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Abstract

We shall investigate conformally flat Lorentz hypersurfaces in indefinite space forms. Some
particular classes of such hypersurfaces are explicitly described and classified.
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1. Introduction

Recall that a pseudo-Riemannian manif@M, g) is said to be conformally flat if each
x € M belongs to a neighborhodd C M such that, for certair € C*°(U), the sub-
manifold (U, € g) is flat. Nonflat conformally flat Riemannian hypersurfaces in Euclidean
spaces” 1 n > 4, had been firstly investigated by Carfah who showed that the second
fundamental form of those hypersurfaces admits at each point an eigenvalue of multiplicity
> n — 1. Conformally flat Riemannian hypersurfaces in positive definite space forms had
been extensively studied by Chen (&f), and classified by Do Carmo et al. in the compact
case (cf[6]).

In this paper, we deal with conformally flat Lorentz hypersurfaces of dimensiord
in indefinite space form#/"+1(¢), i.e., complete simply connected and connedied-
1)-dimensional Lorentz manifolds of constant curvaturia caseV”1(¢) = Rﬁ”,n >4,
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alocal classification of these hypersurfaces was obtained by Van de Woestijne and Verstrae-
len (sed19, Theorem 2] They claimed that, if the induced metric on a Lorentz hypersurface
M" C Rﬁ*l is conformally flat, then it can be described as follows. Locally}, is either
congruent to a part of a hypercylinder, a Lorentz hypersphere, a generalized cylinder, or a
generalized umbilical hypersurface; or elgé is foliated by(n — 1)-dimensional Euclidean

or Lorentzian hyperspheres, paraboloids, or hyperbolic spaces. Those hypersurfaces which
are foliated by paraboloids or hyperbolic spaces would consist only of what we will call
“bad points”. However, it should be remarked that while Theorem[28hmay be correct,

its proof do not seem to be clear (one should actually provide evidence of the argument used
in that paper and which consists in the fact that if the shape opetatiees a certain form
atapointc € M", then the same form still holds in a neighborhood ahd the eigenvalues

of A have constant multiplicities in that neighborhood).

The paper is organized as follow&ection Zontains the basic facts about general hyper-
surfaces in space forms. It also contains notation and formulas we will be &&ntjon 3
contains a classification result for shape operators of conformally flat Lorentz hypersurfaces
in space formsSection 4presents the standard examples of Lorentz hypersurfaces which
will serve as models in our classificatiddection 5s the main section, it contains various
results on conformally flat Lorentz hypersurfaces in indefinite space forms in general. For
instance, those hypersurfaces in Minkowski space which we gatid hypersurfacésre
explicitly described and classified.

2. Preliminaries
2.1. Lorentz symmetric endomorphisms

Let V be a vector space ov& endowed with a nondegenerate inner produgtAn en-
domorphismA € End(V) is said to be symmetric with respect(tg (or briefly, symmetric)
if it satisfies(AX, Y) = (X, AY) forall X, Y € V.

Unlike the positive definite case, it is well known that a symmetric endomorphisidn
a an indefinite vector spac®, (, )) fails in general to be diagonalizable.

In case|, ) is Lorentzian, symmetric endomorphisms are classified by the following result
which may be found ifi16, pp. 261-262]or [16].

Proposition 2.1. Let V be ann-dimensional vector space endowed with a Lorentz inner
product(, ), and letA be a symmetric endomorphism(@f (, )). If D; denotes the diag-

onal matrixdiag{A1, . . ., A}, then relative to a chosen basid has one of the following
forms:
0] A =Dy,
a b 0
(i) A=\ -b a ,  with b #£0,
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uw 0 0
(iii) A=11 pu ,
0 D, >
"
. 0 0 0
v) A= g ,
0 -1
0 Dn—3
where in cases(i) and (i), A is represented relative to an orthonormal basis
{e1, ..., ey}, with nonzero productser,e1) = —1,and {¢;,e;) = 12 < i <
n. In cases(iii) and {v), A is represented relative to a pseudo-orthonormal basis
{u, v, e1, ..., e,—2}, with nonzero products-(u, v) = (e;,¢;) = 1forl <i<n-—2.

2.2. Basic formulas for hypersurfaces

Let M"*t1(¢) be an(n + 1)-dimensional Lorentz space form, i.e., a complete simply
connected and connectéd + 1)-dimensional Lorentz manifold of constant curvatire
A hypersurfacel” in M"+1(¢) is said to be Lorentzian if the tangent spat@/” at each
x € M" inherits a Lorentz metric from"+1(¢).

