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Abstract

We shall investigate conformally flat Lorentz hypersurfaces in indefinite space forms. Some
particular classes of such hypersurfaces are explicitly described and classified.
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1. Introduction

Recall that a pseudo-Riemannian manifold(M, g) is said to be conformally flat if each
x ∈ M belongs to a neighborhoodU ⊂ M such that, for certainσ ∈ C∞(U), the sub-
manifold(U, eσg) is flat. Nonflat conformally flat Riemannian hypersurfaces in Euclidean
spacesEn+1,n ≥ 4, had been firstly investigated by Cartan[3], who showed that the second
fundamental form of those hypersurfaces admits at each point an eigenvalue of multiplicity
≥ n − 1. Conformally flat Riemannian hypersurfaces in positive definite space forms had
been extensively studied by Chen (cf.[4]), and classified by Do Carmo et al. in the compact
case (cf.[6]).

In this paper, we deal with conformally flat Lorentz hypersurfaces of dimensionn ≥ 4
in indefinite space forms̃Mn+1(c̃), i.e., complete simply connected and connected(n +
1)-dimensional Lorentz manifolds of constant curvaturec̃. In caseM̃n+1(c̃) = R

n+1
1 ,n ≥ 4,
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a local classification of these hypersurfaces was obtained by Van de Woestijne and Verstrae-
len (see[19, Theorem 2]). They claimed that, if the induced metric on a Lorentz hypersurface
Mn ⊂ R

n+1
1 is conformally flat, then it can be described as follows. Locally,Mn is either

congruent to a part of a hypercylinder, a Lorentz hypersphere, a generalized cylinder, or a
generalized umbilical hypersurface; or elseMn is foliated by(n−1)-dimensional Euclidean
or Lorentzian hyperspheres, paraboloids, or hyperbolic spaces. Those hypersurfaces which
are foliated by paraboloids or hyperbolic spaces would consist only of what we will call
“bad points”. However, it should be remarked that while Theorem 2 in[18] may be correct,
its proof do not seem to be clear (one should actually provide evidence of the argument used
in that paper and which consists in the fact that if the shape operatorA takes a certain form
at a pointx ∈ Mn, then the same form still holds in a neighborhood ofx and the eigenvalues
of A have constant multiplicities in that neighborhood).

The paper is organized as follows.Section 2contains the basic facts about general hyper-
surfaces in space forms. It also contains notation and formulas we will be using.Section 3
contains a classification result for shape operators of conformally flat Lorentz hypersurfaces
in space forms.Section 4presents the standard examples of Lorentz hypersurfaces which
will serve as models in our classification.Section 5is the main section, it contains various
results on conformally flat Lorentz hypersurfaces in indefinite space forms in general. For
instance, those hypersurfaces in Minkowski space which we call “good hypersurfaces” are
explicitly described and classified.

2. Preliminaries

2.1. Lorentz symmetric endomorphisms

LetV be a vector space overR endowed with a nondegenerate inner product〈, 〉. An en-
domorphismA ∈ End(V) is said to be symmetric with respect to〈, 〉 (or briefly, symmetric)
if it satisfies〈AX, Y〉 = 〈X,AY〉 for all X, Y ∈ V .

Unlike the positive definite case, it is well known that a symmetric endomorphismA of
a an indefinite vector space(V, 〈, 〉) fails in general to be diagonalizable.

In case〈, 〉 is Lorentzian, symmetric endomorphisms are classified by the following result
which may be found in[16, pp. 261–262], or [16].

