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Abstract

In this article we continue to investigate exotic smooth structures of 4-manifolds studied in [F
Math. 14 (2002) 915–929]. As a conclusion, we claim that most known simply connected, c
irreducible, nonspin, smooth 4-manifolds withb+

2 odd and large enough admit infinitely many, bo
symplectic and non-symplectic, exotic smooth structures.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One of the fundamental problems in the topology of 4-manifolds is to deter
whether a given topological 4-manifold admits a smooth structure and, if it does, wh
such a smooth structure is unique or not. Though the complete answer is far from rea
inception of gauge theory makes us to answer these questions [1,2,5–8]. Regardi
R. Fintushel and R. Stern recently conjectured the following

Conjecture 1. All but finitely many simply connected, closed, smooth 4-manifolds with
SW �= 0, admit an infinite family of both symplectic and non-symplectic distinct structures.

In this article we continue to investigate the existence problem of exotic sm
structures on smooth 4-manifolds studied in [8]. According to a convention, we sa
a smooth 4-manifold admits anexotic smooth structure if it has more than one distinc
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smooth structure. As we see in Section 2, the simple way to get exotic smooth structures
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on a smooth 4-manifoldX is to construct smooth 4-manifoldX′ which is homeomorphic
but not diffeomorphic, toX. Using this technique, the author obtained two results—
is for spin case [7] and the other is for nonspin and nonpositive signature case [8
one case is still left, that is, it is natural to ask the same question for nonspin sm
4-manifolds with positive signature. In the next section we first review known techn
and results. And then we apply similar techniques to get the following theorem.

Theorem 1.1. There is an increasing sequence {mi} with mi → 9 such that every simply
connected, closed, nonspin, irreducible, smooth 4-manifold satisfying 0 � c � miχ and
b+

2 � Ci odd (Ci is a constant depending on mi) admits infinitely many, both symplectic
and non-symplectic, exotic smooth structures.

Remarks.

(1) Here we definec and χ by 3σ + 2e and (σ + e)/4, respectively, whereσ and e
denote the signature and the Euler characteristic of a given 4-manifold. Note tha
smooth 4-manifold with positive signature satisfiesc := 3σ + 2e > 8χ . Furthermore
all known simply connected, closed, irreducible, smooth 4-manifolds withSW �= 0
satisfy both 0� c = 3σ + 2e < 9χ andb+

2 odd.
(2) The main new ingredient in the proof of Theorem 1.1 above is to use complex su

lying on the BMY-line studied by A. Stipsicz [10].

2. A construction

As we mentioned in Introduction, the simple way to get exotic smooth structure
a smooth 4-manifoldX is to construct a family of homeomorphic types ofX which
have mutually different Seiberg–Witten invariants (or Donaldson invariants). For thi
first briefly review main techniques—called a fiber sum, a logarithmic transform,
R. Fintushel and R. Stern’s knot surgery—and state related theorems (see [7,8] for d

Definition. For i = 1,2, let Xi be a closed smooth 4-manifold containing a smoo
embedded surfaceΣ of the same genusg and of the opposite square. SupposeX0

i =
Xi − νi(Σ) is a complement of a tubular neighborhoodνi(Σ) of Σ in Xi andNi is a
boundary of the tubular neighborhoodνi(Σ). Then, by choosing an orientation-reversi
fiber-preserving diffeomorphismϕ : ν1(Σ) → ν2(Σ) and by gluingX0

1 to X0
2 along their

boundaries via the diffeomorphismϕ| :N1 → N2, we define a new closed smooth
manifoldX1 �Σ X2, called afiber sum of X1 andX2 alongΣ . Furthermore R. Gompf
J. McCarthy and J. Wolfson independently extendeda fiber sum technique to symplecti
category. That is, they proved

Theorem 2.1 [2,4]. For i = 1,2, let Xi be a closed symplectic 4-manifold containing
a symplectic (or Lagrangian) genus g surface Σ of the opposite square. In case Σ is
Lagrangian, assume that Σ represents a non-zero homology class in H2(Xi :Z). Then
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there exists an orientation-reversing, bundle diffeomorphism ϕ : ν1(Σ) → ν2(Σ), so that
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the resulting 4-manifold X1 �Σ X2 admits a symplectic structure.

Remarks.

(1) A spin condition is preserved under a fiber sum operation. That is, if bothX1 andX2
are spin 4-manifolds, so isX1 �Σ X2 (Proposition 1.2 in [2]).