Throughout this paper we shall assume 4, and if M" is ann-dimensional connected
Lorentz manifold which is isometrically immersed " +1(¢), we shall denote by the
isometricimmersiorf : M" — M"*+1() representings” in M"T1(%). Inthat casef(M™)
is a Lorentz hypersurface which we will simply denoteMy}. If M” andN" are Lorentz
hypersurfaces i/"*+1(¢), we say that” andN" arecongruentf there is an isometry
of M™*1(¢) such thatp(M") = N". We shall also denote by ) both the Lorentz metrics
with the same signature-, +, - - - , +) on the hypersurfac#&” and M"*1(z). A tangent
vector toM” or to M"+1(¢) is said to be timelike, spacelike or null (lightlike)iX, X) < 0,
(X, X)>0or(X,X)=0.

Let& be a local spacelike unit normal field a#". For any vector fieldX andY tangent
to M", we have the Gauss and Weingarten formulas

VxY = fi(VxY) + h(X, )&, Vx&E = —fi(AX),

whereV andV denote the Levi-civita connexions é#" 1(¢) andM”, respectively, and

is the shape operator of the isometric immersion, i.e., a field of symmetric endomorphisms
which is related to the second fundamental fotnby 4(X,Y) = (AX Y). If R is the
curvature tensor a#/”, then the Gauss equation is given by

R(X,Y) = AXAAY+E(X A V),

whereX AY denotes the skew-symmetric endomorphism defingkbyY)Z = (Z, Y) X —
(Z, X)Y. The Coddazi's equation for hypersurfaces of spaces of constant curvature reduces
to

(VxA)Y = (VyA)X,
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or equivalently
A(X, YD) = X - (AY) — Y - (AX).
The Ricci tensor field oM” can be written (cf[11] or [17]) as
Ric(X, Y) = ¢(n — 1)(X, Y) + tr A(AX, Y) — (A%X, Y).
The Weyl curvature tensod/ is defined by
WX, Y, Z, W) =(RX, NZ, W) —¥(X, WY, Z) — (¥, Z)(X, W)
+Y (X, 2)(Y, W) + ¢ (Y, W)(X, Z),

wherey (X, Y) = (1/(n — 2)){Ric(X, Y) —r(X, Y)/2(n — 1)} (herer is the scalar curvature
of M™). Now, if we assume, in addition, that" is conformally flat ana > 4, thenW = 0,
and so the Gauss equation states that

(Y, Z)SX— (X, Z)SY+ ¥ (Y, Z)X — ¥(X, 2)Y
= (AY, Z)AX — (AX, Z)AY+ ¢c{(Y, Z)X — (X, Z)Y},

wheresS denotes the endomorphism defined by

Y lwmax—a?x s (eo—1- —" Vx
n—2{( AR +(C(”_)_zm—l)) }

Note thatyr andS satisfyy(X, ¥Y) = (SX Y).

For eachx € M", the subspac&(x) = {X € T\M"/A,X = 0} is called the relative
nullity space at. The index of relative nullity(x) atx is defined as the dimension of the
subspacép(x), while the rank of the shape operatdy is called the type numbeéi(x) of
M" atx. It follows that, for anyx € M", we havev(x) +k(x) = n (se€[7,8] and particularly
[1] for more details about relative nullity foliations).

SX=

3. Shape operators of conformally flat hypersurfaces

As we have mentioned iBection 1the shape operator of a conformally flat Riemannian
hypersurface in an Euclidean spaE&t! has at each point an eigenvalue of multiplicity
> n — 1. In [13], Moore classified the shape operators for conformally flat Riemannian
submanifolds in Euclidean spaces. A similar work has been done by Magid jrior
shape operators of a different class of submanifolds, namely, Einstein hypersurfaces of
indefinite space forms. The main purpose of the present section is to deal with the case
of conformally flat Lorentz hypersurfaces in indefinite space forms. Of course, there is
no direct adaptation of the proof given[ib3] since, as we have previously mentioned, a
Lorentz symmetric endomorphism fails to be everywhere diagonalizable. More precisely,
we obtain the following proposition.

Proposition 3.1. Letn > 4and letf : M" — M"t1(&) be an isometric immersion of a
conformally flat Lorentz manifold/” into M”+1(¢). Then at each pointt € M", relative
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to a chosen basis which will be precise through the pritef shape operatad , can be put
into one of the following two forms:

0 A 0 0
H 41 2
A
Ay = , or A,= A
0 A '
0 A

In either casethe index of relative nullity is eithed, 1, » — 1 orn.

