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DvIferent 
Di mension 

i By IVARS PETERSON 

The fourth dimension's extraordinary 
mathematical properties 

perplex mathematicians 

W hen mathematicians - normally 
cautious and meticulous individ- 
uals - apply adjectives like "bi- 

zarre," "strange," "weird" and "myste- 
rious" to their results, something unusual 
is happening. Such expressions reflect 
the recent state of affairs in studies of 
four-dimensional space, a realm just a 
short step beyond our own familiar, 
three-dimensional world. 

By combining ideas from theoretical 
physics with abstract notions from 
topology (the study of shape), mathe- 
maticians are discovering that four-di- 
mensional space has mathematical prop- 
erties quite unlike those characterizing 
space in any other dimension. For exam- 
ple, whereas ordinary three-dimensional 
space, with its familiar notions of height, 
width and depth, comes in just one vari- 
ety, four-dimensional space has infinitely 
many, equivalent basic forms, each with a 
somewhat different kind of mathematics. 

This type of abstract result is prac- 
tically impossible to visualize. It follows 
logically from mathematical notions of 
dimension and space - part of a mental 
game mathematicians play in their 
search for patterns and relationships 
among geometrical structures not just in 
one, two and three dimensions but in 
higher dimensions as well. 

The startling discoveries about the 
fourth dimension pose riddles for both 
mathematicians and physicists. Why 
does the fourth dimension, and only the 
fourth dimension, have this strange mul- 
tiplicity of forms? Are physicists using the 
right kind of mathematics to study the 
four-dimensional space-time universe? 

"When you compare what's true in four 
dimensions with what's true in higher or 
lower dimensions, it's now clear that 
something very different happens in four 
dimensions," says Clifford H. Taubes of 
Harvard University "The question now 
is: How bizarre is it really?" 

The simplest mathematical spaces are 
known as Euclidean spaces. An in- 
finitely long line is a one-dimen- 

sional Euclidean space. A plane, which 
has width and depth, is two-dimensional. 
We think of the space in which we live as 
three-dimensional. 

In general, the term "dimension" sig- 
nifies an independent parameter, or coor- 
dinate. A space has three dimensions if 
each of its points is completely deter- 
mined by three independent numbers. 
For instance, it takes three coordinates, 
representing longitude, latitude and al- 
titude, to specify the location in three- 
dimensional space of an airplane above 
the earth's surface. Similarly, a space has 
seven dimensions if seven numbers are 
needed to locate a point in that space. 

The coordinates themselves have no 
intrinsic meaning. Physicists often 
choose a set of coordinates in which the 
first three represent independent direc- 
tions in physical space and the fourth is 
time, but that is only one of innumerable 
possibilities. The four coordinates, or 
dimensions, could just as well be pres- 
sure, volume, temperature and mass, or 
any other set of four parameters. What's 
important in mathematics is the coordi- 
nates themselves, not what they repre- 
sent. 

The term "manifold" covers somewhat 
more complicated types than Euclidean 
spaces. Manifolds locally appear "flat," or 
Euclidean, but on a larger scale may bend 
and twist into exotic and intricate forms. 
The Earth's surface resembles a two- 
dimensional mathematical manifold (or 
two-manifold). An inhabitant of the Great 
Plains sees essentially a flat surface, 
whereas an astronaut orbiting Earth sees 
the surface of a sphere. Any surface, 
however curved and complicated so long 
as it doesn't intersect itself, can be 
thought of as consisting of small Eucli- 
dean patches glued together. 

Just as a wildflower guidebook high- 
lights key features such as color and 
number of petals to help readers 

distinguish one plant from another, spe- 

cial manifold characteristics, often 
expressed as numbers or algebraic ex- 
pressions, help mathematicians tell man- 
ifolds apart. Such expressions, known as 
topological invariants, provide a conven- 
ient way of putting manifolds into dif- 
ferent categories. 

Dimension, the number of coordinates 
required to specify a point in a given 
space, is an example of a topological 
invariant. It's the first level of class- 
ification in the world of mathematical 
manifolds. 

Manifolds may also be either bounded 
or unbounded. A circle is an example of a 
bounded, or "compact," one-dimensional 
manifold, whereas a line stretching off 
indefinitely in both directions is clearly 
unbounded. The same distinction applies 
to spaces of any dimension. 

In lower dimensions, topologists can 
imagine a set of "ideal" shapes into which 
manifolds of a particular dimension can 
be transformed. For instance, all com- 
pact, two-dimensional manifolds resem- 
ble a sphere with a certain number of 
holes. In such a scheme, because a to- 
pologist can smoothly transform both a 
doughnut's surface and a coffee mug's 
surface into a sphere with a single hole 
(the archetypal model for this category 
of two-manifolds), the surface of a dough- 
nut and a coffee mug fall into the same 
group. That's the basis for the old joke 
that a topologist is someone who can't tell 
the difference between a doughnut and a 
coffee mug. 