(2) Minimality is also preserved under a symplectic fiber sum operation. That is, if boX1
andX2 are irreducible symplectic 4-manifolds, so isX1 �Σ X2 due to W. Lorek. Here
is a sketch of Lorek’s argument: IfX1 �Σ X2 is not minimal, since any exception
curve in a symplectic 4-manifold withb+ � 2 can be symplectically embedded, the
exists a family of symplectic 2-sphereCt , parameterized byt ∈ D2, of square−1 in
X1 �Σ X2. By consideringCt as a pseudo-holomorphic curve and applying Grom
compactness theorem for the familyCt (t → (0,0)), one can get a limiting curv
C = C1 ∪ · · · ∪ Ck in X1 ∪ X2 such that eachCi is an embedded 2-sphere lying
eitherX1 or X2 andC2 = C2

1 + · · · + C2
k = −1. But it is impossible because an

embedded 2-sphere in a symplectic 4-manifold withb+ � 2 has a negative squa
(Theorem 2.5 in [6]).

Definition. Let X be a smooth 4-manifold containing a smoothly embedded torusT of
square 0. Then, removing a tubular neighborhoodν(T )∼= T ×D2 of T in X and regluing
it along the boundary via a diffeomorphismϕ :T ×∂D2 → T ×∂D2 such that the absolut
value of the degree of the map proj∂D2 ◦ ϕ : {pt} × ∂D2 → ∂D2 is p, we define a new
smooth 4-manifoldX(p), called ap-logarithmic transform onX, which depends on th
choice ofϕ as well asT . Note that, ifT is a regular torus lying in a cusp neighborho
X(p) is uniquely determined up to diffeomorphism. In the caseT is a regular torus lying
in a fishtail neighborhood which is not contained in a cusp neighborhood,X(p) is also
uniquely determined by a choice of an auxiliary data regarding the vanishing cycleT
(Theorem 8.5.9 in [3] for details). Furthermore, M. Symington proved thatX(p) admits a
symplectic structure in some cases [11].

Theorem 2.2 (Corollary 10.2.7 in [3]).Suppose X is a symplectic 4-manifold containing
a symplectic fishtail neighborhood. Then the manifold X(p) obtained by p-logarithmic
transform along a symplectic torus T in a fishtail neighborhood admits a symplectic
structure.

Definition. SupposeK is a fibered knot inS3 with a punctured surfaceΣ◦
g of genusg as

fiber. LetMK be a 3-manifold obtained by performing 0-framed surgery onK, and letm
be a meridional circle toK. Then the 3-manifoldMK can be considered as a fiber bun
over circle with a closed Riemann surfaceΣg as a fiber, and there is a smoothly embed
torusTm :=m×S1 of square 0 inMK ×S1. ThusMK ×S1 fibers overS1 ×S1 with Σg as
fiber and withTm =m× S1 as section. It is a theorem of Thurston that such a 4-man
MK ×S1 has a symplectic structure with symplectic sectionTm. Thus, ifX is a symplectic
4-manifold with a symplectically embedded torusT of square 0, then the fiber sum
manifoldXK := X�T=Tm(MK × S1), obtained by taking a fiber sum alongT = Tm, is
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symplectic—We call this aknot surgery introduced by R. Fintushel and R. Stern. They also
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proved thatXK is homotopy equivalent toX under a mild condition onX, and computed
the Seiberg–Witten invariant ofXK .

Theorem 2.3 [1]. Suppose X is a simply connected symplectic 4-manifold which contains
a smoothly embedded torus T of square 0 in a cusp neighborhood with π1(X \ T )= 1 and
representing a non-trivial homology class [T ]. If K is a knot in S3, then XK is a smooth
4-manifold which is homeomorphic to X and whose Seiberg–Witten invariant is

SWXK = SWX ·!K(t)

where !K(t) is the Alexander polynomial of K and t = exp(2[T ]). Furthermore, if K is a
fibered knot and T is symplectically embedded, then XK is a symplectic 4-manifold.

Next, we introduce some basic symplectic 4-manifolds which will be served as bu
blocks of our construction.