Proposition 2.1. Let V be ann-dimensional vector space endowed with a Lorentz inner
product〈, 〉, and letA be a symmetric endomorphism of(V, 〈, 〉). If Dk denotes the diag-
onal matrixdiag{λ1, . . . , λk}, then relative to a chosen basis, A has one of the following
forms:

(i) A = Dn,

(ii) A =


a b 0

−b a

0 Dn−2

 , with b 
= 0,
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(iii) A =


µ 0 0

1 µ

0 Dn−2

 ,

(iv) A =


µ 0 1

0 µ 0 0

0 −1 µ

0 Dn−3

 ,
where, in cases(i) and (ii ), A is represented relative to an orthonormal basis
{e1, . . . , en}, with nonzero products〈e1, e1〉 = −1, and 〈ei, ei〉 = 1 2 ≤ i ≤
n. In cases(iii ) and (iv), A is represented relative to a pseudo-orthonormal basis
{u, v, e1, . . . , en−2}, with nonzero products−〈u, v〉 = 〈ei, ei〉 = 1 for 1 ≤ i ≤ n− 2.

2.2. Basic formulas for hypersurfaces

Let M̃n+1(c̃) be an(n + 1)-dimensional Lorentz space form, i.e., a complete simply
connected and connected(n + 1)-dimensional Lorentz manifold of constant curvaturec̃.
A hypersurfaceMn in M̃n+1(c̃) is said to be Lorentzian if the tangent spaceTxMn at each
x ∈ Mn inherits a Lorentz metric from̃Mn+1(c̃).

Throughout this paper we shall assumen ≥ 4, and ifMn is ann-dimensional connected
Lorentz manifold which is isometrically immersed iñMn+1(c̃), we shall denote byf the
isometric immersionf : Mn → M̃n+1(c̃) representingMn in M̃n+1(c̃). In that case,f(Mn)

is a Lorentz hypersurface which we will simply denote byMn. If Mn andNn are Lorentz
hypersurfaces iñMn+1(c̃), we say thatMn andNn arecongruentif there is an isometryφ
of M̃n+1(c̃) such thatφ(Mn) = Nn. We shall also denote by〈, 〉 both the Lorentz metrics
with the same signature(−,+, · · · ,+) on the hypersurfaceMn andM̃n+1(c̃). A tangent
vector toMn or toM̃n+1(c̃) is said to be timelike, spacelike or null (lightlike) if〈X,X〉 < 0,
〈X,X〉 > 0 or 〈X,X〉 = 0.

Let ξ be a local spacelike unit normal field onMn. For any vector fieldsX andY tangent
toMn, we have the Gauss and Weingarten formulas

∇̃XY = f∗(∇XY)+ h(X, Y)ξ, ∇̃Xξ = −f∗(AX),

where∇̃ and∇ denote the Levi-civita connexions oñMn+1(c̃) andMn, respectively, andA
is the shape operator of the isometric immersion, i.e., a field of symmetric endomorphisms
which is related to the second fundamental formh by h(X, Y) = 〈AX, Y〉. If R is the
curvature tensor ofMn, then the Gauss equation is given by

R(X, Y) = AX∧ AY+ c̃(X ∧ Y),
whereX∧Y denotes the skew-symmetric endomorphism defined by(X∧Y)Z = 〈Z, Y〉X−
〈Z,X〉Y . The Coddazi’s equation for hypersurfaces of spaces of constant curvature reduces
to

(∇XA)Y = (∇YA)X,
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or equivalently

A([X, Y ]) = X · (AY)− Y · (AX).

The Ricci tensor field ofMn can be written (cf.[11] or [17]) as

Ric(X, Y) = c̃(n− 1)〈X, Y〉 + trA〈AX, Y〉 − 〈A2X, Y〉.
The Weyl curvature tensorW is defined by

W(X, Y, Z,W) = 〈R(X, Y)Z,W〉 − ψ(X,W)〈Y,Z〉 − ψ(Y,Z)〈X,W〉
+ψ(X,Z)〈Y,W〉 + ψ(Y,W)〈X,Z〉,

whereψ(X, Y) = (1/(n−2)){Ric(X, Y)− r〈X, Y〉/2(n−1)} (herer is the scalar curvature
ofMn). Now, if we assume, in addition, thatMn is conformally flat andn ≥ 4, thenW ≡ 0,
and so the Gauss equation states that

〈Y,Z〉SX− 〈X,Z〉SY+ ψ(Y,Z)X− ψ(X,Z)Y
= 〈AY, Z〉AX− 〈AX, Z〉AY+ c̃{〈Y,Z〉X− 〈X,Z〉Y},

whereS denotes the endomorphism defined by

SX= 1

n− 2

{
(trA)AX− A2X+

(
c̃(n− 1)− r

2(n− 1)

)
X

}
.