Botanists can place a particular plant 
first in a family, then into a genus and a 
species, making finer distinctions at each 
step. Similarly, topologists, using appro- 
priate invariants, can also examine in 
greater detail what manifolds look like 
and how one may be transformed into 
another. 

Much manifold study concerns the 
search for more finely tuned invariants 
that make increasingly subtle distinc- 
tions. Because manifolds in higher di- 
mensions are impossible to visualize, 
these invariants often stand in for the 
manifolds themselves. 

M athematicians have developed 
reasonable, workable schemes 
for classifying manifolds in every 

dimension except three and four. Dimen- 
sion three remains a puzzle because 
mathematicians haven't yet been able to 
prove that postulated classification 
schemes cover every conceivable three- 
manifold. Recent attempts to demystify 
dimension four reveal it to be a special 
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case with characteristics quite unlike 
those of any other dimension. 

"Dimension four seems to be the hard- 
est because there is just enough room for 
maximum complications but not quite 
enough to untangle things," says Robion 
C. Kirby of the University of California, 
Berkeley 

The central problem in classifying four- 
manifolds concerns the technical distinc- 
tion between topological manifolds and 
smooth, or differentiable, manifolds. A 
ball, for instance, has a smooth, continu- 
ous surface. A closed, empty box has a 
continuous surface, but because it has 
sharp edges and corners, its surface isn't 
smooth. 

The difference is crucial because to- 
pologists have ways of mathematically 
smoothing any sharp edges, creases and 
jagged features in dimensions one, two 
and three. For example, the surface of a 
box can be smoothed out in a reasonable 
way that transforms it into a sphere. 

In other words, there's no difference in 
these dimensions between topological 
(the more general category) and smooth 
manifolds. In five dimensions and 
higher, manifolds come in both the 
smooth and crinkly varieties, and 7 
mathematicians understand 
when and how the different 
types occur. In four dimen- 
sions, the distinction between N 
smooth and crinkly manifolds is N 
much more complicated and difficult 
to sort out. 

A similar distinction applies to trans- 
formations designed to test whether 
manifolds belong to the same class or fit 
into different categories. Like a lump of 
pizza dough, a topological manifold is 
very floppy It's free to be kneaded and 
distorted. 

In general, two such manifolds can be 
regarded as equivalent if one can be 
transformed into the other without tear- 
ing. Such transformations may involve a 
smooth transition or follow a crinkly 
course. Calling specifically for a smooth 
transition is a more stringent condition 
than simply showing two manifolds are 
topologically equivalent, somewhat sim- 
ilar to a biologist determining a flower's 
genus within a family 

The first major step in classifying four- 
manifolds was a proof that certain 
types could be identified on the basis 

of algebraic invariants called quadratic 
forms. It took Michael H. Freedman of the 
University of California, San Diego, seven 
years to crack the problem. His 1981 proof 
showed that such manifolds can be con- 
structed from simple building blocks and 
classified entirely on the basis of their 
quadratic forms. 

Freedman's remarkable work un- 
earthed many new examples of four- 
manifolds and established previously un- 
known transformations between known 

manifolds. But it didn't exclude the pos- 
sibility that some of his four-manifolds 
may have creases that can't be removed 
in any way. In other words, dimension 
four - unlike dimensions one, two and 
three - may contain manifolds top- 
ologically but not smoothly equivalent. 

In fact, dimension four turns out to 
have just such an unexpected feature. In 
1982, Simon Donaldson of Oxford Univer- 
sity in England proved that not all to- 
pological four-manifolds can be con- 
structed in a smooth way. Furthermore, 
for some manifolds, no amount of tugging 
or pushing rids the manifold of all its 
creases. 

Donaldson used mathematical tools 
provided by theoretical physics to prove 
his point. He worked with a complicated 
set of mathematical expressions known 

as the Yang-Mills equations, which had 
proved critical in physics for predicting 
the existence of new fundamental parti- 
cles more massive than the electron. 

The Yang-Mills equations are notori- 
ously difficult to solve. To find answers, 
physicists use the known geometric or 
topological properties of four-dimen- 
sional space to get information about 
potential solutions of the equations. 

Donaldson took an even more difficult 
and daring route by starting with what 
little was known about solutions to the 
equations. He used that knowledge to 
extract information about the underlying 
four-dimensional space, essentially con- 
sidering the solutions themselves as 
mathematical objects to be manipulated 
according to specified rules he derived. 