Building Block 1. Let Q := Z1 �ψZ2 be a symplectic 4-manifold constructed as follow
First, consider a Thurston’s manifoldZ := R

4/G, whereG is a discrete subgroup o
symplectomorphisms generated by unit translations parallel to thex1-, x2-, andx3-axes,
together with the map(x1, . . . , x4) �→ (x1 + x2, x2, x3, x4 + 1). Note that projection onto
the last two coordinates induces a bundle structureπ :Z → T

2 with symplectic torus
fibers. Next, using two copies,πi :Zi → T

2 (i = 1,2), of Thurston’s manifold and usin
an orientation-reversing bundle mapψ induced from 90◦ rotationψ0 :π−1

1 (0)→ π−1
2 (0)

defined byψ0(x
1, x2)= (−x2, x1), we obtain a symplectic fiber sumQ :=Z1 �ψZ2 which

is a torus bundle over a genus 2 surfaceT
2 � T

2 and has a symplectic sectionΣ of square
0, glued a torus section inZ1 andZ2. Similarly, there is also a Lagrangian torusT ⊂Q

of square 0, disjoint fromΣ , in Q. For example, one obtains such a torusT by setting
x1 = x4 = 1/2 in Z1. Note that both the Euler characteristice(Q) and the signatureσ(Q)
of Q are zero becausee(Zi)= σ(Zi)= 0 [2].

Building Block 2. LetE(n) be a simply connected elliptic surface with no multiple fib
and holomorphic Euler characteristicn. ThenE(n) can be obtained as an algebraic surf
B(2,3,6n − 1) ∪Σ(2,3,6n−1) C(n), whereB(2,3,6n − 1) is a Brieskorn manifold and
C(n), usually calleda Gompf nucleus, is the neighborhood of a cusp fiber and a sec
which is an embedded 2-sphere of square−n. Note that, forn� 2, a Brieskorn manifold
B(2,3,6n − 1) also contains a Lagrangian torus of square 0, which intersects 2-s
transversely at a single point, in another cusp neighborhood [9].

Building Block 3. LetH(n2) be a complex surface lying on the Bogomolov–Miyaoka–Y
line which is constructed as follows: Given a Riemann surfaceΣ2 of genus 2, take aZ5-
action onΣ2 generated byγ :Σ2 →Σ2 which has exactly 3 fixed points, sayp1,p2,p3.
Then the quotientΣ2/Z5 is CP 1. Let us denote the quotient map byϕ :Σ2 → CP 1

and denote the inverse image of the diagonal viaϕ × ϕ :Σ2 × Σ2 → CP 1 × CP 1 by
F ⊂Σ2 ×Σ2. If we blow upΣ2 ×Σ2 in the 3 points(pi,pi) (i = 1,2,3), we can take the
5-cyclic branched cover of(Σ2 ×Σ2) �3CP 2 alongF̃1 ∪ · · · ∪ F̃5, whereF̃1, . . . , F̃5 are
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disjoint curves obtained by the proper transform ofF . We denote the resulting complex
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surface byH(1). Note that it admits a Lefschetz fibrationH(1)→Σ2 ×Σ2
pr1−→Σ2 with

fibers of genus 16 and it contains a genus 2 surfaceΣ2, as a section, of square−1. And
then, taking ann-fold unbranched coverφn :Σn+1 → Σ2 and pullingH(1)→ Σ2 ×Σ2
back viaφn × φn, we obtain a complex surface, denoted byH(n2), which also admits a

Lefschetz fibrationH(n)→Σn+1 ×Σn+1
pr1−→Σn+1 with fibers of genus 15n+ 1 and it

contains a genus(n+ 1) surfaceΣn+1, as a section, of square−n. Furthermore, it has th
Euler characteristice(H(n2))= 75n2 and the signatureσ(H(n2))= 25n2 [10].

Before going on, let us summarize results obtained in our previous papers.

Theorem 2.4 [7]. There is a line c = f (χ) with a slope > 8.76 in the (χ, c)-plane such
that any allowed lattice point satisfying c � f (χ) in the first quadrant can be realized
as (χ, c2

1) of a simply connected spin non-complex symplectic 4-manifold which admits
infinitely many distinct exotic smooth structures. In particular, all allowed lattice points
(χ, c) except finitely many lying in the region 0 � c � 8.76χ satisfy c � f (χ).

Lemma 2.1 [8]. For each integer k, 10 � k � 18, there exists a simply connected,
nonspin, irreducible symplectic 4-manifold X3,k with b+

2 = 3 and b−
2 = k which contains

a symplectic genus 2 surface Σ2 of square 0 and a symplectic torus T of square 0, disjoint
from Σ2, in a fishtail neighborhood and π1(X3,k −Σ2)= π1(X3,k − T )= 1.

