identity on the boundary such that ∆h0 = ∆h1 . Set
h = h0 ◦ (h1)−1. Then it is easy to show that ∆h is the zero homomorphism (for
example, see [16, §9]). Then by following the same argument as in [9, §2] and by
replacing the Wang exact sequence for a bundle over S1 with that of Lemma 2.4,
we can construct a 6-dimensional manifold W as in Lemma 2.3. Therefore, h is
pseudo-isotopic to the identity relative to boundary (see also the last paragraph of
[10]).

Thus h0 and h1 are pseudo-isotopic relative to boundary. Then by Quinn [15],
they are stably isotopic relative to boundary. This completes the proof of Theo-
rem 2.2. �

Compare Theorem 2.2 with [16, Conjecture 9.6].

Remark 2.5. In the above situation, we can prove that h0�k(id) and h1�k(id) are
pseudo-isotopic relative to boundary for some k ≥ 0 also by using an argument
based on the theory of open books on 5-dimensional manifolds [16, 17].

3. Stable mapping class group and variational homomorphisms

In this section, we define the stable mapping class group of a compact 4-manifold
with boundary and give a result which describes it algebraically.
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Definition 3.1. Let M be a compact 4-manifold with boundary. A stable dif-
feomorphism of M is a diffeomorphism of Mk = M�k(S2 × S2) for some k. Two
stable diffeomorphisms h0 : Mk0 → Mk0 and h1 : Mk1 → Mk1 which are the
identity on the boundary are said to be stably isotopic relative to boundary if
h0�k

′
0(id) : Mk0+k′

0
→ Mk0+k′

0
and h1�k

′
1(id) : Mk1+k′

1
→ Mk1+k′

1
are isotopic rel-

ative to boundary for some k′
0 and k′

1 with k0 + k′
0 = k1 + k′

1. Finally, the set
of all stable isotopy classes relative to boundary of stable diffeomorphisms of M
which are the identity on the boundary is called the stable mapping class group of
(M, ∂M) and is denoted by SM(M, ∂M). Note that if we denote by M(M, ∂M)
the usual mapping class group relative to boundary, then we can naturally identify
SM(M, ∂M) with the inductive limit

lim
k→∞

M(Mk, ∂Mk).

This obviously forms a group with respect to the composition of maps.

Let M be as above and let h : Mk → Mk be a stable diffeomorphism of M
which is the identity on the boundary. Let us denote the variation map of h by
∆h : H2(Mk, ∂Mk) → H2(Mk). We also denote the induced map h∗ : H2(Mk) →
H2(Mk) by Λh. Since the intersection form

(3.1) H2(Mk) × H2(Mk, ∂Mk) → Z

of Mk is unimodular, we may regard H2(Mk) and H2(Mk, ∂Mk) dual to each other.
For a homomorphism ρ involving these spaces, ρ∗ will denote its dual homomor-
phism. Let j : Mk → (Mk, ∂Mk) denote the inclusion map.

In order to give an algebraic description of the stable mapping class group, let
us prepare some lemmas.

Lemma 3.2. We have the following:
(1) (j∗)∗ = j∗ : H2(Mk) → H2(Mk, ∂Mk).
(2) Λh = id − ∆h ◦ j∗ : H2(Mk) → H2(Mk).
(3) j∗ = Λ∗

h ◦ j∗ ◦ Λh : H2(Mk) → H2(Mk).
(4) ∆h + ∆∗

h = ∆h ◦ j∗ ◦ ∆∗
h : H2(Mk, ∂Mk) → H2(Mk).

(5) For two stable diffeomorphisms h and h′ : Mk → Mk which are the identity
on the boundary, we have

∆h◦h′ = ∆h + Λh ◦ ∆h′ : H2(Mk, ∂Mk) → H2(Mk).

Proof. (1) This follows from the fact that α · j∗β = β · j∗α for all α, β ∈ H2(Mk),
where “·” denotes the intersection form (3.1).

(2) For each α ∈ H2(Mk), we have

(id − ∆h ◦ j∗)(α) = α − (α − h∗α) = h∗α = Λhα.

