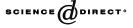


Available online at www.sciencedirect.com



Topology and its Applications 132 (2003) 195-202

www.elsevier.com/locate/topol

Exotic smooth structures on 4-manifolds, II [☆]

Jongil Park

Department of Mathematics, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, South Korea Received 28 October 2002; received in revised form 16 January 2003

Abstract

In this article we continue to investigate exotic smooth structures of 4-manifolds studied in [Forum Math. 14 (2002) 915–929]. As a conclusion, we claim that most known simply connected, closed, irreducible, nonspin, smooth 4-manifolds with b_2^+ odd and large enough admit infinitely many, both symplectic and non-symplectic, exotic smooth structures. © 2003 Elsevier B.V. All rights reserved.

MSC: primary 57R17, 57R57; secondary 57N13

Keywords: Exotic smooth structure; Fiber sum; Irreducible; Nonspin

1. Introduction

One of the fundamental problems in the topology of 4-manifolds is to determine whether a given topological 4-manifold admits a smooth structure and, if it does, whether such a smooth structure is unique or not. Though the complete answer is far from reach, the inception of gauge theory makes us to answer these questions [1,2,5–8]. Regarding this, R. Fintushel and R. Stern recently conjectured the following

Conjecture 1. All but finitely many simply connected, closed, smooth 4-manifolds with $SW \neq 0$, admit an infinite family of both symplectic and non-symplectic distinct structures.

In this article we continue to investigate the existence problem of exotic smooth structures on smooth 4-manifolds studied in [8]. According to a convention, we say that a smooth 4-manifold admits an *exotic smooth structure* if it has more than one distinct

^{*} This work was supported by Korea Research Foundation Grant (KRF-2002-003-C00015). *E-mail address:* jipark@konkuk.ac.kr (J. Park).

^{0166-8641/03/\$ –} see front matter @ 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0166-8641(03)00033-6

smooth structure. As we see in Section 2, the simple way to get exotic smooth structures on a smooth 4-manifold X is to construct smooth 4-manifold X' which is homeomorphic, but not diffeomorphic, to X. Using this technique, the author obtained two results—one is for spin case [7] and the other is for nonspin and nonpositive signature case [8]. But one case is still left, that is, it is natural to ask the same question for nonspin smooth 4-manifolds with positive signature. In the next section we first review known techniques and results. And then we apply similar techniques to get the following theorem.

Theorem 1.1. There is an increasing sequence $\{m_i\}$ with $m_i \rightarrow 9$ such that every simply connected, closed, nonspin, irreducible, smooth 4-manifold satisfying $0 \leq \mathbf{c} \leq m_i \chi$ and $b_2^+ \geq C_i$ odd (C_i is a constant depending on m_i) admits infinitely many, both symplectic and non-symplectic, exotic smooth structures.

Remarks.

- (1) Here we define **c** and χ by $3\sigma + 2e$ and $(\sigma + e)/4$, respectively, where σ and e denote the signature and the Euler characteristic of a given 4-manifold. Note that every smooth 4-manifold with positive signature satisfies **c** := $3\sigma + 2e > 8\chi$. Furthermore, all known simply connected, closed, irreducible, smooth 4-manifolds with $SW \neq 0$ satisfy both $0 \leq \mathbf{c} = 3\sigma + 2e < 9\chi$ and b_2^+ odd.
- (2) The main new ingredient in the proof of Theorem 1.1 above is to use complex surfaces lying on the BMY-line studied by A. Stipsicz [10].

2. A construction

As we mentioned in Introduction, the simple way to get exotic smooth structures on a smooth 4-manifold X is to construct a family of homeomorphic types of X which have mutually different Seiberg–Witten invariants (or Donaldson invariants). For this, we first briefly review main techniques—called a fiber sum, a logarithmic transform, and R. Fintushel and R. Stern's knot surgery—and state related theorems (see [7,8] for details).