Note thatψ andS satisfyψ(X, Y) = 〈SX, Y〉.
For eachx ∈ Mn, the subspaceT0(x) = {X ∈ TxMn/AxX = 0} is called the relative

nullity space atx. The index of relative nullityν(x) atx is defined as the dimension of the
subspaceT0(x), while the rank of the shape operatorAx is called the type numberk(x) of
Mn atx. It follows that, for anyx ∈ Mn, we haveν(x)+k(x) = n (see[7,8] and particularly
[1] for more details about relative nullity foliations).

3. Shape operators of conformally flat hypersurfaces

As we have mentioned inSection 1, the shape operator of a conformally flat Riemannian
hypersurface in an Euclidean spaceEn+1 has at each point an eigenvalue of multiplicity
≥ n − 1. In [13], Moore classified the shape operators for conformally flat Riemannian
submanifolds in Euclidean spaces. A similar work has been done by Magid in[11] for
shape operators of a different class of submanifolds, namely, Einstein hypersurfaces of
indefinite space forms. The main purpose of the present section is to deal with the case
of conformally flat Lorentz hypersurfaces in indefinite space forms. Of course, there is
no direct adaptation of the proof given in[13] since, as we have previously mentioned, a
Lorentz symmetric endomorphism fails to be everywhere diagonalizable. More precisely,
we obtain the following proposition.

Proposition 3.1. Let n ≥ 4 and letf : Mn → M̃n+1(c̃) be an isometric immersion of a
conformally flat Lorentz manifoldMn into M̃n+1(c̃). Then, at each pointx ∈ Mn, relative
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to a chosen basis which will be precise through the proof, the shape operatorAx can be put
into one of the following two forms:

Ax =


µ 0

λ
. . .

0 λ

 , or Ax =



λ 0 0

±1 λ

λ
. . .

0 λ


.

In either case, the index of relative nullity is either0,1, n− 1 orn.

This result has been proved in[18] for Lorentz hypersurfaces in Minkowski spaces, and
the proofs are essentially the same. Actually, only recently we have been informed of the
existence of that reference. Since some formulas in the proof ofProposition 3.1will be
used later for the classification result, we shall give here the part of the proof that we will
be using.

3.1. Proof of Proposition 3.1

According toProposition 2.1, we distinguish four cases, but since the proof is similar to
that when the ambient space is flat, we will only proveProposition 3.1in the case where
the shape operator takes form (iii) ofProposition 2.1. For a proof in the diagonalizable case
(i.e., case (i) ofProposition 2.1), see for example the proof of Proposition E.1 in[10], or
the proof of Theorem 1 in[18]. The cases corresponding to forms (ii) and (iv) cannot occur
(cf. [19, Theorem 1]).

Assume that the shape operatorAx has form (iii) of Proposition 2.1, i.e., the charac-
teristic polynomial ofAx is of the form(t − µ)2

∏n−2
i=1 (t − λi). Relative to a real basis

{u, v, e1, . . . , en−2} with all scalar products zero except−〈u, v〉 = 〈ei, ei〉 = 1, 1 ≤ i ≤
n − 2, the shape operator has the form (iii) ofProposition 2.1. As before, lets = trAx =
2µ+∑n−2

i=1 λi, and let

α = 1

n− 2

{
sµ− µ2 + c̃(n− 1)− r

2(n− 1)

}
, β = 1

n− 2
(s− 2µ),

νi = 1

n− 2

{
sλi − λ2

i + c̃(n− 1)− r

2(n− 1)

}
.