This result has been proved[it8] for Lorentz hypersurfaces in Minkowski spaces, and
the proofs are essentially the same. Actually, only recently we have been informed of the
existence of that reference. Since some formulas in the proBfafosition 3.1will be
used later for the classification result, we shall give here the part of the proof that we will
be using.

3.1. Proof of Proposition 3.1

According toProposition 2.1we distinguish four cases, but since the proof is similar to
that when the ambient space is flat, we will only pré&®mposition 3.1n the case where
the shape operator takes form (iii)®foposition 2.1For a proof in the diagonalizable case
(i.e., case (i) oProposition 2.}, see for example the proof of Proposition E.118], or
the proof of Theorem 1 ifiL8]. The cases corresponding to forms (ii) and (iv) cannot occur
(cf.[19, Theorem 1)

Assume that the shape operatby has form (iii) of Proposition 2.1li.e., the charac-
teristic polynomial ofA, is of the form(r — )2 ]'[f’;lz(t — 1;). Relative to a real basis
{u, v, e1,...,e,—2} with all scalar products zero exceptiu, v) = (ej,e;) = 1,1 <i <
n — 2, the shape operator has the form (iii)Rrfoposition 2.1As before, lett = tr A, =
2u + Z;’z—f Ai, and let

o 1 2 - r _ 1 _
am gl ren-v- ol e e 2w,

Vv, =

1 2 -~
SAi — A +c(n—1) —
n—2

-
One computes that
Su= au + &pv, Sv = av, Se=ve, l<i<n-2
Now, Gauss’ equation applied80=u,Y =Z =vandtoX =u,Y = Z = ¢; gives
¢+ u? =20,
and

at+vi=puri+c¢, M=p8 1l<i<n-2
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respectively. In particular, we obtairy = --- = A,_». Let A be the common value of
(A)1<i<n—2 (note thatr is justB). On the other hand, the first two equations imply
2(n—2),u)»—(n—4),u2+n5= Ll’ (3.1)
n—
and
2 2 ~_ T
ne+ (n— 3)A +2u)»—|—nc——1, (3.2)
n—
respectively.

From(3.1) and (3.2)t follows that (n — 3)(x — A)2 = 0, and since: # 3 we get that
u = A. Hence, the shape operator has the second form indica@position 3.1 O

Remark 1. If A, is diagonalizable, and jf andA denote the principal curvatures, then the
following basic formula relating the scalar curvature with the length of the mean curvature
vector and the square of the norm of the second fundamental form follows immediately
from the Gauss equation:

r(x)

(n — 2)22(x) + 2()A(x) + né = — (3.3)
n—
Similarly, by takingu = A in (3.1) or (3.2), we obtain for a nondiagonalizablg, that
- (x)
A2 - Y 4
W+e="" (3.4)

4, Standard examples of hypersurfaces

In the Riemannian case, tikedimensional spher§” is the model of conformally flat
Riemannian manifolds, and it may be isometrically immersed in the Euclidean Bpate
with scalar shape operator, i.6% is totally umbilic.

In the indefinite case, the hyperquadrié (¢) are examples of conformally flat Lorentz
manifolds. IﬂR’;Jrl denotes the standard flat Lorentz space faR#™2, (,)), where(, ) is
given by

s n+1
(y) == xiyi+ Y xyi, forallx=(x1,....%11),y= L., Yutd),
i=1 i=s+1

then eachi?”(¢) might be realized as a totally umbilic hypersurfaceRrifi! for certain
s, so that the shape operator is scalar. In particularptdenensional Minkowski space
M"(0) = R} may in turn be realized as a totally geodesic hypersurfaMTrJr. We have
for ¢ > 0, the so-calledle Sitter space? (¢) which is defined as

S1@) = (x e R (x,x) =71,

and for¢ < 0 we have the universal covering of the so-cabei-de Sitter spaceéiy (¢)
which is defined as

H} @ = {x e RATE: (x,x) =71,
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For ease of notation, we write' (respectivelyH?) rather tharsy (¢) (respectivelyH7 (¢))
wheng is not given.

Notice that,M" (¢) can also be regarded as a totally geodesic conformally flat hyper-
surface inM"*+1(¢), and so the shape operator vanishes. We ref¢2 tpp. 181-185]
[16, pp. 108-114]and[21, pp. 67—68]for more details about hyperquadrics.

Notice also that the diagonalizable form for the shape operatérdposition 3.has the
two possible eigenvalugs andx, but for the examples above only one eigenvalue shows
up. So, we shall also provide examples with two distinct eigenvalues. In this setting, the
direct productﬂ%i x S"~1andE® x S’ll_1 are good examples of conformally flat Lorentz
hypersurfaces imﬁ” having diagonalizable shape operators wite- 0 andx # 0. Note
however that such products are not of Einstein type. Note also thatikl< n — 1, the
productR% x $"~* as well ase x §7~* fails to be conformally flat.