Thus the result follows.
(3) This follows from the fact that h∗ : H2(Mk) → H2(Mk) is an isometry of

(H2(Mk), · ), where “·” denotes the intersection form of Mk on H2(Mk).
(4) We have

∆h + ∆∗
h = ∆h ◦ j∗ ◦ ∆∗

h ⇐⇒ (id − ∆h ◦ j∗) ◦ ∆∗
h = −∆h

⇐⇒ Λh ◦ ∆∗
h = −∆h(3.2)

⇐⇒ ∆∗
h = −Λ−1

h ◦ ∆h,(3.3)
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where (3.2) follows from (2). This is equivalent to

(3.4) ∆hβ · α = −(Λ−1
h ◦ ∆hα) · β

for all α, β ∈ H2(Mk, ∂Mk). Let a and b be 2-cycles in (Mk, ∂Mk) representing α
and β, respectively. Then the right-hand side of the above equation is equal to

−h−1(a − ha) · b = (a − h−1a) · b
= a · b − h−1a · b
= b · a − hb · a
= (b − hb) · a.

Thus we have (3.4) and have proved the required equality.
(5) For every 2-cycle a of (Mk, ∂Mk), we have

a − (h ◦ h′)a = a − ha + ha − h(h′a) = a − ha + h(a − h′a).

Thus we have
∆h◦h′ = ∆h + Λh ◦ ∆h′ .

This completes the proof. �

Definition 3.3. Let M be a compact 4-manifold with boundary. A homomorphism
∆ : H2(M, ∂M) → H2(M) is variational if ∆ + ∆∗ = ∆ ◦ j∗ ◦ ∆∗. Let V(M, ∂M)
denote the set of all variational homomorphisms.

Lemma 3.4. Let ∆ : H2(M, ∂M) → H2(M) be a variational homomorphism.
Then Λ = id − ∆ ◦ j∗ is an isometry of the inner product space (H2(M), · ), where
“ · ” denotes the intersection form of M on H2(M).

Proof. Since ∆+∆∗ = ∆◦j∗ ◦∆∗ holds by our assumption, we have j∗◦(∆+∆∗) =
j∗ ◦ ∆ ◦ j∗ ◦ ∆∗. This is equivalent to the equality

(id − j∗ ◦ ∆) ◦ (id − j∗ ◦ ∆∗) = id : H2(M) → H2(M).

Since H2(M) is free, we see that id− j∗ ◦∆ and Λ∗ = id− j∗ ◦∆∗ are isomorphisms
which are inverses to each other. Thus Λ is an isomorphism and

(id − j∗ ◦ ∆∗) ◦ (id − j∗ ◦ ∆) = id

also holds. In particular, we have

(id − j∗ ◦ ∆∗) ◦ (id − j∗ ◦ ∆) ◦ j∗ = j∗,

which is equivalent to Λ∗ ◦ j∗ ◦ Λ = j∗. Thus Λ is an isometry. This completes the
proof. �

Lemma 3.5. The set V(M, ∂M) of all variational homomorphisms forms a group
under the multiplication given by

∆1 ∗ ∆2 = ∆1 + (id − ∆1 ◦ j∗) ◦ ∆2,

for ∆1, ∆2 ∈ V(M, ∂M).

Proof. Put V = V(M, ∂M) for simplicity. Let us first show that ∆1 ∗ ∆2 ∈ V .
Putting Λi = id − ∆i ◦ j∗, i = 1, 2, we have

(∆1 ∗ ∆2) + (∆1 ∗ ∆2)∗ = (∆1 + Λ1 ◦ ∆2) + (∆1 + Λ1 ◦ ∆2)∗

= ∆1 + ∆∗
1 + Λ1 ◦ ∆2 + (Λ1 ◦ ∆2)∗.(3.5)
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On the other hand, we have
(∆1 ∗ ∆2) ◦ j∗ ◦ (∆1 ∗ ∆2)∗