By showing how to compute quadratic 
forms from solutions of the Yang-Mills 

equations, Donaldson demonstrated that 
quadratic forms are not sufficient to 
distinguish between topological man- 
ifolds that are smooth and those that are 
not. He subsequently refined his meth- 
ods to develop new, subtler invariants 
that distinguish between smooth man- 
ifolds even when they have the same 
quadratic form and are therefore topo- 
logically equivalent. 

However, the new Donaldson invar- 
iants are difficult to define and compute. 
"We don't understand how they work," 
says John W Morgan of Columbia Univer- 
sity in New York City. "We're not sure how 
many we need. Although they work very 
well in specific cases, we don't have any 
idea how good they are in distinguishing 
manifolds in general." 

Donaldson also showed that even 
when four-manifolds can be smoothed 
out, the process can take many different 
routes, leading to vastly different forms. 

Other mathematicians extended Don- 
aldson's work and took it in new direc- 
tions. They discovered, for example, that 
ordinary four-dimensional space can be 
given innumerable smooth descriptions. 

In other words, there exist exotic four- 
manifolds that are topologically but 

not smoothly equivalent to stand- 
> ard, four-dimensional Euclidean 

space. In all other dimensions, 
Euclidean spaces have a 

unique smooth description, 
which mathematicians have long 

used and understand well. 

P hysicists spend a great deal of time 
trying to solve differential equa- 
tions, working with calculus on vari- 

ous manifolds. There is only one way to 
do calculus in our familiar world of three- 
dimensional space-a single collection of 
mathematical expressions that can be 
treated according to the rules of calculus. 
When systems of differential equations 
lead to four-dimensional manifolds, phys- 
icists face a puzzling choice. In the realm 
of exotic four-dimensional spaces, infini- 
tely many ways exist to do calculus. Each 
exotic space has its own appropriate 
collection of expressions. 

However, the countless exotic differen- 
tiation structures in four-dimensional, 
Euclidean space all involve very special, 
"cooked-up" behavior, which appears to 
rule them out as reasonable models for 
our own physical universe. Physicists 
deal with spaces that appear feasible. So 
far, they haven't seen any phenomena that 
require a step into exotic four-dimen- 
sional spaces. 

Nevertheless, the existence of these 
exotic forms does emphasize that there is 
something different about four-dimen- 
sional space. In particular, four-dimen- 
sional space is where Einstein's theories 
must work and where modern physics 
resides. Like explorers who concentrate 
on their immediate surroundings and 

c7 m _ 
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m Rotating a 
four-dimen- 
sional sphere, 
which can be visualized as two linked 
circles and a succession of surrounding 
doughnut-shaped surfaces, produces a 
pattern of intertwined rings. 
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miss the distant mountains, physicists 
may find their theories, formulated for 
only a small, well-behaved piece of 
space-time, may not work on a larger 
scale. 

A nother striking feature of these 
exotic four-dimensional spaces is 
that they appear to become ex- 

tremely complicated at great distances 
and infinitely complex at infinity. In other 
words, complexity increases as the scale 
increases. Such a picture may apply to the 
distribution of matter in the universe. 

Indeed, as astronomers study the uni- 
verse on larger and larger scales, some 
see hints that the distribution of galaxies 
and interstellar matter doesn't seem to 
even out. They detect evidence for irreg- 
ular arrangements of giant structures, 
punctuated by large gaps, as far as the 
aided eye can probe. Astronomer R. Brent 
Tully of the University of Hawaii in Hono- 
lulu, in mapping the distribution of galac- 
tic clusters at cosmological distances, 
proposes that the local supercluster of 
galaxies in which our Milky Way galaxy 
resides is actually part of what he calls 
the Pisces-Cetus complex, a gargantuan 
grouping of superclusters extending 
more than a billion light-years. 

But lblly's observations lie at the limit 
of observational work in astronomy, mak- 
ing measurements tough to interpret. It's 
also difficult to imagine how such an 

immense, irregularly distributed collec- 
tion of galaxies could have formed 
through gravitational effects in the com- 
paratively brief time available since the 
Big Bang. 

Nevertheless, one might expect a uni- 
verse like the one lilly sees - becoming 
increasingly convoluted and contorted as 
more distant regions are explored - if it 
were embedded in an exotic four-dimen- 
sional space rather than a space of the 
conventional Euclidean variety 

M athematicians, too, are puzzled 
by what all this means. Four- 
dimensional space is indeed 

strange, with many mysteries yet await- 
ing solution. For instance, picturing ex- 
otic four-dimensional spaces, or four- 
spaces, remains a problem. "We know 
these exotic four-spaces exist, but we 
don't know how to construct them ex- 
plicitly" Kirby says. "In a sense, they are 
extremely convoluted. You wouldn't want 
to do your several-variable calculus 
homework on such an exotic four-space." 