Definition. For i = 1, 2, let X_i be a closed smooth 4-manifold containing a smoothly embedded surface Σ of the same genus g and of the opposite square. Suppose $X_i^0 = X_i - v_i(\Sigma)$ is a complement of a tubular neighborhood $v_i(\Sigma)$ of Σ in X_i and N_i is a boundary of the tubular neighborhood $v_i(\Sigma)$. Then, by choosing an orientation-reversing, fiber-preserving diffeomorphism $\varphi : v_1(\Sigma) \to v_2(\Sigma)$ and by gluing X_1^0 to X_2^0 along their boundaries via the diffeomorphism $\varphi : N_1 \to N_2$, we define a new closed smooth 4manifold $X_1 \sharp_{\Sigma} X_2$, called a *fiber sum* of X_1 and X_2 along Σ . Furthermore R. Gompf, J. McCarthy and J. Wolfson independently extended *a fiber sum* technique to symplectic category. That is, they proved

Theorem 2.1 [2,4]. For i = 1, 2, let X_i be a closed symplectic 4-manifold containing a symplectic (or Lagrangian) genus g surface Σ of the opposite square. In case Σ is Lagrangian, assume that Σ represents a non-zero homology class in $H_2(X_i:\mathbb{Z})$. Then there exists an orientation-reversing, bundle diffeomorphism $\varphi: v_1(\Sigma) \to v_2(\Sigma)$, so that the resulting 4-manifold $X_1 \sharp_{\Sigma} X_2$ admits a symplectic structure.

Remarks.

- A spin condition is preserved under a fiber sum operation. That is, if both X₁ and X₂ are spin 4-manifolds, so is X₁ #_Σ X₂ (Proposition 1.2 in [2]).
- (2) Minimality is also preserved under a symplectic fiber sum operation. That is, if both X₁ and X₂ are irreducible symplectic 4-manifolds, so is X₁ ♯_∑ X₂ due to W. Lorek. Here is a sketch of Lorek's argument: If X₁ ♯_∑ X₂ is not minimal, since any exceptional curve in a symplectic 4-manifold with b⁺ ≥ 2 can be symplectically embedded, there exists a family of symplectic 2-sphere C_t, parameterized by t ∈ D², of square −1 in X₁ ♯_∑ X₂. By considering C_t as a pseudo-holomorphic curve and applying Gromov's compactness theorem for the family C_t (t → (0, 0)), one can get a limiting curve C = C₁ ∪ … ∪ C_k in X₁ ∪ X₂ such that each C_i is an embedded 2-sphere lying in either X₁ or X₂ and C² = C₁² + … + C_k² = −1. But it is impossible because any embedded 2-sphere in a symplectic 4-manifold with b⁺ ≥ 2 has a negative square (Theorem 2.5 in [6]).

Definition. Let *X* be a smooth 4-manifold containing a smoothly embedded torus *T* of square 0. Then, removing a tubular neighborhood $v(T) \cong T \times D^2$ of *T* in *X* and regluing it along the boundary via a diffeomorphism $\varphi: T \times \partial D^2 \to T \times \partial D^2$ such that the absolute value of the degree of the map $\operatorname{proj}_{\partial D^2} \circ \varphi: \{pt\} \times \partial D^2 \to \partial D^2$ is *p*, we define a new smooth 4-manifold X(p), called a *p*-logarithmic transform on *X*, which depends on the choice of φ as well as *T*. Note that, if *T* is a regular torus lying in a cusp neighborhood, X(p) is uniquely determined up to diffeomorphism. In the case *T* is a regular torus lying in a fishtail neighborhood which is not contained in a cusp neighborhood, X(p) is also uniquely determined by a choice of an auxiliary data regarding the vanishing cycle of *T* (Theorem 8.5.9 in [3] for details). Furthermore, M. Symington proved that X(p) admits a symplectic structure in some cases [11].

Theorem 2.2 (Corollary 10.2.7 in [3]). Suppose X is a symplectic 4-manifold containing a symplectic fishtail neighborhood. Then the manifold X(p) obtained by p-logarithmic transform along a symplectic torus T in a fishtail neighborhood admits a symplectic structure.