One computes that

Su= αu+ εβv, Sv = αv, Sei = νiei, 1 ≤ i ≤ n− 2.

Now, Gauss’ equation applied toX = u, Y = Z = v and toX = u, Y = Z = ei gives

c̃ + µ2 = 2α,

and

α+ νi = µλi + c̃, λi = β, 1 ≤ i ≤ n− 2,
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respectively. In particular, we obtainλ1 = · · · = λn−2. Let λ be the common value of
(λi)1≤i≤n−2 (note thatλ is justβ). On the other hand, the first two equations imply

2(n− 2)µλ− (n− 4)µ2 + nc̃ = r

n− 1
, (3.1)

and

µ2 + (n− 3)λ2 + 2µλ+ nc̃ = r

n− 1
, (3.2)

respectively.
From(3.1) and (3.2)it follows that (n − 3)(µ − λ)2 = 0, and sincen 
= 3 we get that

µ = λ. Hence, the shape operator has the second form indicated inProposition 3.1. �

Remark 1. If Ax is diagonalizable, and ifµ andλ denote the principal curvatures, then the
following basic formula relating the scalar curvature with the length of the mean curvature
vector and the square of the norm of the second fundamental form follows immediately
from the Gauss equation:

(n− 2)λ2(x)+ 2µ(x)λ(x)+ nc̃ = r(x)

n− 1
. (3.3)

Similarly, by takingµ = λ in (3.1)or (3.2), we obtain for a nondiagonalizableAx that

λ2(x)+ c̃ = r(x)

n(n− 1)
. (3.4)

4. Standard examples of hypersurfaces

In the Riemannian case, then-dimensional sphereSn is the model of conformally flat
Riemannian manifolds, and it may be isometrically immersed in the Euclidean spaceEn+1,
with scalar shape operator, i.e.,Sn is totally umbilic.

In the indefinite case, the hyperquadricsM̃n(c̃) are examples of conformally flat Lorentz
manifolds. IfRn+1

s denotes the standard flat Lorentz space form(Rn+1, 〈, 〉), where〈, 〉 is
given by

〈x, y〉 = −
s∑
i=1

xiyi +
n+1∑
i=s+1

xiyi, for all x = (x1, . . . , xn+1), y = (y1, . . . , yn+1),

then eachM̃n(c̃) might be realized as a totally umbilic hypersurface inR
n+1
s for certain

s, so that the shape operator is scalar. In particular, then-dimensional Minkowski space
M̃n(0) = R

n
1 may in turn be realized as a totally geodesic hypersurface inR

n+1
1 . We have

for c̃ > 0, the so-calledde Sitter spaceSn1(c̃) which is defined as

Sn1(c̃) = {x ∈ R
n+1
1 : 〈x, x〉 = c̃−1},

and for c̃ < 0 we have the universal covering of the so-calledanti-de Sitter spaceHn1 (c̃)
which is defined as

Hn1 (c̃) = {x ∈ R
n+1
2 : 〈x, x〉 = c̃−1}.
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For ease of notation, we writeSn1 (respectively,Hn1 ) rather thanSn1(c̃) (respectively,Hn1 (c̃))
whenc̃ is not given.

Notice that,M̃n(c̃) can also be regarded as a totally geodesic conformally flat hyper-
surface inM̃n+1(c̃), and so the shape operator vanishes. We refer to[2, pp. 181–185],
[16, pp. 108–114], and[21, pp. 67–68], for more details about hyperquadrics.