Theorem 2.5 [8]. Every simply connected, closed, nonspin, smooth 4-manifold with b+
2 > 1

odd satisfying b−
2 � b+

2 +7 or b−
2 � b+

2 � 123admits infinitely many distinct exotic smooth
structures. Furthermore, if it also satisfies c � 0, then they are all irreducible.

Remarks.

(1) It is easily proved that every smooth 4-manifold satisfying the hypothes
Theorem 2.4 or Theorem 2.5 above admits actually an infinite family of,
symplectic and non-symplectic, exotic smooth structures by applying Theore
with an infinite family of both fibered and non-fibered knots inS3.

(2) In fact, the symplectic 4-manifoldsX3,k described in Lemma 2.1 above also sati
π1(X3,k − (Σ2 ∪ T )) = 1 because a circle{pt} × ∂D2 ⊂ Σ2 × D2, a tubular
neighborhood ofΣ2, bounds a disk inX3,k − T ⊂X3,k.

(3) B. Park proved independently that the symplectic 4-manifoldsX3,k (10� k � 13) in
Lemma 2.1 above admit infinitely many, both symplectic and non-symplectic, dis
exotic smooth structures [5].

Now we investigate exotic smooth structures for nonspin smooth 4-manifolds. Fir
need the following two lemmas.

Lemma 2.2. For each integer n � 1, there exists an irreducible Lefschetz fibration
Yn → Σn+3 with a fiber of genus 15n + 1 which contains a genus (n + 3) surface
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Σn+3 of square −n such that the image of π1(∂ν(Σn+3)) in π1(Yn − ν(Σn+3)) normally
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generates, where ν(Σn+3) is a tubular neighborhood of Σn+3 in Yn. Furthermore it
satisfies (e(Yn), σ (Yn))= (75n2 + 120n,25n2).

Proof. First, taking a fiber sum 15n times along a genus 2 surfaceΣ2 of square 0 in a
building blockQ = Z �T Z, we get a fiber bundle(15n+ 1)Q := Q�Σ2 · · ·�Σ2 Q → Σ2
whose regular fiber is a genus(15n+ 1) surface obtained by gluing(15n+ 1) copies of a
torus fiber inQ. Next, taking a fiber sum again along a genus(15n+ 1) surfaceΣ15n+1 in
H(n2) and in(15n+ 1)Q, we construct a Lefschetz fibration

Yn :=H
(
n2) �Σ15n+1(15n+ 1)Q→Σn+3

over a genus(n+ 3) surfaceΣn+3 of square−n, which is obtained by a connected su
Σn+1 �Σ2 of two sectionsΣn+1 andΣ2.

Next, since two generators of the fundamental group of a torus fiber ofQ → Σ2 are
trivial in π1(Q− ν(Σ2))/〈π1(∂ν(Σ2))〉 ∼= 1, all (30n+ 2) generators ofπ1(Σ15n+1) are
also trivial inΛ := π1((15n+ 1)Q− ν(Σ2))/〈π1(∂ν(Σ2))〉. HenceΛ is trivial because
π1((15n+1)Q−ν(Σ2)) is generated byπ1(Σ

◦
15n+1) andπ1(Σ2), whereΣ15n+1(Σ

◦
15n+1)

is a (punctured) genus(15n+ 1) fiber of (15n+ 1)Q→Σ2. Furthermore, since each fib
of H(n2) can be pushed into a fiber of(15n+ 1)Q, the mapπ1(∂ν(Σn+3)) → π1(Yn −
ν(Σn+3)) is surjective. Note thate(Yn)= e(H(n2))+e((15n+1)Q)+60n= 75n2+120n
andσ(Yn)= σ(H(n2))+ (15n+ 1)σ (Q)= 25n2. ✷
Lemma 2.3. For each odd integer n � 1, there exists a simply connected irreducible
symplectic 4-manifold E(1)K which contains a genus (n + 3) surface Σn+3 of square
n and π1(E(1)K −Σn+3)= 1.