= (∆1 + Λ1 ◦ ∆2) ◦ j∗ ◦ (∆1 + Λ1 ◦ ∆2)∗

= ∆1 ◦ j∗ ◦ ∆∗
1 + ∆1 ◦ j∗ ◦ ∆∗

2 ◦ Λ∗
1 + Λ1 ◦ ∆2 ◦ j∗ ◦ ∆∗

1 + Λ1 ◦ ∆2 ◦ j∗ ◦ ∆∗
2 ◦ Λ∗

1

= (∆1 + ∆∗
1) + ∆1 ◦ j∗ ◦ ∆∗

2 ◦ Λ∗
1 + Λ1 ◦ ∆2 ◦ j∗ ◦ ∆∗

1 + Λ1 ◦ (∆2 + ∆∗
2) ◦ Λ∗

1

= (∆1 + ∆∗
1) + (∆1 ◦ j∗ + Λ1) ◦ ∆∗

2 ◦ Λ∗
1 + Λ1 ◦ ∆2 ◦ (j∗ ◦ ∆∗

1 + Λ∗
1)

= (∆1 + ∆∗
1) + ∆∗

2 ◦ Λ∗
1 + Λ1 ◦ ∆2.

Thus by (3.5), we see that ∆1 ∗ ∆2 ∈ V .
The associativity holds, since we have

id − (∆1 ∗ ∆2) ◦ j∗ = id − (∆1 + (id − ∆1 ◦ j∗) ◦ ∆2) ◦ j∗

= (id − ∆1 ◦ j∗) ◦ (id − ∆2 ◦ j∗)(3.6)

and hence
(∆1 ∗ ∆2) ∗ ∆3 = (∆1 + Λ1 ◦ ∆2) + (Λ1 ◦ Λ2) ◦ ∆3

= ∆1 + Λ1 ◦ (∆2 + Λ2 ◦ ∆3)

= ∆1 ∗ (∆2 ∗ ∆3).
It is obvious that the zero homomorphism is variational and is the identity ele-

ment.
Finally, for ∆ ∈ V , its inverse ∆−1 is given by

∆−1 = −Λ−1 ◦ ∆,

where Λ = id−∆ ◦ j∗ is an isometry of (H2(M), · ) by Lemma 3.4. This is seen as
follows. We have

(−Λ−1 ◦ ∆) ◦ j∗ ◦ (−Λ−1 ◦ ∆)∗ = Λ−1 ◦ ∆ ◦ j∗ ◦ ∆∗ ◦ (Λ−1)∗

= Λ−1 ◦ (∆ + ∆∗) ◦ (Λ−1)∗

= Λ−1 ◦ ∆ ◦ (Λ−1)∗ + Λ−1 ◦ ∆∗ ◦ (Λ−1)∗

= −∆∗ ◦ (Λ−1)∗ − Λ−1 ◦ ∆

= (−Λ−1 ◦ ∆) + (−Λ−1 ◦ ∆)∗

by an argument similar to (3.3). Thus we have ∆−1 = −Λ−1◦∆ ∈ V . Furthermore,
since

id − (−Λ−1 ◦ ∆) ◦ j∗ = Λ−1 ◦ (Λ + ∆ ◦ j∗) = Λ−1,

we have
∆ ∗ (−Λ−1 ◦ ∆) = ∆ + Λ ◦ (−Λ−1 ◦ ∆) = 0

and
(−Λ−1 ◦ ∆) ∗ ∆ = −Λ−1 ◦ ∆ + Λ−1 ◦ ∆ = 0.

Thus V forms a group. This completes the proof. �

Definition 3.6. A stable variational homomorphism of M is a variational homo-
morphism ∆ : H2(Mk, ∂Mk) → H2(Mk) for some k ≥ 0. Two stable variational
homomorphisms ∆0 : H2(Mk0 , ∂Mk0) → H2(Mk0) and ∆1 : H2(Mk1 , ∂Mk1) →
H2(Mk1) of M are said to be stably equivalent if

∆0 ⊕ 0k′
0

: H2(Mk0+k′
0
, ∂Mk0+k′

0
) ∼= H2(Mk0 , ∂Mk0) ⊕ H2(�k′

0(S2 × S2))

→ H2(Mk0+k′
0
) ∼= H2(Mk0) ⊕ H2(�k′

0(S2 × S2))
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coincides with

∆1 ⊕ 0k′
1

: H2(Mk1+k′
1
, ∂Mk1+k′

1
) ∼= H2(Mk1 , ∂Mk1) ⊕ H2(�k′

1(S2 × S2))

→ H2(Mk1+k′
1
) ∼= H2(Mk1) ⊕ H2(�k′

1(S2 × S2))

for some k′
0 and k′

1 with k0 + k′
0 = k1 + k′

1, where

0k′ : H2(�k′
(S2 × S2)) → H2(�k′

(S2 × S2))

stands for the zero map. The set of all equivalence classes of stable variational homo-
morphisms H2(Mk, ∂Mk) → H2(Mk), k ≥ 0, of M is called the stable variational
group and is denoted by SV(M, ∂M). It is not difficult to see that SV(M, ∂M)
naturally forms a group, which is nothing but the inductive limit

lim
k→∞

V(Mk, ∂Mk),

where we may naturally regard V(Mk, ∂Mk) ⊂ V(Mk+1, ∂Mk+1) for each k ≥ 0.