Examples of those hypersurfaces with® u # A # 0 may be given as the direct
productsS% x §"Landst x S{“l, which will later be treated as bad hypersurfaces.

4.1. Hypercylinders over plane curves

A hypercylinder inIRi'l“rl is defined by one of the following isometric immersions:
cxid:ElxR’i_leszRg_l, cxid:R%xE"’l—ﬂR%xE"*l,

wherec is a unit speed plane curve in the sense that’) = +1.

Note that such immersions have nondegenerate relative nullities. More generally, The-
orem 8.7 of{9] states that, up to a Lorentz motion, an isometric immer&ipn— R’;*l
with nondegenerate relative nullities is split, namely, it has one of the above orthogonal
products. This leads to the following proposition.

Proposition 4.1. Let f : R} — R'l’“ be an isometric immersion with nondegenerate
relative nullities. Then for each € RY, up to a Lorentz motiorthe shape operator has the
following form:

4.2. B-scroll immersions and generalized cylinders

In this and the next sections, we shall prove that conformally flat Lorentz hypersurfaces
with nondiagonalizable shape operators really exist.

Let x(s) be a null curve in the Minkowski spadiéf andT(s) = x/(s) its tangent vector
field, and assume th&t (s) is never colinear td(s). Then, differentiating7, T) = 0 it
follows thatT” (s) is everywhere spacelike, and so in analogy with Euclidean cuisgs=
|T’(s)| might be called the curvature of the null cunweFurthermore, the principal normal
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vector field tox may be defined as the unit spacelike vector figld) alongx satisfying
T'(s) = k(s)N(s). (Note that the plane spéfi N} is degenerate and thek, T) = (N, T) =
0, (N, N) = 1).

Now, sinceN is spacelike, the plan&~ orthogonal taV is Lorentzian. Thus, it contains
a second null direction other th&¥". So, in N+ we may choose the (unique) null vector
field B(s) alongx called the binormal such thaB, T) = —1. As in the Euclidean case,
if we define the torsion af to be the real-valued functior(s) = (B'(s), N(s)), we easily
obtain

N'(s) = 1(s)T(s) + k(s)B(s), B'(s) = t(s)N(s).

These formulas together with (s) = k(s) N(s) play the role of Frenet—Serret equations
for non-null curves. Similarly, the frami@(s), N(s), B(s)}, called Cartan frame of, must
be regarded as the Frenet—Serret apparatustédwever, it should be noticed that even if
the above construction is correct, the Cartan frame that we define here is not at all a Frenet
like frame, since the parameteis not invariant.

If, in addition, =(s) = O for all s, namely, if B is parallel { is not necessarily a plane
curve), the null curve(s) with the Cartan framéT, N, B) is called a generalized cubic (cf.
[9]). In this casex(s) can be explicitly determined via the initial conditions.

We are now in position to discuss the concept of B-scroll immersions introdud8tl in
Let (x(s), (T, N, B)) be a generalized cubic mi. The B-scroll associated to that cubic is
the Lorentz surface defined by the parameterizatienu) = x(s) + uB(s). Sincer(s) = 0
for all s, it follows thath, (9/0s) = T(s) andh,(3/du) = B(s). Thus, we easily verify that
h is an isometric immersion called B-scroll immersionRyf into R3, where heréR? has
the flat metric—ds du.

SinceN(s) is a spacelike unit normal vector field, the Weingarten equationgndthV(s)
tells us that the shape operator has the form

0 O
—k O

k> 0.

Now, to get higher dimension examples, we simply consider the isometric immersion
idx i E"? x R% — E" 2 x RS,

whereh : R?2 — R3 is, as above, a B-scroll immersion, and the factors in each product

are orthogonal. Such an isometric immersion is explicitly describefl a®}] — Rﬁ“
defined by

2
SO, o xn) = (X1, o Xp—2, Xpm 1+ X, X1 — X, Xpp),

where the signature ist, --- , +, —, +).

The Lorentz manifoldﬁ(R%) x E"~? are calledgeneralized cylindergl2]. We further
note that the B-scrolls described above have degenerate relative nullity distribution. More
generally, the isometric immersioR% — Rf with degenerate relative nullities are precisely
the B-scroll immersions (this is Theorem 9.79f). In high dimensions, Theorem 9.8[61
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states that, up to Lorentz motions, the isometric immersihs> R} ™ with degenerate
relative nullities are split, i.e., they are of the form

hxid:RixE"‘z—HRixE”_z
whereh : R2 — R3 is a B-scrollimmersion, and the factors in each product are orthogonal.
In analogy with the nondegenerate case, we have the following proposition.