Definition. Suppose *K* is a fibered knot in S^3 with a punctured surface Σ_g° of genus *g* as fiber. Let M_K be a 3-manifold obtained by performing 0-framed surgery on *K*, and let *m* be a meridional circle to *K*. Then the 3-manifold M_K can be considered as a fiber bundle over circle with a closed Riemann surface Σ_g as a fiber, and there is a smoothly embedded torus $T_m := m \times S^1$ of square 0 in $M_K \times S^1$. Thus $M_K \times S^1$ fibers over $S^1 \times S^1$ with Σ_g as fiber and with $T_m = m \times S^1$ as section. It is a theorem of Thurston that such a 4-manifold $M_K \times S^1$ has a symplectic structure with symplectic section T_m . Thus, if *X* is a symplectic 4-manifold with a symplectically embedded torus *T* of square 0, then the fiber sum 4-manifold $X_K := X \ddagger_{T=T_m} (M_K \times S^1)$, obtained by taking a fiber sum along $T = T_m$, is

symplectic—We call this a *knot surgery* introduced by R. Fintushel and R. Stern. They also proved that X_K is homotopy equivalent to X under a mild condition on X, and computed the Seiberg–Witten invariant of X_K .

Theorem 2.3 [1]. Suppose X is a simply connected symplectic 4-manifold which contains a smoothly embedded torus T of square 0 in a cusp neighborhood with $\pi_1(X \setminus T) = 1$ and representing a non-trivial homology class [T]. If K is a knot in S³, then X_K is a smooth 4-manifold which is homeomorphic to X and whose Seiberg–Witten invariant is

 $SW_{X_K} = SW_X \cdot \Delta_K(t)$

where $\Delta_K(t)$ is the Alexander polynomial of K and $t = \exp(2[T])$. Furthermore, if K is a fibered knot and T is symplectically embedded, then X_K is a symplectic 4-manifold.

Next, we introduce some basic symplectic 4-manifolds which will be served as building blocks of our construction.

Building Block 1. Let $Q := Z_1 \sharp_{\psi} Z_2$ be a symplectic 4-manifold constructed as follows: First, consider a Thurston's manifold $Z := \mathbb{R}^4/G$, where *G* is a discrete subgroup of symplectomorphisms generated by unit translations parallel to the x^{1-} , x^{2-} , and x^{3-} axes, together with the map $(x^1, \ldots, x^4) \mapsto (x^1 + x^2, x^2, x^3, x^4 + 1)$. Note that projection onto the last two coordinates induces a bundle structure $\pi : Z \to \mathbb{T}^2$ with symplectic torus fibers. Next, using two copies, $\pi_i : Z_i \to \mathbb{T}^2$ (i = 1, 2), of Thurston's manifold and using an orientation-reversing bundle map ψ induced from 90° rotation $\psi_0 : \pi_1^{-1}(0) \to \pi_2^{-1}(0)$ defined by $\psi_0(x^1, x^2) = (-x^2, x^1)$, we obtain a symplectic fiber sum $Q := Z_1 \sharp_{\psi} Z_2$ which is a torus bundle over a genus 2 surface $\mathbb{T}^2 \ddagger \mathbb{T}^2$ and has a symplectic section Σ of square 0, glued a torus section in Z_1 and Z_2 . Similarly, there is also a Lagrangian torus $T \subset Q$ of square 0, disjoint from Σ , in Q. For example, one obtains such a torus T by setting $x^1 = x^4 = 1/2$ in Z_1 . Note that both the Euler characteristic e(Q) and the signature $\sigma(Q)$ of Q are zero because $e(Z_i) = \sigma(Z_i) = 0$ [2].

Building Block 2. Let E(n) be a simply connected elliptic surface with no multiple fibers and holomorphic Euler characteristic *n*. Then E(n) can be obtained as an algebraic surface $B(2, 3, 6n - 1) \cup_{\Sigma(2,3,6n-1)} C(n)$, where B(2, 3, 6n - 1) is a Brieskorn manifold and C(n), usually called *a Gompf nucleus*, is the neighborhood of a cusp fiber and a section which is an embedded 2-sphere of square -n. Note that, for $n \ge 2$, a Brieskorn manifold B(2, 3, 6n - 1) also contains a Lagrangian torus of square 0, which intersects 2-sphere transversely at a single point, in another cusp neighborhood [9].

