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Abstract 

We discuss several applications of Seiberg-Witten theory in conjunction with an embedding 
theorem (proved elsewhere) for complex 2-dimensional Stein manifolds with boundary. We show 
that a closed, real 2-dimensional surface smoothly embedded in the interior of such a manifold 
satisfies an adjunction inequality, regardless of the sign of its self-intersection. This inequality gives 
constraints on the minimum genus of a smooth surface representing a given 2-homology class. We 
also discuss consequences for the contact structures existing on the boundaries of these Stein 
manifolds. We prove a slice version of the Bennequin-Eliashberg inequality for holomorphically 
tillable contact structures, and we show that there exist families of homology 3-spheres with 
arbitrarily large numbers of homotopic, nonisomorphic tight contact structures. Another result we 
mention is that the canonical class of a complex 2-dimensional Stein manifold with boundary is 
invariant under self-diffeomorphisms fixing the boundary. © 1998 Published by Elsevier Science 
B.V. All rights reserved. 
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I.  Introduct ion 

Contact structures are the odd-dimensional analogue of symplectic structures. A contact 

structure on a smooth 3-dimensional manifold M is a distribution ~ of tangent 2-planes 

locally defined as the kernel of a 1-form c~ such that c~ A dc~ is nowhere vanishing. 

For such a contact  f o r m  c~, c~ A dc~ defines an orientation on M and this orientation 

is independent of the choice of c~. If M is already oriented and c~ A dc~ is a positive 

multiple of the volume form, then ( is called positive, otherwise it is called negative. 
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is orientable as a vector bundle if and only if c~ can be chosen to be a global 1-form. 

In this article we will only consider orientable contact structures. To find out more about 

contact structures, the interested reader should consult [ 1,9,12]. 

Any smooth hypersurface M c X in a smooth 4-manifold with an almost complex 

structure J : T X  --~ T X  has a canonically induced orientable distribution of tangent 

2-planes ~ : T M  A J ( T M ) .  When M is the level set of  a strictly J -convex  function 

(i.e., a function which is strictly subharmonic when restricted to J-holomorphic  discs) 

this distribution is a contact structure. 

A Stein 4-manifold with boundary is a triple (W, J, qS), where 
(i) W is a smooth 4-manifold with boundary, 

(ii) J is a complex structure on W such that (Int(W),  J )  is Stein, i.e., a complex 

manifold biholomorphic to a complex submanifold of  C n, and 

(iii) ~b: W --* 1~ is a Morse function with ~bl0w constant, and such that q~ is strictly 

J-convex.  

If  we denote by J the multiplication by x /Z ]  - in T W  and by J* its dual, the 2-form 
~ ,  = d J*  d~b defined by the J -convex  function ~b is nondegenerate and closed, hence 

defines a symplectic structure on W. The metric 9¢ given by gc~(v,v') = a:¢(v, J v  ~) 

defines a Kahler structure on W. 
The simplest example of  a Stein 4-manifold with boundary is the unit ball B 4 C C 2 

with the restriction of the standard complex structure o n  C 2 and the standard J -convex  

function q~ -- log(1 + Y'~i Izi]2) • Any sublevel set q5 ~< c of  a strictly J -convex  function q~ 

on a Stein manifold is a Stein manifold with boundary. In Section 3 we will describe a 
procedure due to Eliashberg for producing Stein structures on 4-manifolds with boundary 

having a handlebody decomposition with only 1- and 2-handles. 
In this paper we will illustrate several applications of  the following embedding theorem 

when combined with results from Seiberg-Witten theory: 

Theorem 1.1 [21, Corollary 3.3]. Let (W~ J, 4) be a Stein 4-manifold with boundary. 

Then, there exists a minimal complex surface X of  general type with b + > 1 and: 

(1) a holomorphic embedding of  W as a domain inside X ,  

(2) a Kahler form ~ x  on X such that w x I w  = ~ .  

We will divide the applications of  this theorem into two groups. In Sections 2 and 3 
we will talk about applications to the topology of Stein 4-manifolds with boundary and 

their boundary contact structures coming from the first part of  the statement. In Section 4 
we will briefly describe results following from the second part of  the theorem. 