Proposition 4.2. Let f : R} — R'l'“ be an isometric immersion with degenerate relative
nullities. Then for each € RY, up to a Lorentz motion, the shape operator has the following
form:

0 O 0
—k 0

Ay = ) , k>0.
0 0

Proof. By Theorem 9.8 of9] we may assume that, up to a Lorentz motion, the immersion
f has the formh x id wherenh is a B-scroll immersion. Thus, the shape operatof tdkes

the desired form, witlt as the curvature of the generalized cubic determining the B-scroll
h(IRif). It remains to show thdt # 0. Indeed, Gauss’ equation implies tHe{ A AY = 0

forall X,Y e T,(R}), from which we conclude that the index of relative nullitgr) is

n — 1 orn. Since the relative nullity distribution is assumed to be everywhere degenerate, it
follows thatv(x) = n — 1, namely,A, # 0 at eachx € R]. This in turn implies thak # 0

at every point. (Note that we can conclude that 0 simply by the facts thai(s) = |T/(s)|
andT’(s) is everywhere spacelike.) |

4.3. Generalized umbilical hypersurfaces

This notion was introduced by Magid [42], and it can be described as follows. Con-
sider a Minkowski spac&’fr1 as the direct produdkf x E"2, and letx(s) be a null
curve inR} ! which lies entirely in the factdR3. With the same notation of the subsection
above, let{T(s), N(s), B(s)} be the Cartan frame of regarded as a frame il@’{“, and
{Z1, ..., Z,_2} afamily of orthonormal spacelike vectorsm‘j+1 which are orthogonal to
span{7(0), N(0), B(0)} atxg = x(0). Foreach € {1, ..., n—2},letZ;(s) be the vector field
alongx obtained by parallel translation I@T“l of Z; along the curve. Since the Cartan
frame ofx spans a subspace which is parallel alangve see that eacH;(s) is orthogo-
nal to spafi7(s), N(s), B(s)}, for all s. Assume now that the torsiaris) is a constant, say
7(s) = t, different from zero, and consider the parametrizaffarnR” — RZ“ defined by

n—2

fls,u,21, ., 2p-2) = x(s) + UB(s) — GN(s) + Y _ 2 Zi(s),
i=1

whereG = 1/t +,/1/12 — Y2 22,

1
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Now, straightforward computation yields

f (3> = (1 - 1G)T(s) — k(s)GB(s) + utN(s),  fi <3> = B(s),
os du

fr (;) = Zi(s) + il NGs).
“ 1/22 - 3 <

This clearly defines a Lorentz hypersurfacé&iﬁrl, called a generalized umbilical hyper-
surface. In this case, we easily check that

1 n—2 n—2
2 ZZ?N(S) - TZZ,'Z[(S),
i=1 i=1

and the shape operator has the nondiagonalizable forRragosition 3.1with nonzero
A=T.

Particular case:in = 2. In this casef(s, u) = x(s) + uB(s) is an isometric immersion
of (R?, —2 ds du + u?72 ds?) into R3. By analogy to the notion of B-scrolls, we cgiiR?)
a generalized B-scroll. Clearly, a generalized B-scroll is not geodesically complete, and
relative to the coordinate systefm «} onR?, its shape operator is

—T 0
, 0.
( —k(s) —r) T

5. Main results

E=—utB(s)+t

Let M" be a Lorentz hypersurface "+1(¢). In [17], a pointx € M" is calledbadif
Ay is nonsingular and has a simple eigenvalue. All other points are apiledl If all points
are good, we will say tha?” is “good”.

Let M" be a conformally flat Lorentz hypersurfaceMi+1(z), with n > 4. In light of
Proposition 3.1we have for each € M", either

1. A, = Ald # 0,

2. A, =0,

3. A, is diagonalizable and has two unequal nonzero eigenvalues of multiplicity 1 and
n—1,

4. A, is diagonalizable and has two unequal eigenvalpes; 0 of multiplicity 1, and
A # 0 of multiplicity n — 1,

5. A, is diagonalizable and has two unequal eigenvalpest 0 of multiplicity 1, and
A = 0 of multiplicity n — 1, or

6. A, is nondiagonalizable and has only one eigenval(gossibly equal to zero), and the
minimal polynomial is(r — A)2.

Remark 2. Clearly, Case 3 corresponds to bad points, so that we may interpret the definition
of good points as that Case 3 could never occur.
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Proposition 5.1. Let M” be a conformally flat Lorentz hypersurfaceii*1(¢). Then the
set of bad points is open