Building Block 3. Let $H(n^2)$ be a complex surface lying on the Bogomolov–Miyaoka–Yau line which is constructed as follows: Given a Riemann surface Σ_2 of genus 2, take a \mathbb{Z}_5 action on Σ_2 generated by $\gamma : \Sigma_2 \to \Sigma_2$ which has exactly 3 fixed points, say p_1, p_2, p_3 . Then the quotient Σ_2/\mathbb{Z}_5 is $\mathbb{C}P^1$. Let us denote the quotient map by $\varphi : \Sigma_2 \to \mathbb{C}P^1$ and denote the inverse image of the diagonal via $\varphi \times \varphi : \Sigma_2 \times \Sigma_2 \to \mathbb{C}P^1 \times \mathbb{C}P^1$ by $F \subset \Sigma_2 \times \Sigma_2$. If we blow up $\Sigma_2 \times \Sigma_2$ in the 3 points (p_i, p_i) (i = 1, 2, 3), we can take the 5-cyclic branched cover of $(\Sigma_2 \times \Sigma_2) \sharp 3\overline{\mathbb{C}P^2}$ along $\widetilde{F_1} \cup \cdots \cup \widetilde{F_5}$, where $\widetilde{F_1}, \ldots, \widetilde{F_5}$ are disjoint curves obtained by the proper transform of *F*. We denote the resulting complex surface by H(1). Note that it admits a Lefschetz fibration $H(1) \rightarrow \Sigma_2 \times \Sigma_2 \xrightarrow{\text{pr}_1} \Sigma_2$ with fibers of genus 16 and it contains a genus 2 surface Σ_2 , as a section, of square -1. And then, taking an *n*-fold unbranched cover $\phi_n : \Sigma_{n+1} \rightarrow \Sigma_2$ and pulling $H(1) \rightarrow \Sigma_2 \times \Sigma_2$ back via $\phi_n \times \phi_n$, we obtain a complex surface, denoted by $H(n^2)$, which also admits a Lefschetz fibration $H(n) \rightarrow \Sigma_{n+1} \times \Sigma_{n+1} \xrightarrow{\text{pr}_1} \Sigma_{n+1}$ with fibers of genus 15n + 1 and it contains a genus (n + 1) surface Σ_{n+1} , as a section, of square -n. Furthermore, it has the Euler characteristic $e(H(n^2)) = 75n^2$ and the signature $\sigma(H(n^2)) = 25n^2$ [10].

Before going on, let us summarize results obtained in our previous papers.

Theorem 2.4 [7]. There is a line $\mathbf{c} = f(\chi)$ with a slope > 8.76 in the (χ, \mathbf{c}) -plane such that any allowed lattice point satisfying $\mathbf{c} \leq f(\chi)$ in the first quadrant can be realized as (χ, c_1^2) of a simply connected spin non-complex symplectic 4-manifold which admits infinitely many distinct exotic smooth structures. In particular, all allowed lattice points (χ, \mathbf{c}) except finitely many lying in the region $0 \leq \mathbf{c} \leq 8.76\chi$ satisfy $\mathbf{c} \leq f(\chi)$.

Lemma 2.1 [8]. For each integer k, $10 \le k \le 18$, there exists a simply connected, nonspin, irreducible symplectic 4-manifold $X_{3,k}$ with $b_2^+ = 3$ and $b_2^- = k$ which contains a symplectic genus 2 surface Σ_2 of square 0 and a symplectic torus T of square 0, disjoint from Σ_2 , in a fishtail neighborhood and $\pi_1(X_{3,k} - \Sigma_2) = \pi_1(X_{3,k} - T) = 1$.

Theorem 2.5 [8]. Every simply connected, closed, nonspin, smooth 4-manifold with $b_2^+ > 1$ odd satisfying $b_2^- \ge b_2^+ + 7$ or $b_2^- \ge b_2^+ \ge 123$ admits infinitely many distinct exotic smooth structures. Furthermore, if it also satisfies $\mathbf{c} \ge 0$, then they are all irreducible.