We have a natural map

Θ : SM(M, ∂M) → SV(M, ∂M),

which maps each class of a stable diffeomorphism to the class of its variation map.
This is a homomorphism of groups by Lemma 3.2(5).

Theorem 3.7. If M is a smooth compact 1-connected 4-manifold with nonempty
connected boundary, then the above correspondence Θ gives an isomorphism of
groups.

Proof. The well-definedness and the injectivity follow from Theorem 2.2.
Let ∆ : H2(Mk, ∂Mk) → H2(Mk) be a stable variational homomorphism of M .

Note that
Λ = id − ∆ ◦ j∗ : H2(Mk) → H2(Mk)

is an isometry of (H2(Mk), · ) by Lemma 3.4.
The following lemma has been proved implicitly in the proof of Lemma 3.2 (see

(3.4)).

Lemma 3.8. ∆β · α = −(Λ−1 ◦ ∆α) · β for all α, β ∈ H2(Mk, ∂Mk).

Let V = M0 ∪id (−M1) with M0 = M1 = Mk be the double of Mk, which
is a smooth closed 1-connected 4-manifold. Furthermore, let δ : H2(Mk, ∂Mk) →
H2(V ) be the doubling homomorphism, which is given by

δ([a]) = [i0a − i1a],

where a is an arbitrary 2-cycle of (Mk, ∂Mk) and i0 : M0 → V and i1 : M1 → V
are the inclusion maps. Then put

J ′ = im(δ + i1∗ ◦ ∆ : H2(Mk, ∂Mk) → H2(V )).

Furthermore, let G(−Λ) denote the subgroup of H2(M0)⊕H2(M1) consisting of the
elements of the form (α,−Λα), α ∈ H2(M0), where we regard Λ as an isomorphism
from H2(M0) to H2(M1). Let ι : H2(M0) ⊕ H2(M1) → H2(V ) be the natural
homomorphism induced by the inclusions. Then we have the following.

Lemma 3.9. ιG(−Λ) ⊂ J ′.
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Proof. For every α ∈ H2(Mk), we have

(δ + i1∗ ◦ ∆)(j∗α) = (i0∗α − i1∗α) + i1∗ ◦ ∆ ◦ j∗α

= (i0∗α − i1∗α) + i1∗(α − Λα)
= i0∗α − i1∗ ◦ Λα.

This shows our required inclusion. �

Lemma 3.10. The subgroup J ′ of H2(V ) is isotropic.

Proof. For every α, β ∈ H2(Mk, ∂Mk), we have

(δ + i1∗ ◦ ∆)(α) · (δ + i1∗ ◦ ∆)(β)

= δα · δβ + δα · (i1∗ ◦ ∆β) + (i1∗ ◦ ∆α) · δβ + (i1∗ ◦ ∆α) · (i1∗ ◦ ∆β)

= ∆β · α + ∆α · β − ∆α · (j∗ ◦ ∆β)

= (∆β · α + ∆∗β · α) − (∆∗ ◦ j∗ ◦ ∆β) · α = 0,

since δα · δβ = 0 and ∆ is variational. This completes the proof. �

Consider the Mayer-Vietoris exact sequence for the pair (M0, M1):

0 −→ H2(∂Mk) −→ H2(M0) ⊕ H2(M1) ι−→ H2(V ) ∂′
−→ H1(∂Mk) −→ 0.

Lemma 3.11. We have ∂′J ′ = H1(∂Mk).