Proof. Letxgbe abad point, and choose an open neighborlibofixg in which A remains
nonsingular. Since the diagonalizable case is the only case where two eigenvaiussof
be distinct, we may choode so thatu(x) # A(x) for anyx € U. Thus, all points ot/ are
bad. |

Proposition 5.2. Let M" be a conformally flat Lorentz hypersurface if*+1(¢), with
¢ > r/n(n — 1) everywhergwhere as above denotes the scalar curvature #f". Then
M" consists purely of bad points

Proof. This is immediate, since at a good paing M" we must have < r(x)/n(n — 1)
by (3.3) and (3.4)n Remark 1 O

We shall now give our main results. For this purpose, we first need the following simple but
basic result. Before stating it, notice that in genergl ifM" (&) — M"*+1(¢) is anisometric
immersion between Lorentz manifolds with the same constant cunatitffellows from
the Gauss equation thiatx) < 1 everywhere. 11i9], Graves classified such immersions in
the situation wheré = 0 andM" is complete. Conversely, we have the following result
which is still true for general pseudo-Riemannian hypersurfaces of indefinite space forms.

Proposition 5.3. Let f : M" — M"t1(¢) be an isometric immersion from a Lorentz
manifold M” into M"+1(&). If k(x) < 1for all x, thenM" is also of constant curvatur@

Proof. Letx € M" suchthak(x) < 1. Clearly, the cask(x) = Ois trivial. So, assume that
k(x) = 1. If To(x) is nondegenerate, I¢¢1, ..., e,—1} be an orthonormal basis fap(x),
and lete,, ¢ Tp(x) be a unit vector such thétg, = Ae,, with A # 0 of course. In this case,
foranyX = > ; xie; € TM" we haveAX = Ax,e,. Thus, for allX, Y € T, M" we get

R(X,Y) =AXAAY+ (X AY)=c(X AY).

If To(x) is degenerate. In this cagg has the nondiagonalizable form Rroposition 3.1
with & = 0. This means that there is a pseudo-orthonormal Hasis. ., ¢, } for T, M"
such thatA,e; = e» andA,e; = 0 for 2 < i < n, wheree; andes are null vectors. Thus,
forall X, Y € T,M" we easily see that

RX,Y)=c¢(XAY).
Hence,M" is a space of constant curvatutre O

We are now ready to state our main results. The first one deals with good hypersurfaces.

Theorem 54. Letn > 4, and letM" be a connectedgood conformally flat Lorentz
hypersurface ilf"+1(¢).Then¢ < r(x)/n(n — 1) for all x € M", wherer is the scalar
curvature ofM". Furthermore we have
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() If ¢ = r/n(n — 1) identically, thenk(x) < 1for all x € M", and soM" is a space of
constant curvaturé.

(i) If ¢ < r/n(n — 1) everywherethen eitherk(x) =n — 1forall x € M",or k(x) =n
forall x e M".

Proof. The inequality < r/n(n — 1) follows easily from(3.3) and (3.4)n Remark J and
the fact thatw and in (3.3) cannot be simultaneously nonzero and distinct, as all points
are good. It = r/n(n — 1) identically, then each d3.3) and (3.4pivesi = 0 because all
the points are good, and &@x) < 1 everywhere, i.eM" is a space of constant curvature
by Proposition 5.3

If now ¢ < r/n(n — 1) everywhere, and since all points are good it follows fr(318)
and (3.4)that)x # 0 everywhere, and dax) > n — latanyx e M". LetW = {x ¢ M" :
k(x) =n}andW’ = {x € M" : k(x) = n — 1}. SinceM" is connected angf” = WU W/,
it follows that if we show thaW is open and closed then we are done. Cle#flis open, as
it is the set of points for whicld, is invertible. So, we need only to show tHatis closed.
Indeed, lefx;} be a sequence iW converging to some € M”. Since all points are good,
the eigenvalues ofl,, must verifyA2(x;) + ¢ = r(x;)/n(n — 1) independently of the fact
thatA,, is diagonalizable or not. By continuity, we get

r(x)
nn—1)"

Since by hypothesig # r(x)/n(n — 1), we conclude from(5.1) thatA(x) # O. If Ay

is nondiagonalizable, then according to the only possible nondiagonalizable fore,that
could take it follows thak(x) = n, and thusx € W. If now A, is diagonalizable, then
comparing(3.3) with (5.1) we see thatu(x) = A(x) # 0. Thusk(x) = n, and sox € W.
This shows tha is closed, and the proof @theorem 5.4s complete. a