Remarks.

- (1) It is easily proved that every smooth 4-manifold satisfying the hypothesis in Theorem 2.4 or Theorem 2.5 above admits actually an infinite family of, both symplectic and non-symplectic, exotic smooth structures by applying Theorem 2.3 with an infinite family of both fibered and non-fibered knots in S^3 .
- (2) In fact, the symplectic 4-manifolds $X_{3,k}$ described in Lemma 2.1 above also satisfy $\pi_1(X_{3,k} (\Sigma_2 \cup T)) = 1$ because a circle $\{pt\} \times \partial D^2 \subset \Sigma_2 \times D^2$, a tubular neighborhood of Σ_2 , bounds a disk in $X_{3,k} T \subset X_{3,k}$.
- (3) B. Park proved independently that the symplectic 4-manifolds $X_{3,k}$ ($10 \le k \le 13$) in Lemma 2.1 above admit infinitely many, both symplectic and non-symplectic, distinct exotic smooth structures [5].

Now we investigate exotic smooth structures for nonspin smooth 4-manifolds. First we need the following two lemmas.

Lemma 2.2. For each integer $n \ge 1$, there exists an irreducible Lefschetz fibration $Y_n \rightarrow \Sigma_{n+3}$ with a fiber of genus 15n + 1 which contains a genus (n + 3) surface

 Σ_{n+3} of square -n such that the image of $\pi_1(\partial v(\Sigma_{n+3}))$ in $\pi_1(Y_n - v(\Sigma_{n+3}))$ normally generates, where $v(\Sigma_{n+3})$ is a tubular neighborhood of Σ_{n+3} in Y_n . Furthermore it satisfies $(e(Y_n), \sigma(Y_n)) = (75n^2 + 120n, 25n^2)$.

Proof. First, taking a fiber sum 15*n* times along a genus 2 surface Σ_2 of square 0 in a building block $Q = Z \sharp_T Z$, we get a fiber bundle $(15n + 1)Q := Q \sharp_{\Sigma_2} \cdots \sharp_{\Sigma_2} Q \to \Sigma_2$ whose regular fiber is a genus (15n + 1) surface obtained by gluing (15n + 1) copies of a torus fiber in Q. Next, taking a fiber sum again along a genus (15n + 1) surface Σ_{15n+1} in $H(n^2)$ and in (15n + 1)Q, we construct a Lefschetz fibration

$$Y_n := H(n^2) \sharp_{\Sigma_{15n+1}}(15n+1)Q \to \Sigma_{n+3}$$

over a genus (n + 3) surface Σ_{n+3} of square -n, which is obtained by a connected sum $\Sigma_{n+1} \not\equiv \Sigma_2$ of two sections Σ_{n+1} and Σ_2 .

Next, since two generators of the fundamental group of a torus fiber of $Q \to \Sigma_2$ are trivial in $\pi_1(Q - \nu(\Sigma_2))/\langle \pi_1(\partial \nu(\Sigma_2)) \rangle \cong 1$, all (30n + 2) generators of $\pi_1(\Sigma_{15n+1})$ are also trivial in $\Lambda := \pi_1((15n + 1)Q - \nu(\Sigma_2))/\langle \pi_1(\partial \nu(\Sigma_2)) \rangle$. Hence Λ is trivial because $\pi_1((15n + 1)Q - \nu(\Sigma_2))$ is generated by $\pi_1(\Sigma_{15n+1}^\circ)$ and $\pi_1(\Sigma_2)$, where $\Sigma_{15n+1}(\Sigma_{15n+1}^\circ)$ is a (punctured) genus (15n + 1) fiber of $(15n + 1)Q \to \Sigma_2$. Furthermore, since each fiber of $H(n^2)$ can be pushed into a fiber of (15n + 1)Q, the map $\pi_1(\partial \nu(\Sigma_{n+3})) \to \pi_1(Y_n - \nu(\Sigma_{n+3}))$ is surjective. Note that $e(Y_n) = e(H(n^2)) + e((15n + 1)Q) + 60n = 75n^2 + 120n$ and $\sigma(Y_n) = \sigma(H(n^2)) + (15n + 1)\sigma(Q) = 25n^2$. \Box

Lemma 2.3. For each odd integer $n \ge 1$, there exists a simply connected irreducible symplectic 4-manifold $E(1)_K$ which contains a genus (n + 3) surface Σ_{n+3} of square n and $\pi_1(E(1)_K - \Sigma_{n+3}) = 1$.