Proof. For every α ∈ H2(Mk, ∂Mk), we have

∂′ ◦ (δ + i1∗ ◦ ∆)α = ∂′ ◦ δα = ∂α,

where ∂ : H2(Mk, ∂Mk) → H1(∂Mk) is the boundary homomorphism in the exact
sequence of the pair (Mk, ∂Mk):

0 −→ H2(∂Mk) −→ H2(Mk) −→ H2(Mk, ∂Mk) ∂−→ H1(∂Mk) −→ 0.

Since ∂ is surjective, we have the conclusion. �

Let J be a maximal isotropic subgroup of H2(V ) containing J ′. Then by [3,
(4.2)] (see also [18]), there exists a smooth h-cobordism W relative to boundary
between M0 and M1 such that

ker(κ∗ : H2(V ) → H2(W )) = J,

where κ : V → W is the inclusion map. Let η : M0 → M1 be the homotopy
equivalence relative to boundary induced by the h-cobordism W . We can define
the variation map ∆η : H2(M0, ∂M0) → H2(M1) of η as before.

Lemma 3.12. The variation map ∆η coincides with ∆.

Proof. Since J ′ ⊂ ker κ∗, we have

−κ∗ ◦ δ = κ∗ ◦ i1∗ ◦ ∆ : H2(M0, ∂M0) → H2(W ).

Let a be an arbitrary 2-cycle of (M0, ∂M0). Then we have

κ∗ ◦ i1∗ ◦ ∆η[a] = κ∗ ◦ i1∗([a − ηa])

= [κ ◦ i1a − κ ◦ i0a]

= κ∗(−δ[a])

= κ∗ ◦ i1∗ ◦ ∆[a].
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Since κ∗ ◦ i1∗ : H2(M1) → H2(V ) is an isomorphism, we have ∆h = ∆. This
completes the proof. �

Now taking the connected sum along cobordisms of the smooth h-cobordism W
with the trivial cobordism (�k′

S2×S2)× [0, 1] for some k′, we see that ∆ is realized
stably by a stable diffeomorphism of M [11], [14]. Hence the correspondence Θ is
surjective. This completes the proof of Theorem 3.7. �

Remark 3.13. Using an argument similar to the above together with the topological
h-cobordism theorem of Freedman [5], we can also obtain some results about the
topological mapping class group of topological 4-manifolds with boundary with-
out stabilization. More precisely, let M be a compact 1-connected topological
4-manifold with nonempty connected boundary. Let MTOP(M, ∂M) denote the
group of topological isotopy classes relative to boundary of the homeomorphisms
of M which are the identity on the boundary. Then we have the natural map

ΘTOP : MTOP(M, ∂M) → V(M, ∂M)

which maps each isotopy class of a homeomorphism to its variation map. Then the
argument in the proof of Theorem 3.7 shows that ΘTOP is surjective. We do not
know if it is injective or not.

4. Relation to stable isometry group

In this section, we study the relationship between the stable variational group
and the stable isometry group of a 4-manifold with boundary.

Definition 4.1. Let M be a compact 4-manifold with boundary. We denote by
I(M) the isometry group of the inner product space (H2(M), · ), where “ · ” denotes
the intersection form. A stable isometry of M is an isometry of (H2(Mk), · ) for some
k. Two stable isometries Λ0 : H2(Mk0) → H2(Mk0) and Λ1 : H2(Mk1) → H2(Mk1)
of M are said to be stably equivalent if the isometry Λ0 ⊕ id of (H2(Mk0+k′

0
), · ) =

(H2(Mk0) ⊕ H2(�k′
0S2 × S2), · ) and the isometry Λ1 ⊕ id of (H2(Mk1+k′

1
), · ) =

(H2(Mk1) ⊕ H2(�k′
1S2 × S2), · ) coincide with each other for some k′

0 and k′
1 with

k0+k′
0 = k1+k′

1. The set of all equivalence classes of stable isometries of M is called
the stable isometry group of M and is denoted by SI(M), which can naturally be
identified with the inductive limit

lim
k→∞

I(Mk).

This obviously forms a group with respect to the composition of isometries.