2. First applications 

Let us recall a few results from Seiberg-Witten theory. 
For a smooth closed 4-manifold X with b+(X) > 1 the Seiberg-Witten monopole 

equations [24,25,28] give rise to invariants of  differentiable structures. The Seiberg- 
Witten invariant of X is a map SW from the set of  Spine-structures on X to the integers 
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(see [28,16,27,1 1,22])which takes nonzero values at only finitely many Spin<structures. 
A determinant line bundle is associated to each Spin<structure. The first Chern classes of 

the determinant line bundles associated to the Spin<structures for which SW is nonzero 

are called Seiberg-Winen basic classes (by analogy to the cohomology classes introduced 

by Kronheimer and Mrowka in [15]). The set SWB(X) of basic classes of X is a finite 
subset of H 2 ( X )  and it is a differentiable invariant of X. It is a simple fact that when/3 

is basic than so is - /3 .  Witten [28] showed that this set contains the canonical class in 

the case of a K~ihler surface. Taubes proved [26] the same to be the case for symplectic 

4-manifolds. For minimal K~ihler surfaces of general type a more precise result holds. In 

this case there are only two Spin<structures with nontrivial Seiberg-Witten invariants, 
i.e., those canonically associated to the complex structure and its conjugate, hence the 

set of basic classes consists of plus or minus the canonical class. 

Seiberg-Witten basic classes satisfy the following adjunction inequality [16,23]: for 

K ~ SWB(X) and a smoothly embedded surface of positive genus S ~-+ X with 

S . S ~ > 0 ,  

IK .  E I + S .  S ~< 2.9(2 ) - 2. (1) 

The first half of Theorem 1.1, i.e., the existence of a holomorphic embedding of a 

Stein 4-manifold with boundary into a minimal Kahler surface of general type, has the 

following two immediate applications when coupled with results from Seiberg-Witten 
theory. 

Proposition 2.1. Let W be a Stein 4-manifold with boundary. Given a smoothly em- 

bedded oriented surface o f  positive genus E c IV with self-intersection S .  S >~ O, 

then 

I<c  ( w ) ,  + r .  2g( ) - 2. 

Proof. Obvious from the first part of Theorem 1.1, using (1). [] 

Proposition 2.2. Let W be a Stein 4-manifold with boundary. Then, W does not con- 

tain nontrivial spheres with self-intersection greater than - 2  smoothly embedded in its 

interior, and if  S ~+ W is a smoothly embedded sphere with self-intersection - 2 ,  then 
cl ( W ) .  S = O. 

Proof. We will sketch below that, given a homologically nontrivial 2-sphere S embedded 
in the interior of W, W embeds inside a minimal Kfihler surface of general type X in 

such a way that the homology class supported by the sphere S is of infinite order in X. 
The conclusion will then be an immediate consequence of a well-known argument for X. 

Any homologically nontrivial 2-sphere S smoothly embedded in the interior of W 
has to intersect algebraically nontrivially at least one of the co-cores of the 2-handles. 
We can enlarge W by attaching a 2-handle to a Legendrianization of the boundary of 
such a co-core and then apply the embedding theorem to this enlargement to construct 

X. Hence, W can be embedded in an X containing a smooth 2-sphere S '  satisfying 
S • S'  # 0, which shows that S is of infinite order in X. 
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It is a well-known fact following from either Donaldson or Seiberg-Witten theory (see, 
for example, [18]) that an algebraic surface with b + > 1 has no embedded spheres with 

nonnegative self-intersection (representing a class of infinite order in H2(X,  Z)). 

We will concentrate on the cases of ( - 1 ) -  and (-2)-spheres. Since the set of basic 
classes is a diffeomorphism invariant and for a surface of general type the only Seiberg- 

Witten basic classes are ± I f  x ,  any self-diffeomorphism of X must preserve K x  up to 

sign. 
If  S is either a ( - 1 ) -  or a (-2)-sphere in X,  the reflection r s  in H 2 ( X ; Z )  with 

respect to the Poincar6 dual of S can be realized by a diffeomorphism (see, e.g., [10, 

Proposition 2.4]). Therefore 

r s ( K x )  =Kx + 2 (Kx.--S-S) S 

has to be equal to either I f x  or - K x .  In the first case, K x  • S = 0, which is possible 
only if S .  S -- - 2 ,  because K x  is characteristic. In the second case, K x  would be 

a rational multiple of S, which is impossible because for X minimal of general type 

I f x  • I f x  > 0, and S has negative square. [] 

Recall that a knot I f  C M inside a contact 3-manifold M is called Legendrian if I f  
is everywhere tangent to the contact 2-plane distribution. Given a Legendrian knot K 

inside the boundary of a Stein 4-manifold with boundary, and given any nonvanishing 

tangent vector field tK on If ,  J tK  determines a framing of I f  which we will call the 

canonical framing. 