Furthermore, mathematicians have 
not finished the task of classifying 
smooth, compact four-manifolds. These 
researchers have two different pictures of 
four-manifolds - one in terms of a con- 
struction procedure and the other in 
terms of Donaldson's mysterious invar- 
iants. But they haven't yet succeeded in 
bridging the gap between the two. 

"The classification problem is wide 
open for smooth manifolds," Morgan 
says. "We now know that it's a very 
complicated, intricate and delicate classi- 
fication, but we have no idea even of its 
general outline." 

The methods used for studying four- 
manifolds also may have far-reaching 
consequences. Paradoxically, they show 
that the study of space in five and higher 
dimensions is simpler and easier to un- 
derstand than is the study of space in 
three and four dimensions. 

There seems to be a need for new and 
fundamental insights to aid in under- 
standing four-manifolds. Donaldson's 
work in particular rests upon deep con- 
nections between mathematics and 
physics. "Nobody knows yet the full 
power of what Donaldson has done," 
Taubes says. "We really don't know what's 
missing." 

Perhaps further progress will follow 
more exchanges between physics and 
mathematics. Recent work linking quan- 
tum field theories and knot theory may 
be a step in the right direction (SN: 
3/18/89, p.174). 

"It's a very exciting corner of mathe- 
matics," says Ronald J. Stern of the Uni- 
versity of Utah in Salt Lake City "There's a 
lot going on, and the dust has yet to 
settle." 

"Dimension four is a bizarre dimen- 
sion," Morgan adds. "But we're beginning 
to get used to it now." O 

News of the week continued from p.327 

Spider webs: Luring 
light may be a trap 

In the first studies of the spectral 
properties of spider silks, researchers 
have found that some of these silks reflect 
ultraviolet (UV) light and that this prop- 
erty lures insects to the webs, says 
coauthor Catherine L. Craig, evolution- 
ary ecologist at Yale University in New 
Haven, Conn. 

The work "provides an unexpected 
new insight into the factors that shape the 
evolution of spider web design," says 
biologist Stephen Nowicki of Duke Uni- 
versity in Durham, N.C. Comparing webs 
from evolutionarily early and later spe- 
cies, the scientists found that the optical 
properties of spider webs change with 
the evolution of the web, Craig says. 

In contrast to the traditional view of 
spiders as passive foragers, the studies 
also show that "spiders are doing more 
than we imagined to increase their prob- 
ability of capturing prey," Nowicki 
says.Unlike humans, insects can see ul- 
traviolet light and are known to use this 
sense to locate UV-reflecting flowers and 
liquids, which may be important food 
resources or mating sites, Craig explains. 
But, until now, no one realized that spi- 
ders' webs have UV-reflecting properties 

that turn their prey's UV-detecting ability 
into a liability - for the insect. 

Craig and Gary D. Bernard at the Yale 
University School of Medicine studied 
the spectral properties of silks from 
different spider species by directing a 
monochromatic beam of light at the silk 
and measuring the relative amounts of 
the colors reflected back. They found that 
the silks from the earliest "ancestral" 
spiders, which spin silks for only domes- 
tic purposes such as lining burrows and 
covering eggs, selectively reflect ultra- 
violet light and that the prey-capturing 
silks of the more recently evolved primi- 
tive aerial web weavers, Uloborus 
glomosus, have an even more enhanced 
UV-reflectance peak. 

When drosophila fruit flies were given 
a choice between a glomosus web illumi- 
nated with white light containing a UV 
component and one brightened with non- 
UV-containing light, the majority flew to 
the ultraviolet-reflecting web. This work 
indicates that although UV reflectance in 
spider silk did not evolve for the purpose 
of capturing prey, its prey-luring advan- 
tage seems to have caused natural selec- 
tion to preserve and enhance the prop- 
erty, Craig told SCIENCE NEWS. 

When the researchers looked at the 
catching silks of the more recently de- 
rived garden spider, Argiope argentata, 
they found that the main portions of 
these webs do not reflect ultraviolet light, 

but that the decorations added to their 
webs do. They then discovered that, in 
nature, decorated webs capture 58 per- 
cent more insects than do undecorated 
webs, suggesting a novel, prey-attracting 
function for the designs. 

Although other scientists have pro- 
posed mechanical functions for the de- 
signs and recent data from Nowicki and 
his team suggest that the features func- 
tion to warn birds of a web's presence, 
"the strongest point about our hypoth- 
esis is that it applies to all situations 
where you find these [decorative] struc- 
tures," Craig says. The new studies are 
scheduled to appear in a forthcoming 
issue of ECOLOGY. - I. Wickelgren 
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