Proof. LetK be a torus fibered knotT (2, n+6) in S3. Then, performing 0-framed surge
on K and taking a product withS1, we get a fibrationMK × S1 → T with a genus
(n + 5)/2 surfaceΣ ′

(n+5)/2 as a fiber and with a torusT as a section. Then we get
desired symplectic manifoldE(1)K by taking a fiber sum along a torusT in E(1) and in
MK × S1. Note thatE(1)K contains a symplectic genus(n + 5)/2 surfaceΣ(n+5)/2 of
square−1, obtained by gluingΣ ′

(n+5)/2 and a 2-sphereS which is a section ofE(1), and
also contains a symplectic torusT of square 0 which intersectsΣ(n+5)/2 transversely at a
point. Hence, by symplectically resolving(n+ 1)/2 intersection points repeatedly, we g
a symplectic genus(n+ 3) surfaceΣn+3 whose square is[Σ(n+5)/2 + (n+1)

2 T ]2 = n. Note
that π1(E(1)K − Σn+3) = 1 follows from the Van-Kampen theorem using the fact t
the meridian of a tubular neighborhoodν(Σn+3) of Σn+3 collapses inE(1)− ν(T ∪ S)⊂
E(1)K − ν(Σn+3). ✷
Proposition 2.1. For each odd integer n � 1 and 10 � k � 18, there exists a simply
connected, nonspin, irreducible symplectic 4-manifold Zn,k containing a symplectic genus
2 surface Σ2 of square 0 and a torus T of square 0, disjoint from Σ2, in a fishtail
neighborhood which satisfies π1(Zn,k − Σ2) = π1(Zn,k − T ) = 1. Furthermore, it has
χ(Zn,k)= 25n2 + 31n+ 5 and c(Zn,k)= 225n2 + 248n+ 35− k.
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Proof. First, in order to construct desired manifolds, take a symplectic fiber sum along a
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genus(n+ 3) surfaceΣn+3 of the opposite square±n in Yn and inE(1)K (Lemmas 2.2
and 2.3). After then, taking a symplectic fiber sum again along a torusT of square 0 in
Q⊂ Yn and inX3,k, we get a desired irreducible symplectic 4-manifold

Zn,k :=E(1)K �Σn+3 Yn �T X3,k.

Note that the simple connectivity ofZn,k follows from Lemmas 2.2 and 2.3:

π1
(
E(1)K �Σn+3 Yn

)
= π1

((
E(1)K

) − ν(Σn+3)
) ∗ π1

(
Yn − ν(Σn+3)

)/〈
π1

(
∂ν(Σn+3)

)〉
∼= π1

(
Yn − ν(Σn+3)

)/〈
π1

(
∂ν(Σn+3)

)〉
∼= 1.

An easy computation shows thate(Zn,k) = e(E(1)K) + e(Yn) + 4(n + 2) + e(X3,k) =
75n2+124n+k+25 andσ(Zn,k)= σ(E(1)K)+σ(Yn)+σ(X3,k)= 25n2−k−5. Hence
it hasχ(Zn,k)= 25n2 +31n+5 andc(Zn,k)= 225n2 +248n+35− k. Furthermore since
Σn+3 is not characteristic inH2(E(1)K :Z), E(1)K −Σn+3 cannot be spin, so thatZn,k
is nonspin. The other properties ofZn,k in Proposition 2.1 above follow from the fact th
X3,k has the same properties described in Lemma 2.1.✷
Theorem 2.6. There is an increasing sequence {mi} with mi → 9 such that every simply
connected, closed, nonspin, irreducible, smooth 4-manifold satisfying 0 � c � miχ and
b+

2 � Ci odd (Ci is a constant depending on mi) admits infinitely many, both symplectic
and non-symplectic, exotic smooth structures.

Proof. For each odd integeri � 1, define two numbersmi andCi by

mi := c(Zi,10�Σ2(112.5i + 173.5)Q)

χ(Zi,10�Σ2(112.5i+ 173.5)Q)
= 225i2 + 1148i + 1413

25i2 + 143.5i+ 178.5
,

Ci := 50i2 + 287i + 356.

Then{mi} is an increasing sequence converging to 9 and any lattice point(χ, c) satisfying
8χ < c � miχ andχ � (Ci + 1)/2 (equivalently,b+

2 � Ci ) is realized as(χ, c2
1) of a

simply connected, closed, nonspin, irreducible, symplectic 4-manifold

Zn,k �Σ2 lQ�T E
(
l′
)

for some integersn, k, l and l′. The fact thatZn,k �Σ2 lQ�T E(l
′) admits infinitely many,

both symplectic and non-symplectic, exotic smooth structures follows from Theore
by using a regular torus lying in a cusp neighborhood inE(l′) (orX3,k ⊂ Zn,k) and using
an infinite family of fibered and non-fibered knots inS3. Hence we are done by combinin
this result with Theorem 2.5.✷
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