Notice also that the diagonalizable form for the shape operator inProposition 3.1has the
two possible eigenvaluesµ andλ, but for the examples above only one eigenvalue shows
up. So, we shall also provide examples with two distinct eigenvalues. In this setting, the
direct productsR1

1 × Sn−1 andE1 × Sn−1
1 are good examples of conformally flat Lorentz

hypersurfaces inRn+1
1 having diagonalizable shape operators withµ = 0 andλ 
= 0. Note

however that such products are not of Einstein type. Note also that if 1< k < n − 1, the
productRk1 × Sn−k as well asEk × Sn−k1 fails to be conformally flat.

Examples of those hypersurfaces with 0
= µ 
= λ 
= 0 may be given as the direct
productsS1

1 × Sn−1 andS1 × Sn−1
1 , which will later be treated as bad hypersurfaces.

4.1. Hypercylinders over plane curves

A hypercylinder inR
n+1
1 is defined by one of the following isometric immersions:

c× id : E1 × R
n−1
1 → E2 × R

n−1
1 , c× id : R

1
1 × En−1 → R

2
1 × En−1,

wherec is a unit speed plane curve in the sense that〈c′, c′〉 = ±1.
Note that such immersions have nondegenerate relative nullities. More generally, The-

orem 8.7 of[9] states that, up to a Lorentz motion, an isometric immersionR
n
1 → R

n+1
1

with nondegenerate relative nullities is split, namely, it has one of the above orthogonal
products. This leads to the following proposition.

Proposition 4.1. Let f : R
n
1 → R

n+1
1 be an isometric immersion with nondegenerate

relative nullities. Then for eachx ∈ R
n
1, up to a Lorentz motion, the shape operator has the

following form:

Ax =


−k 0

0
. . .

0 0

 .

4.2. B-scroll immersions and generalized cylinders

In this and the next sections, we shall prove that conformally flat Lorentz hypersurfaces
with nondiagonalizable shape operators really exist.

Let x(s) be a null curve in the Minkowski spaceR3
1 andT(s) = x′(s) its tangent vector

field, and assume thatT ′(s) is never colinear toT(s). Then, differentiating〈T, T 〉 = 0 it
follows thatT ′(s) is everywhere spacelike, and so in analogy with Euclidean curvesk(s) =
|T ′(s)| might be called the curvature of the null curvex. Furthermore, the principal normal
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vector field tox may be defined as the unit spacelike vector fieldN(s) alongx satisfying
T ′(s) = k(s)N(s). (Note that the plane span{T,N} is degenerate and that〈T, T 〉 = 〈N, T 〉 =
0, 〈N,N〉 = 1).

Now, sinceN is spacelike, the planeN⊥ orthogonal toN is Lorentzian. Thus, it contains
a second null direction other thanRT . So, inN⊥ we may choose the (unique) null vector
field B(s) alongx called the binormal such that〈B, T 〉 = −1. As in the Euclidean case,
if we define the torsion ofx to be the real-valued functionτ(s) = 〈B′(s), N(s)〉, we easily
obtain

N ′(s) = τ(s)T(s)+ k(s)B(s), B′(s) = τ(s)N(s).
These formulas together withT ′(s) = k(s)N(s) play the role of Frenet–Serret equations

for non-null curves. Similarly, the frame{T(s),N(s), B(s)}, called Cartan frame ofx, must
be regarded as the Frenet–Serret apparatus ofx. However, it should be noticed that even if
the above construction is correct, the Cartan frame that we define here is not at all a Frenet
like frame, since the parameters is not invariant.

If, in addition, τ(s) = 0 for all s, namely, ifB is parallel (x is not necessarily a plane
curve), the null curvex(s) with the Cartan frame(T,N,B) is called a generalized cubic (cf.
[9]). In this case,x(s) can be explicitly determined via the initial conditions.

We are now in position to discuss the concept of B-scroll immersions introduced in[9].
Let (x(s), (T,N,B)) be a generalized cubic inR3

1. The B-scroll associated to that cubic is
the Lorentz surface defined by the parameterizationh(s, u) = x(s)+ uB(s). Sinceτ(s) = 0
for all s, it follows thath∗(∂/∂s) = T(s) andh∗(∂/∂u) = B(s). Thus, we easily verify that
h is an isometric immersion called B-scroll immersion ofR

2
1 into R

3
1, where hereR2

1 has
the flat metric−ds du.