A(x)+ ¢ = (5.1)

Our second main result follows as a corollaryltfeorem 5.4

Theorem 5.5. Letn > 4,and letM" be a connectedjood and complete conformally flat
Lorentz hypersurface R’l’“. Then the scalar curvatureis > 0 everywhereand we have

(i) If r = 0,thenM" is locally flat and congruent to eithé}, R 2 x g(E?), or E"~2 x
g(R ) whereg(E?) is a Euclidean cylinder in a subspad.? of R"“ orthogonal to
IR” , andg(R )isaLorentz cylinder oraB-scrollin asubspaiE%oﬂR”Jrl orthogonal
to E"—Z.

(i) If r > 0 everywhergthen M" is congruent to eithes?, E* x $7~%, R} x §7~1, or
elseM" is locally congruent to a generalized umbilical hypersurfacé&fl’ﬁ“l, where
heres”—!is a Euclidean hypersphere in a subspaeof Rﬁ“ orthogonal toR%, and
Sf‘l is a Lorentz hypersphere in a subspatof R’{*l orthogonal toE™.

Proof. The factthat > 0 follows fromTheorem 5.4If r =0 identically, agaiTheorem 5.4
assertion (i), tells us thatx) < 1andM" islocally flat. In case/" is not simply connected,
we let M" be its universal covering with projection: M" — M". Now, Theorems 8.7
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and 9.8 of[9] applied toM” and its immersiory = f o 7 imply that 7(M") = f(M") is
congruent to one of the hypersurfaces mentioned in (i) of the current theorem.

Ifnow r > 0 everywhereTheorem 5.4assertion (ii), tells us thatx) = n—1 everywhere
or k(x) = n everywhere. Ik(x) = n — 1 everywhereA, is diagonalizable for alt € M".
Thus, by[10], Proposition D.4, of17], Proposition 2.3, it follows that the distributiofis
andT;, are differentiable and integrable, whefg(x) = {X € T,M" : A,(X) = AX}, and
that is constant on each leaf @f,. In fact, we will see byLemma 5.7that is constant
on the whole ofM”. Now, for eachx € M" we have

T:M" = To(x) ® T,.(x).

Let Mo(x) and M, (x) denote the maximal integral submanifolds througbf 7o(x) and
T).(x), respectively.

Lemmab.6. Mg(x) can be affinely parameterized as a complete non-null geogiésiof
M", and f(y(s)) is a geodesic ir]RT“l.

Proof. Assume there is a neighborhood.obn which Ty is generated by a nonsingular
vector fieldX such that(X, X) # 0. For any (other) tangent vector field the Codazzi
equation implies that

VxAY = A([X, Y]),
and differentiating X, AY) = (AX, Y) = 0 yields
0 = (Vx X, AY) + (X, VxAY) = (Vx X, AY) + (X, A([X, Y]))
= (A(VxX), Y) + (AX [X, Y]) = (A(VxX),Y).

HenceVx X € Ty(x), which means thaty(x) is a pregeodesic. Therefore, multiplication
by an appropriate function makes it a geodesic. e} denote this affine parameterized
geodesic, which is complete, 34" is. Next, let us considef locally. Sincey(s) lies in
To(x) and sincev(s) is a geodesic oM", we have

Vs (8) = fo(Vs(8)) + h(7(s), ¥()& =0,
so thatf(y(s)) is a geodesic iR} . O
Remark 3. According to[16, p. 202] the geodesig¢(y(s)) of Lemma 5.6s complete, so

thatMo(x) is isometrically mapped vi# onto a one-dimensional subspach x) orR%(x)
according to whethep(s) is a spacelike or a timelike geodesic, respectively.

The following lemma summarizes Lemmas 5 and §ldff and Lemma 2 of19].
Lemmab.7. If k(x) = n — 1 everywhergthen the functiork is constant on the whole of

M", and both distributiongy and 7;, are parallel i.e., VxTy C Tp and Vx T, C T, for
everyX € T,M".
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Using this lemmaRemark 3and the generalized de Rham's theoff@d] we can easily
prove, just as if14,19] the following lemma.

Lemmab5.8. If k(x) = n — 1 everywherethen

1. M, (x) is a complete totally geodesic hypersurfacaof.

2. If Mg = Mp(x) and M, = M, (x), thenM" is isometric to the direct produdt/y x M,,.

3. The one-dimensional spacg&Vp(x)) are parallel to each other

4. In case f(Mo(x)) = E(x), the restriction f;, of f to M;, is an isometry ofif; onto a
Lorentz hyperspherg; ! in a subspac&®? of R} orthogonal toE*.