Proof. Let *K* be a torus fibered knot T(2, n+6) in S^3 . Then, performing 0-framed surgery on *K* and taking a product with S^1 , we get a fibration $M_K \times S^1 \to T$ with a genus (n+5)/2 surface $\Sigma'_{(n+5)/2}$ as a fiber and with a torus *T* as a section. Then we get a desired symplectic manifold $E(1)_K$ by taking a fiber sum along a torus *T* in E(1) and in $M_K \times S^1$. Note that $E(1)_K$ contains a symplectic genus (n+5)/2 surface $\Sigma_{(n+5)/2}$ of square -1, obtained by gluing $\Sigma'_{(n+5)/2}$ and a 2-sphere *S* which is a section of E(1), and also contains a symplectic torus *T* of square 0 which intersects $\Sigma_{(n+5)/2}$ transversely at a point. Hence, by symplectically resolving (n+1)/2 intersection points repeatedly, we get a symplectic genus (n+3) surface Σ_{n+3} whose square is $[\Sigma_{(n+5)/2} + \frac{(n+1)}{2}T]^2 = n$. Note that $\pi_1(E(1)_K - \Sigma_{n+3}) = 1$ follows from the Van-Kampen theorem using the fact that the meridian of a tubular neighborhood $\nu(\Sigma_{n+3})$ of Σ_{n+3} collapses in $E(1) - \nu(T \cup S) \subset$ $E(1)_K - \nu(\Sigma_{n+3})$. \Box

Proposition 2.1. For each odd integer $n \ge 1$ and $10 \le k \le 18$, there exists a simply connected, nonspin, irreducible symplectic 4-manifold $Z_{n,k}$ containing a symplectic genus 2 surface Σ_2 of square 0 and a torus T of square 0, disjoint from Σ_2 , in a fishtail neighborhood which satisfies $\pi_1(Z_{n,k} - \Sigma_2) = \pi_1(Z_{n,k} - T) = 1$. Furthermore, it has $\chi(Z_{n,k}) = 25n^2 + 31n + 5$ and $\mathbf{c}(Z_{n,k}) = 225n^2 + 248n + 35 - k$.

Proof. First, in order to construct desired manifolds, take a symplectic fiber sum along a genus (n + 3) surface Σ_{n+3} of the opposite square $\pm n$ in Y_n and in $E(1)_K$ (Lemmas 2.2 and 2.3). After then, taking a symplectic fiber sum again along a torus T of square 0 in $Q \subset Y_n$ and in $X_{3,k}$, we get a desired irreducible symplectic 4-manifold

$$Z_{n,k} := E(1)_K \sharp_{\Sigma_{n+3}} Y_n \sharp_T X_{3,k}.$$

Note that the simple connectivity of $Z_{n,k}$ follows from Lemmas 2.2 and 2.3:

$$\pi_1 (E(1)_K \sharp_{\Sigma_{n+3}} Y_n)$$

$$= \pi_1 ((E(1)_K) - \nu(\Sigma_{n+3})) * \pi_1 (Y_n - \nu(\Sigma_{n+3})) / \langle \pi_1 (\partial \nu(\Sigma_{n+3})) \rangle$$

$$\cong \pi_1 (Y_n - \nu(\Sigma_{n+3})) / \langle \pi_1 (\partial \nu(\Sigma_{n+3})) \rangle$$

$$\cong 1.$$

An easy computation shows that $e(Z_{n,k}) = e(E(1)_K) + e(Y_n) + 4(n+2) + e(X_{3,k}) = 75n^2 + 124n + k + 25$ and $\sigma(Z_{n,k}) = \sigma(E(1)_K) + \sigma(Y_n) + \sigma(X_{3,k}) = 25n^2 - k - 5$. Hence it has $\chi(Z_{n,k}) = 25n^2 + 31n + 5$ and $\mathbf{c}(Z_{n,k}) = 225n^2 + 248n + 35 - k$. Furthermore since Σ_{n+3} is not characteristic in $H_2(E(1)_K : \mathbb{Z})$, $E(1)_K - \Sigma_{n+3}$ cannot be spin, so that $Z_{n,k}$ is nonspin. The other properties of $Z_{n,k}$ in Proposition 2.1 above follow from the fact that $X_{3,k}$ has the same properties described in Lemma 2.1. \Box