Let M be a 1-connected 4-manifold with nonempty connected boundary ∂M =
K. For each variational homomorphism ∆ ∈ V(M, ∂M), the endomorphism Λ =
id − ∆ ◦ j∗ is an isometry of (H2(M), · ) by Lemma 3.4. Let us define

Ξ : V(M, ∂M) → I(M)

by Ξ∆ = Λ. By (3.6), Ξ is a homomorphism of groups.
Let us denote by ∧2H1(K)∗ the set of all skew-symmetric bilinear forms H1(K)×

H1(K) → Z. Note that this naturally forms an additive group, which is finitely
generated and free abelian. Note that an element κ ∈ ∧2H1(K)∗ can also be
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regarded as a homomorphism H1(K) → Hom(H1(K),Z) ∼= H1(K) ∼= H2(K). For
such an element κ, define κ̃ : H2(M, ∂M) → H2(M) by the composition

H2(M, ∂M) ∂−−−−−→H1(K) κ−−−−−→H2(K) ι∗−−−−−→H2(M),

where ∂ : H2(M, ∂M) → H1(K) is the boundary homomorphism and ι : K → M
is the inclusion. Then we can easily check that κ̃ is a variational homomorphism
and that the map S : ∧2H1(K)∗ → V(M, ∂M) defined by Sκ = κ̃ is an injective
homomorphism.

The main result of this section is the following.

Proposition 4.2. For a compact 1-connected 4-manifold M with nonempty con-
nected boundary ∂M = K, the sequence

0−−−−−→∧2 H1(K)∗ S−−−−−→V(M, ∂M) Ξ−−−−−→I(M)

is exact.

Proof. We have already observed that S is injective.
It is easy to check that im S ⊂ kerΞ. Suppose that ∆ is an element of ker Ξ.

Thus Ξ∆ = id−∆ ◦ j∗ is the identity of H2(M) and hence ∆ = 0 on im j∗ = ker ∂.
Thus we may regard ∆ as a homomorphism

H2(M, ∂M)/ker ∂ ∼= H1(K) → H2(M).

On the other hand, since ∆ is variational, we have ∆ + ∆∗ = ∆ ◦ j∗ ◦ ∆∗ = 0.
Hence, we have 0 = ∆ ◦ j∗ + ∆∗ ◦ j∗ = ∆∗ ◦ j∗, which implies that j∗ ◦ ∆ = 0.
Thus im ∆ ⊂ ker j∗ = H2(K). Hence ∆ can be regarded as a homomorphism
κ : H1(K) → H2(K). Now it is easy to check that κ ∈ ∧2H1(K)∗ and ∆ = Sκ.
This completes the proof. �

We can characterize the image of Ξ as follows. Let us first take a basis

{α1, α2, . . . , αu, αu+1, . . . , αu+v}
of H2(M) over the integers, where u = rankH2(K), u + v = rank H2(M), and

{α1, α2, . . . , αu}
is a basis of ι∗H2(K). This is possible, since ι∗H2(K) is a direct summand of
H2(M). For H2(M, ∂M), we take the dual basis

{α∗
1, α

∗
2, . . . , α

∗
u, α∗

u+1, . . . , α
∗
u+v}

such that the intersection number in M satisfies αk · α∗
l = δkl, where

δkl =
{

1, k = l,
0, k = l.

Let (
A B
C D

)
be the matrix representation of a homomorphism ∆ : H2(M, ∂M) → H2(M) with
respect to the above basis, where A, B, C and D are u × u, u × v, v × u and
v × v integral matrices, respectively. Furthermore, we see easily that the matrix
representation of j∗ with respect to the above basis must be of the form

Q̃ =
(

0 0
0 Q

)
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for some nonsingular v × v integral matrix Q. Then it is easy to see that ∆ is
variational if and only if

D + tD = D Q tD, A + tA = B Q tB, B + tC = B Q tD.

Thus, an isometry Λ ∈ I(M) is in the image of Ξ if and only if, with respect to the
above basis, Λ is represented by a matrix of the form(

Eu −BQ
0 Ev − DQ

)
such that

D + tD = D Q tD, A + tA = B Q tB, B + tC = B Q tD

for some integral matrices A, B, C and D, where Ew denotes the w×w unit matrix.
If the diagonal entries of Q are even, or if H2(K) = 0, then we can show that

this condition is equivalent to that the following diagram is commutative:
(4.1)

0 → H2(K) ι∗−→ H2(M)
j∗−→ H2(M, ∂M) ∂−→ H1(K) → 0⏐⏐�id

⏐⏐�Λ

�⏐⏐Λ∗
⏐⏐�id

0 → H2(K) ι∗−→ H2(M)
j∗−→ H2(M, ∂M) ∂−→ H1(K) → 0.