Theorem 2.3 (Eliashberg [6]; [8, Theorem 6.1]). Let W be a Stein 4-manifold with 

boundary. Suppose K C OW is a Legendrian knot. Then, the smooth 4-manifold W '  

obtained by attaching a 2-handle to W along I f  with framing - 1 with respect to the 

canonical contact framing of  I f  has a Stein structure which extends the Stein structure 

on  W .  

Applying this theorem when W = /3 4 C C 2 o n e  easily sees, for example, that the 

4-manifolds with boundary described by the framed links of Fig. 1 have Stein structures. 

Notice that this fact is not at all clear a priori: in order to check that Theorem 2.3 applies 

one has to show that the links of Fig. 1 can be isotoped to links which are Legendrian 

-1 

Fig. 1. 
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with respect to the standard contact structure in 5 ,3 and whose canonical framings are 

one unit bigger than their prescribed framings (see, e.g., [ 1 3,20,2 1 ]). 

The restriction of  the standard contact structure on S 3 = OB 4 C C 2 to the complement 

of  a point is isomorphic to the contact structure on •3 defined by the 1-form c~ - 

x dy + dz. A Legendrian link in IK 3 ~ $ 3 \  {point} can be represented by its front,  namely 

its projection to the yz-plane in ]K 3. For a generic Legendrian knot this projection has 

no vertical tangent lines and it has finitely many singularities which are either ordinary 

double points or horizontal cusps. At the double point the over-arc is always the one with 

the smaller slope. It is always possible to reconstruct from a front the unique Legendrian 

link projecting to it. 

Given a front projection of  an oriented Legendrian knot in S 3, the canonical framing 

determined by the standard contact structure is easily calculated. Since all knots K in 

S 3 are nullhomologous, there is a one-to-one correspondence between their framings and 

the integers obtained by associating to each framing of K the linking number of K with 

the push-off determined by the framing. Under this identification the canonical framing 

corresponds to the Thurs ton-Bennequin  invariant tb(K),  an invariant of  the Legendrian 

isotopy class o f / ( .  tb( /()  can be calculated from a generic projection 79 in the following 

way. Let w denote the writhe o f / £ ,  namely the algebraic number of  self-crossings of  79. 

Let c denote the number of  cusps. Then, tb(ff)  = ~v -- e/2. There is another invariant 

of  Legendrian isotopy that one can easily compute from a front projection, called the 

rotation number.  If we denote by a the number of ascending cusps and d the number of 

descending cusps it is expressed as r ( K )  = (d - a ) /2 .  Fig. 2 illustrates the front of  a 

Legendrian right-handed trefoil, and tb and r are calculated, showing that the manifold 

obtained by adding a 2-handle to a 4-ball along a trefoil with zero framing carries a 

structure of  a Stein 4-manifold with boundary. It is an easy exercise to check that the 

same is true for the other examples in Fig. 1. 

While Theorem 2.3 guarantees, under certain circumstances, the existence of Stein 

structures on 4-manifolds with boundary, Propositions 2.1 and 2.2 may sometimes be 

used to exclude the existence of  such structures. 

For example, the 4-manifolds of  Fig. 3 do not admit Stein structures with boundary, 

the manifold on the left because it contains a ( - l ) - sphere ,  the manifold on the right 

because it contains a (+l)- torus.  

~ ~ t b = W  = 3 c = 4  
d = 2  

1 

+ 

Fig. 2. 
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Fig. 3. 

Adjunction-like inequalities as (1) give lower bounds for the minimum genus of a 
smooth representative of a given 2-homology class in a 4-manifold. However, (1) only 

applies to classes of nonnegative self-intersection. 

The following theorem establishes an adjunction inequality for surfaces with possibly 
negative self-intersection (including the case of genus zero) embedded in the interior of 

Stein 4-manifolds with boundary. 