5. In case f(Mp(x)) = R%(x), the restrictionf; of f to M, is an isometry of\f; onto a
Euclidean hyperspher§*~1 in a subspace" of R’;H orthogonal toR%.

6. If fo denotes the restriction gf to Mg, thenf = fo x fi,i.e, f(u, v) = (fo(w), fo.(v))
for every(u, v) € Mg x M, = M".

This lemma completes the proof of assertion (iifokorem 5.5n the casé&(x) = n— 1.
It remains to prove it in cask(x) = n everywhere. In this case,is constant according
to [10], Proposition D.4. Hence, one can easily see that eithet Ald or A takes the
nondiagonalizable form iRroposition 3.1with A # 0 in both cases. In the former case
M" is totally umbilical, and the same arguments used in éése= n — 1 show that\”
is a Lorentz hypersphere. In the latter ca®é, is isoparametric, and so we apply Theorem
4.5 of[12] to deduce thaM" is locally congruent to a generalized umbilical hypersurface
in Rﬁ*l as inSection 4.3 This completes the proof of assertion (i) Ofieorem 5.5n the
casek(x) = n. The proof ofTheorem 5.53s then complete. O

Remark 4. In the case wher@/" is not complete, the situation is more complicated. For
instance, lei(s) be a unit speed curve B3, and consider the parametrizatibty, u) =
x(s) + uxX(s), u > 0. We can easily check thatdefines a flat surface called the tangent
surface ofx, with metricg = (1 + u2k?) ds? + 2 dsdu + du?, wherek = k(s) is the
curvature ofx. However, this surface is not geodesically complete since each point of
presents a singularity. Now, by considering the produ#t?) x Rﬁ‘z, we obtain a good,
but noncomplete, flat Lorentz hypersurfacd@'ﬁf“l, which is not locally isometric to any
one of those hypersurfaces appearing in the ligtewforem 5.5(We can similarly start with

a timelike curve irR? to obtain the same things).

Another important corollary ofheorem 5.4s the following theorem.

Theorem 5.9. Letrn > 4, and letM" be a connectedyood and complete conformally
flat Lorentz hypersurface iﬂf“(a such that¢ = r/n(n — 1) identically. ThenM" is
congruent to a great Lorentz hyperspheétg(c).

Proof. By Theorem 5.4k(x) < 1 everywhere and/” is a space of constant curvature
Let f be the isometric immersion representiff in S;“(E), and letr : M" — M" be
the universal covering af1”". Then(M", f o ) is a complete simply connected Lorentz
space of constant curvatufgand hence is congruent 8 (¢). ThusM" is orientable, and
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the local unit vector fiel§ can be defined on the whole 8. By [5], (M™, f o) is totally
geodesic, i.e., a great hypersphere. In particylatz is one to one and thusis one to one.

It follows that M" is simply connected an@", f) is congruent to a great hypersphere, as
desired. a

In the case where all points are bad, we have the following theorem.

Theorem 5.10. Letn > 4, and let M" be a conformally flat Lorentz hypersurface in
M"1(@) with & > r/n(n — 1) everywhere. Then all points are haahd M" is foliated by
(n — 1)-dimensional spaces of constant curvattre.

Proof. By Proposition 5.2all points are bad. Let andx be the two distinct eigenvalues of
A with multiplicities 1 and: — 1, respectively. As previously, by Proposition D.410] (see
also Proposition 2.3 dfL7]), the distributionsl}, andT;, are differentiable and integrable,
anda is constant on each led; (however, we know nothing abouf. Furthermore, each
M, is a nondegenerate totally geodesic hypersurfac®’gfand so the curvature tensor
R; of M, coincides with the restriction aR to M;. This means that i, Y € T,, then
R.(X,Y) = R(X,Y) = A2+ &)X A Y. Since dimM,, = n — 1, it follows thatM, is a
space of constant curvatuxé + . O

Corollary 5.11. Letn > 4,and letM" be a conformally flat Lorentz hyper:surfacdliil‘jl+1
with scalar curvature: < 0 everywhere. Them" is foliated by eithe(n — 1)-dimensional
Riemannian hyperspheres 6r — 1)-dimensional Lorentz hyperspheres

Proof. This follows from the proof ofrheorem 5.1@Qvith A # 0, and a close reading of the
proof of Lemma 2.2 of6]. O
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