In this case, we have the exact sequence

0−−−−−→∧2 H1(K)∗ S−−−−−→V(M, ∂M) Ξ−−−−−→I(M) ∂−−−−−→AQ̃(K)−−−−−→0,

where ∂ and AQ̃(K) are a homomorphism and a group as defined in [3, §1].
If some diagonal entries of Q are not even and H2(K) = 0, then the commuta-

tivity of the diagram (4.1) is still necessary, but it is not sufficient in general.
In fact, using Boyer’s obstruction class θ [3], we can show the following.

Proposition 4.3. An isometry Λ ∈ I(M) is in the image of Ξ : V(M, ∂M) →
I(M) if and only if ∂Λ = id ∈ AQ̃(K) and Boyer’s obstruction θ(id, Λ) ∈ I1(K)
vanishes, where I1(K) = im(H1(K) → H1(K;Z2)).

Proof. Suppose ∂Λ = id and θ(id, Λ) = 0. Then by Boyer [3], there exists a
homeomorphism h : M → M such that h|∂M = id and h∗ = Λ. Let ∆ = ∆h ∈
V(M, ∂M) be the variation map of h. Then it is easy to see that Ξ∆ = Λ.

Conversely, if Λ = Ξ∆ for some ∆, then we have already seen that ∂Λ = id.
Furthermore, by Remark 3.13, there exists a homeomorphism h : M → M such
that h|∂M = id and ∆h = ∆. Hence by Boyer [3], the obstruction θ(id, Λh) vanishes,
where Λh = h∗. Since Λh = Ξ∆h = Λ by Lemma 3.2(2), we have θ(id, Λ) = 0. This
completes the proof. �

Note that when the diagonal entries of Q are even or H2(K) = 0, the obstruction
θ(id, Λ) always vanishes (see [3, (0.8) Proposition]).

The above proposition can also be proved purely algebraically by using the above-
mentioned characterization of the image of Ξ in terms of matrices, together with
the definition of the obstruction θ.

All the above results hold stably as well. More precisely, we can naturally define
the homomorphisms

SS : ∧2H1(K)∗ → SV(M, ∂M), SΞ : SV(M, ∂M) → SI(M),
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and the sequence

0−−−−−→∧2 H1(K)∗ SS−−−−−→SV(M, ∂M) SΞ−−−−−→SI(M)

is exact. The characterization of the image of Ξ holds similarly for SΞ as well.

5. Boundary-free diffeomorphisms

In this section, we study the stable mapping class group of boundary-free dif-
feomorphisms of compact 4-manifolds whose boundaries are certain spherical 3-
manifolds.

Definition 5.1. Let M be a compact 4-manifold with boundary. Two stable
diffeomorphisms h0 : Mk0 → Mk0 and h1 : Mk1 → Mk1 of M , which may not
necessarily be the identity on the boundary, are said to be stably isotopic if the
diffeomorphisms h0�k

′
0(id) : Mk0+k′

0
→ Mk0+k′

0
and h1�k

′
1(id) : Mk1+k′

1
→ Mk1+k′

1

are smoothly isotopic for some k′
0 and k′

1 with k0 + k′
0 = k1 + k′

1. Note that the
isotopy should leave the boundary invariant as a set, but can move points on the
boundary. The set of all stable isotopy classes of stable diffeomorphisms of M is
called the stable mapping class group of boundary free diffeomorphisms of M and is
denoted by SM(M). This obviously forms a group with respect to the composition
of maps.