Theorem 2.4. Let W be a Stein 4-manifold with boundary, and S ~ Int(W) a smoothly 

embedded surface. Then, 

Proof. It is not difficult to see that, inside any 3-ball contained in the standard contact 
3-sphere S 3 c C 2 one can find a Legendrian (p, 2)-torus knot K(podd)  with tb(K) = 

p - 2, r ( K )  = 0 (see, e.g., [13,20,21]). Moreover, by the Darboux theorem for contact 

structures any point p E a W  is contained inside a contact 3-ball B contactomorphic to 
a 3-ball in S 3. Thus, inside B there is a copy of K.  Attaching a 2-handle along K with 

framing p - 3 gives a Stein manifold W;. Moreover, it is not difficult to see, by looking 

at the construction used in the proof of Theorem 2.3, that (c, (W') ,  FK)  = r ( K )  = O, 

where FK is the surface formed as the union of a Seifert surface for K and the core of 

the 2-handle. It is easy to check that g(Ft¢) = (p - 1)/2 and FK • FK = p - 3, thus 
Proposition 2.1 applied (for p large enough) to the piping Z;  of S and FK gives 

I ( c , ( W ; ) , ~ ' ) l  + ~ .  S + p -  3 ~ 2(9(Z)  + ( p -  1)/2) - 2, 

thus proving the statement, since (cl(W') ,  S;)  = (el(W;), ( S + F K ) )  = (el(W), S) .  [] 

As an application of this theorem consider the following example: one can check that 
Theorem 2.3 applies to the manifold W described in Fig. 4, showing that W has a Stein 
structure with boundary J .  The boundary of W is a homology-sphere, and the Poincar6 
dual of O (W, J )  E H2(W; Z) ~ H2(W,  ~W;  Z) is 4T, where T is the 2-homology 
class generated by the 2-handle attached along the trefoil. Let S be the homology class 
corresponding to the unknot, and consider x = (3a - 1)T + aS,  with a a nonnegative 
integer. Then, X 2 ~ -  - 2 a ,  and applying Theorem 2.4 one sees that the smallest genus of 
a smoothly embedded, oriented surface representing x is at least a. 
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Fig. 4. 
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3. A slice Bennequin-Eliashberg inequality 

Let (M, 4) be a contact 3-manifold. On a generically embedded surface S c M, 

induces a foliation S~ with isolated singularities at the points where S is tangent to 4. 

S~ is called the characteristic foliation. A contact structure is called overtwisted if there 

exists an embedded disc D c M such that its characteristic foliation contains a closed 
orbit with exactly one critical point inside. Otherwise, the contact structure is called tight. 
Bennequin proved that the contact structure induced on S 3 considered as OB 4 c C 2 is 

tight [4]. More generally, it was shown by Gromov and Eliashberg [7,14] that the contact 
structure induced on the boundary of any Stein manifold (actually on any level set of a 

strictly J-convex function) is tight. 

Let W be a Stein 4-manifold with boundary, and F ~-~ W a smoothly embedded 
oriented surface transversal to ~W with K = 0F  C 0W connected and Legendrian. 

Let ~¢ be the vector field tangent to the oriented knot K.  Let ~ be the tight contact 
structure induced on ~W and u~; E F ( T O W I K  ) the positively oriented normal to the 

contact structure restricted to K.  We will now generalize to Legendrian knots in W the 
definitions of the Thurston-Bennequin invariant tb(K) and the rotation number r (K)  

which we had introduced earlier for Legendrian knots in 5:3. 

Definition 3.1. Define tbF (K) E Z as the obstruction to extending UK tO a nonvanishing 
section of the normal bundle of F in W, and rF (K) E Z as the obstruction to extending 

{tK, UK} to a complex framing of T W I F .  

Remark 3.2. The definitions of tbF and rF depend only on the relative homology class 
[(F. OF)] ~ H2(W, ~W; Z) 

Lemma 3.3. Let WK be the Stein 4-manifold with boundary obtained by attaching to 

W a 2-handle along K with framing one less than the one prescribed by the contact 
structure on the boundary of W. Let S be the closed surface obtained by joining F to 
the core of the 2-handle. Then, 

[ (c l (Wf f ) ,Z)[  + $2 ~< 29(Z) - 2. 
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. 4 .  

e L I " K 

. .  

Fig. 5. 

Proof. Consider a standard contact 3-ball B 3 centered at a point of K.  There is a 0- 
framed Legendrian right-handed trefoil knot T C B 3, geometrically linked once with K,  

having tb(T) = 1 and r(T)  = 0 (Fig. 5). 