SinceN(s) is a spacelike unit normal vector field, the Weingarten equation withξ = N(s)
tells us that the shape operator has the form 0 0

−k 0

 , k > 0.

Now, to get higher dimension examples, we simply consider the isometric immersion

id × h : En−2 × R
2
1 → En−2 × R

3
1,

whereh : R
2
1 → R

3
1 is, as above, a B-scroll immersion, and the factors in each product

are orthogonal. Such an isometric immersion is explicitly described asf : R
n
1 → R

n+1
1

defined by

f(x1, . . . , xn) = (x1, . . . , xn−2, xn−1 + xn, xn−1 − xn, x2
n),

where the signature is(+, · · · ,+,−,+).
The Lorentz manifoldsh(R2

1)× En−2 are calledgeneralized cylinders[12]. We further
note that the B-scrolls described above have degenerate relative nullity distribution. More
generally, the isometric immersionsR

2
1 → R

3
1 with degenerate relative nullities are precisely

the B-scroll immersions (this is Theorem 9.7 of[9]). In high dimensions, Theorem 9.8 of[9]
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states that, up to Lorentz motions, the isometric immersionsR
n
1 → R

n+1
1 with degenerate

relative nullities are split, i.e., they are of the form

h× id : R
2
1 × En−2 → R

3
1 × En−2

whereh : R
2
1 → R

3
1 is a B-scroll immersion, and the factors in each product are orthogonal.

In analogy with the nondegenerate case, we have the following proposition.

Proposition 4.2. Letf : R
n
1 → R

n+1
1 be an isometric immersion with degenerate relative

nullities. Then for eachx ∈ R
n
1, up to a Lorentz motion, the shape operator has the following

form:

Ax =


0 0 0

−k 0
. . .

0 0

 , k > 0.

Proof. By Theorem 9.8 of[9] we may assume that, up to a Lorentz motion, the immersion
f has the formh× id whereh is a B-scroll immersion. Thus, the shape operator off takes
the desired form, withk as the curvature of the generalized cubic determining the B-scroll
h(R2

1). It remains to show thatk 
= 0. Indeed, Gauss’ equation implies thatAX∧ AY = 0
for all X, Y ∈ Tx(Rn1), from which we conclude that the index of relative nullityν(x) is
n− 1 orn. Since the relative nullity distribution is assumed to be everywhere degenerate, it
follows thatν(x) = n− 1, namely,Ax 
= 0 at eachx ∈ R

n
1. This in turn implies thatk 
= 0

at every point. (Note that we can conclude thatk > 0 simply by the facts thatk(s) = |T ′(s)|
andT ′(s) is everywhere spacelike.) �

4.3. Generalized umbilical hypersurfaces

This notion was introduced by Magid in[12], and it can be described as follows. Con-
sider a Minkowski spaceRn+1

1 as the direct productR3
1 × En−2, and letx(s) be a null

curve inR
n+1
1 which lies entirely in the factorR3

1. With the same notation of the subsection
above, let{T(s),N(s), B(s)} be the Cartan frame ofx regarded as a frame inRn+1

1 , and
{Z1, . . . , Zn−2} a family of orthonormal spacelike vectors inR

n+1
1 which are orthogonal to

span{T(0), N(0), B(0)} atx0 = x(0). For eachi ∈ {1, . . . , n−2}, letZi(s)be the vector field
alongx obtained by parallel translation inRn+1