Let Λ : H2(M) → H2(M) be an isometry of a compact 4-manifold M with
boundary K. Then we have the commutative diagram
(5.1)

0 → H2(K) ι∗−→ H2(M)
j∗−→ H2(M, ∂M) ∂−→ H1(K) → 0⏐⏐�ϕ2

⏐⏐�Λ

�⏐⏐Λ∗
⏐⏐�ϕ1

0 → H2(K) ι∗−→ H2(M)
j∗−→ H2(M, ∂M) ∂−→ H1(K) → 0

for some isomorphisms ϕ1 and ϕ2, where ι : ∂M → M and j : M → (M, ∂M)
denote the inclusions. Let A(K) denote the group of automorphisms of H∗(K),
where an automorphism is required to preserve the torsion linking pairing T1(K)×
T1(K) → Q/Z on the torsion subgroup T1(K) of H1(K) together with the in-
tersection pairing H1(K) × H2(K) → Z (for details, see [3, §1]). Note that the
isomorphism of H∗(K) determined by (ϕ1, ϕ2) in (5.1) is an automorphism and
that the map

∂ : I(M) → A(K)

defined by ∂Λ = (ϕ1, ϕ2) is a homomorphism.
Furthermore, let H+(K) denote the subgroup of A(K) consisting of those au-

tomorphisms which are realized by an orientation preserving homeomorphism of
K.

Set I0(M) = ∂−1(H+(K)), which is a subgroup of I(M). It is easy to observe
that we naturally have

I0(M) ⊂ I0(M1) ⊂ · · · ⊂ I0(Mk) ⊂ I0(Mk+1) ⊂ · · · .

Thus we can define the inductive limit

SI0(M) = lim
k→∞

I0(Mk),

which is also a group.
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Note that if H1(K) = 0, then we have SI0(M) = SI(M). Note also that
if h : Mk → Mk is an orientation preserving stable diffeomorphism of M , then
h∗ : H2(Mk) → H2(Mk) lies in SI0(M).

The main result of this section is the following.

Theorem 5.2. Let M be a smooth compact 1-connected 4-manifold with boundary
∂M homeomorphic to a lens space L(p, q) (p ≥ 2), the 3-sphere S3, or the Poincaré
homology 3-sphere Σ(2, 3, 5). Then the correspondence

Θfr : SM(M) → SI0(M)

which maps each class of a stable diffeomorphism to the class of its induced isometry
of the second homology group gives an isomorphism of groups.

Proof. Suppose that h : Mk → Mk is a stable diffeomorphism of M such that Θfrh
is the identity. Then the automorphism (h|∂M )∗ of H∗(∂M) must be the identity
by a commutative diagram similar to (5.1). Then by results of [1], [2], [6], and
[7] together with our assumption on the boundary, we see that h|∂M is smoothly
isotopic to the identity. Thus, by extending the isotopy to the whole of M using the
collar neighborhood, we may assume that h|∂M is the identity. On the other hand,
since H1(∂M) is finite, the homomorphism Ξ : V(Mk, ∂Mk) → I(Mk) is injective
by Proposition 4.2. Hence the variation map of h must be the zero homomorphism.
Thus by Theorem 2.2, h is stably isotopic to the identity diffeomorphism (relative
to boundary). Thus the homomorphism Θfr is injective.

Let Λ : H2(Mk) → H2(Mk) be a stable isometry of M such that Λ ∈ I0(Mk).
Then by the definition of I0(Mk), there exists an orientation preserving homeo-
morphism f : ∂Mk → ∂Mk such that ∂Λ = f∗. We may assume that f is a
diffeomorphism (see [12]). Then by [3, (0.8) Proposition] together with the fact
that H∗(∂M ;Q) = 0, we see that Boyer’s obstruction θ(f, Λ) vanishes, which im-
plies that there exists a homeomorphism f̃ : Mk → Mk such that f̃∗ = Λ and
f̃ |∂M = f . Then by using the stable h-cobordism theorem [11], [14] together with
an argument as in [3, §4] for constructing a smooth h-cobordism, we can show that
there exists a diffeomorphism f̃ ′ of Mk+k′ for some k′ ≥ 0 such that f̃ ′|∂M = f̃ |∂M

and f̃ ′
∗ and f̃∗ are stably equivalent. Hence Θfr is surjective. This completes the

proof. �

Remark 5.3. For the lens space L(p, q), p ≥ 2, the structure of H+(L(p, q)) has
been determined. In fact, according to [2], H+(L(p, q)) coincides with

(1) {id}, if p = 2,
(2) {±id,±q}, if q2 ≡ 1 (mod p) and q ≡ ±1 (mod p),
(3) {±id}, otherwise,

where ±q stands for the multiplication by ±q. Thus, if ∂M is diffeomorphic to
L(p, q) which satisfies (1) or (3), then SI0(M) coincides with SI(M).
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