Endow K with the contact framing. Consider the Legendrian framed link L which is 
the union of T and K.  Let WL be the Stein manifold with boundary obtained by gluing 2- 

handle to WK along the Legendrian knot T according to Theorem 2.3. Let T E H2(WL) 
be the class supported by a genus-one Seifert surface for T (slightly pushed into the 

interior of the 4-ball) union the core of the attaching 2-handle. Then, as in the proof of 
Theorem 2.4, we have (ej (Ws),  T) = r(T)  = 0. Observe that n T + S  has square ~ 2 + 2 n  

and can be represented by a smoothly embedded surface of genus 9 (Z)  -7 n. Hence, 

for n sufficiently large Proposition 2.1 applies, giving (Cl (WL), n T  + Z)  + $2 + 2n ~< 

29(Z ) - 2 + 2 n .  Since the restriction of el (Wr)  to WK is ct (WK),  the result follows• [] 

Theorem 3.4. Let W be a Stein 4-manifold with boundary and F ~ W a smoothly 

embedded oriented surface transversal to OW with l (  = aF C OW Legendrian. Then, 

[rF(K)I + tbF(K)  ~< 29(F) - 1. (2) 

Proof. Let Wr be the Stein manifold with boundary constructed in the proof of the 

theorem, and let Z7 be the union of F and the core of the 2-handle attached along K.  

It suffices to observe that by construction and the definitions of tbF (K) and rF (K), we 
have tbF(K)  = ~2 -7 1 and r F ( K )  = (cl (WE), ~ ) ,  and then to apply the theorem. [] 

Remark 3.5. One can define invariants tbF(K)  and r r ( K )  (the classical Thurston and 
rotation number invariants) in a similar way, for a surface F with Legendrian boundary 
embedded in a contact 3-manifold M. In this context, the inequality (2) has been proved 
by Bennequin for M = S 3 with its standard contact structure [4] and then by Eliashberg 
for a general M with a tight contact structure [8]. Theorem 3.4 is a "slice" extension 
of this result to the contact structures occurring on the boundaries of Stein 4-manifolds. 
A proof of this statement for the potentially more general case of symplectically semi- 
tillable contact structures has been recently announced by Kronheimer and Mrowka. 
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An important result due to Eliashberg [5] is that the classification up to isotopy of 

overtwisted contact structures on closed 3-manifolds coincides with their homotopy clas- 
sification as 2-plane fields. On the other hand, the classification of tight contact structures 

is far from understood. In this respect, the following is a nice application of (2). 

Example 3.6 (Akbulut-Matveev [3]). Using [13] one can show that the Mazur 's  con- 

tractible 4-manifold W studied in [2] has a Stein structure with boundary, and that there 

is a Legendrian knot K C 0 W  with tb (K)  = 0 which is sent to a slice knot by a 

self-diffeomorphism f : O W  --+ OW. It follows that if ~ is the tight contact structure 

on Ol,l,5 .f* (~) is not isotopic to ~ (although it is homotopic to it, as well as obviously 

isomorphic). In fact, if f*  (~) was isotopic to ~, we would have 

0 = tb~ (K)  = tbf .  <~)(/~), 

w h e r e / ~  is the knot obtained by pulling back K via the isotopy. Hence 

tby.(~)(/~) : tb~ ( f ( K ) )  ~< - 1 ,  

where the equality is clear, while the inequality follows from (2). 

4. Automorphisms of Stein 4-manifolds with boundary 

As we mentioned in the previous section, the classification of overtwisted contact 

structures up to isotopy can be reduced to a homotopy problem. It is natural to wonder 

whether one can say something about the set of  isotopy classes of  tight contact structures 
induced on the boundary of a given smooth 4-manifold W by the various Stein structures 

on W. The following theorem, which deals with this question, is a consequence of the 
full strength of Theorem 1.1 (i.e., both parts of  the statement) together with basic results 
from Seiberg-Witten theory. 

Theorem 4.1 [21, Theorem 1.2]) Let W be a smooth 4-manifold with boundao,. Sup- 

pose (V~ ~, J l ,  4>1), (W, J2, q$2) are two Stein structures with boundary on W,  with asso- 

ciated Spin%structures 6)1 and 02. I f  the induced contact structures ~i and ~2 on OW 

are isotopic, then Ol and 6)2 are isomorphic (and in particular have the same cl ). 