Theorem 2.6. There is an increasing sequence $\{m_i\}$ with $m_i \rightarrow 9$ such that every simply connected, closed, nonspin, irreducible, smooth 4-manifold satisfying $0 \leq \mathbf{c} \leq m_i \chi$ and $b_2^+ \geq C_i$ odd (C_i is a constant depending on m_i) admits infinitely many, both symplectic and non-symplectic, exotic smooth structures.

Proof. For each odd integer $i \ge 1$, define two numbers m_i and C_i by

$$\begin{cases} m_i := \frac{\mathbf{c}(Z_{i,10} \sharp_{\Sigma_2}(112.5i + 173.5)Q)}{\chi(Z_{i,10} \sharp_{\Sigma_2}(112.5i + 173.5)Q)} = \frac{225i^2 + 1148i + 1413}{25i^2 + 143.5i + 178.5}, \\ C_i := 50i^2 + 287i + 356. \end{cases}$$

Then $\{m_i\}$ is an increasing sequence converging to 9 and any lattice point (χ, \mathbf{c}) satisfying $8\chi < \mathbf{c} \leq m_i \chi$ and $\chi \geq (C_i + 1)/2$ (equivalently, $b_2^+ \geq C_i$) is realized as (χ, c_1^2) of a simply connected, closed, nonspin, irreducible, symplectic 4-manifold

$$Z_{n,k} \sharp_{\Sigma_2} l Q \sharp_T E(l')$$

for some integers n, k, l and l'. The fact that $Z_{n,k} \sharp_{\Sigma_2} l \mathcal{Q} \sharp_T \mathcal{E}(l')$ admits infinitely many, both symplectic and non-symplectic, exotic smooth structures follows from Theorem 2.3 by using a regular torus lying in a cusp neighborhood in $\mathcal{E}(l')$ (or $X_{3,k} \subset Z_{n,k}$) and using an infinite family of fibered and non-fibered knots in S^3 . Hence we are done by combining this result with Theorem 2.5. \Box

Acknowledgement

The author would like to thank a referee for pointing out some errors in the earlier version of this paper. He also suggested the correct proofs in several places to the author.

References

- [1] R. Fintushel, R. Stern, Knots, links and 4-manifolds, Invent. Math. 134 (1998) 363-400.
- [2] R. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142 (1995) 527-595.
- [3] R. Gompf, A. Stipsicz, 4-Manifolds and Kirby Calculus, in: Graduate Stud. in Math., Vol. 20, American Mathematical Society, Providence, RI, 1999.
- [4] J. McCarthy, J. Wolfson, Symplectic normal connect sum, Topology 33 (1994) 729-764.
- [5] B. Park, Constructing infinitely many smooth structures on $3\mathbb{C}P^2 \ddagger n\overline{\mathbb{C}P}^2$, Math. Ann. 322 (2002) 267–278.
- [6] J. Park, The geography of irreducible 4-manifolds, Proc. Amer. Math. Soc. 126 (1998) 2493–2503.
- [7] J. Park, The geography of spin symplectic 4-manifolds, Math. Z. 240 (2002) 405-421.
- [8] J. Park, Exotic smooth structures on 4-manifolds, Forum Math. 14 (2002) 915-929.
- [9] A. Stipsicz, A note on the geography of symplectic manifolds, Turkish J. Math. 20 (1996) 135-139.
- [10] A. Stipsicz, Simply connected symplectic 4-manifolds with positive signature, Turkish J. Math. 23 (1999) 145–150.
- [11] M. Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998) 505-518.