Proof.  We briefly sketch the proof of this result for the benefit of  the reader. By The- 
orem 1.1, there is a minimal Kfihler surface of general type X with b+(X)  > 1, and a 
holomorphic embedding of (W. ,]l ) as a domain inside X,  such that the Kfihler form ~ x  

restricts to ~e, on W. By hypothesis, there is a diffeomorphism f : OW --~ 0 W  isotopic 

to the identity such that f . (~ l )  = ~2. This fact and x-convexi ty  enable us to build a 

new symplectic manifold X '  = W Uf (X \ W)  by gluing the two symplectic manifolds 
(W. c~2 ) and (X \ W, - Jx )  via a symplectomorphism between two collars around their 
boundaries which extends f (in a proper sense, see [21. Lemma 4.1]). Since f is isotopic 

i Another proof of this theorem has recently appeared in [17]. 
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to the identity, there is a diffeomorphism ~ : X --~ X '  which is the identity on the com- 
plement of a collar around OW. Recall that a symplectic structure determines a unique 
homotopy class of compatible almost complex structures. Moreover, to any almost com- 
plex structure J one can associate a canonical Spine-structure, whose isomorphism class 
only depends on the homotopy class of J. Using the minimality of X, and following 
the argument in [21], one can conclude that ~ pulls back the SpinC-structure associ- 
ated to the symplectic structure on X '  to the Spine-structure associated to the complex 
structure on X. Hence, restricting to W, and denoting by 691 and 692, respectively the 
Spin%structures associated to J1 and J2 on W, this argument shows that 692 = 691. [] 

An immediate corollary of Theorem 4.1 is the following. 

Corollary 4.2. Let W be a smooth 4-manifold with boundary. Let (J~, cp~) and (J2, q~2) 
be two Stein structures with boundary on W and let El and ~2 be the corresponding 

contact structures induced on OW. Let F : W ~ W be a self-diffeomorphism whose 

restriction to OW sends El onto a contact structure isotopic to ~2. Then, F*(J2)  is 

homotopic to J1 as an almost complex structure. In particular, i f  E1 and ~2 are isotopic, 

then Jl and J2 are homotopic as almost complex structures. 

Proof. Let O1 and 692 be, respectively the Spine-structures associated to Jj and J2. 
Applying Theorem 4.1 to F*(J2)  and Ji we see that F*(692) = 691. Since H3(W; Z) = 
H4(W;~) = 0, a simple argument using obstruction theory shows that on W there is 
a one-to-one correspondence between almost complex structures up to homotopy and 
Spine-structures up to isomorphism [19]. This correspondence is given by sending an 
almost complex structure J to the isomorphism class of the induced Spine-structure 69j. 

Since F*(692) is the Spin~-structure associated to F*(J2),  the statement follows. [] 

Another immediate corollary of Theorem 4.1 is the following analogue, in the Stein 
world, of the C°~-invariance of the canonical class for algebraic surfaces. 

Corollary 4.3. Let W be a Stein 4-manifold with boundary. Then, el ( W )  is invariant 

under self-diffeomorphisms of  W fixing the boundary. 

To illustrate the possible applications of Theorem 4.1, let us consider the following ex- 
ample. Let W be the 4-manifold with boundary described by the framed link presentation 
of Fig. 6 (p and q coprime). 

. . .  ~ 0  

Fig. 6. 
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The boundary of W is orientation-reversing diffeomorphic to the Seifert fibered 

Brieskorn homology sphere S ( p , q , p q T ~ -  1) (which is naturally oriented as the link 

of the corresponding singularity). Let F and S denote the Poincar6 duals of the homol- 

ogy classes determined by the (p, q)-torus knot and the unknot, respectively. On W there 

are Stein structures with boundary whose first Chern classes are of  the form cl (W)  = 

( s + r r t ) F + r S ,  w h e r e  Isl <~ 7~-2, s - n m o d 2 ,  I~1 ~< ( p - 1 ) ( q - l ) - 2 ,  7" -= 0rood2 .  As 

shown in [21], the contact structures induced on the boundary of these Stein 4-manifolds 

are homotopic exactly when the numbers cl (W)  2 = 2 r s  + 7~.r 2 are equal. Thus, fixing 

the quantity 27's + n r  2 letting r and s vary and applying Theorem 4.1 we obtain (finite) 

families of  homotopic,  nonisotopic tight contact structures on i~W. Moreover, by letting 

p, q and 7~ vary, such families become arbitrarily large. 
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