1 of Zi along the curvex. Since the Cartan
frame ofx spans a subspace which is parallel alongx, we see that eachZi(s) is orthogo-
nal to span{T(s),N(s), B(s)}, for all s. Assume now that the torsionτ(s) is a constant, say
τ(s) ≡ τ, different from zero, and consider the parametrizationf : R

n → R
n+1
1 defined by

f(s, u, z1, . . . , zn−2) = x(s)+ uB(s)− GN(s)+
n−2∑
i=1

ziZi(s),

whereG = 1/τ +
√

1/τ2 −∑n−2
i=1 z

2
i .
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Now, straightforward computation yields

f∗
(
∂

∂s

)
= (1 − τG)T(s)− k(s)GB(s)+ uτN(s), f∗

(
∂

∂u

)
= B(s),

f∗
(
∂

∂zi

)
= Zi(s)+ zi√

1/τ2 −∑n−2
i=1 z

2
i

N(s).

This clearly defines a Lorentz hypersurface inR
n+1
1 , called a generalized umbilical hyper-

surface. In this case, we easily check that

ξ = −uτB(s)+ τ
√√√√ 1

τ2
−
n−2∑
i=1

z2i N(s)− τ
n−2∑
i=1

ziZi(s),

and the shape operator has the nondiagonalizable form ofProposition 3.1with nonzero
λ = τ.

Particular case:n = 2. In this case,f(s, u) = x(s) + uB(s) is an isometric immersion
of (R2,−2 ds du+ u2τ2 ds2) into R

3
1. By analogy to the notion of B-scrolls, we callf(R2)

a generalized B-scroll. Clearly, a generalized B-scroll is not geodesically complete, and
relative to the coordinate system{s, u} onR

2, its shape operator is(
−τ 0

−k(s) −τ

)
, τ 
= 0.

5. Main results

LetMn be a Lorentz hypersurface iñMn+1(c̃). In [17], a pointx ∈ Mn is calledbad if
Ax is nonsingular and has a simple eigenvalue. All other points are calledgood. If all points
are good, we will say thatMn is “good”.

LetMn be a conformally flat Lorentz hypersurface inM̃n+1(c̃), with n ≥ 4. In light of
Proposition 3.1, we have for eachx ∈ Mn, either

1. Ax = λId 
= 0,
2. Ax = 0,
3. Ax is diagonalizable and has two unequal nonzero eigenvalues of multiplicity 1 and
n− 1,

4. Ax is diagonalizable and has two unequal eigenvalues,µ = 0 of multiplicity 1, and
λ 
= 0 of multiplicity n− 1,

5. Ax is diagonalizable and has two unequal eigenvalues,µ 
= 0 of multiplicity 1, and
λ = 0 of multiplicity n− 1, or

6. Ax is nondiagonalizable and has only one eigenvalueλ (possibly equal to zero), and the
minimal polynomial is(t − λ)2.

Remark 2. Clearly, Case 3 corresponds to bad points, so that we may interpret the definition
of good points as that Case 3 could never occur.
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Proposition 5.1. LetMn be a conformally flat Lorentz hypersurface inM̃n+1(c̃). Then, the
set of bad points is open.

Proof. Letx0 be a bad point, and choose an open neighborhoodU of x0 in whichA remains
nonsingular. Since the diagonalizable case is the only case where two eigenvalues ofA can
be distinct, we may chooseU so thatµ(x) 
= λ(x) for anyx ∈ U. Thus, all points ofU are
bad. �

Proposition 5.2. Let Mn be a conformally flat Lorentz hypersurface iñMn+1(c̃), with
c̃ > r/n(n − 1) everywhere, where as abover denotes the scalar curvature ofMn. Then,
Mn consists purely of bad points.

Proof. This is immediate, since at a good pointx ∈ Mn we must havẽc ≤ r(x)/n(n− 1)
by (3.3) and (3.4)in Remark 1. �

We shall now give our main results. For this purpose, we first need the following simple but
basic result. Before stating it, notice that in general iff : Mn(c̃)→ M̃n+1(c̃) is an isometric
immersion between Lorentz manifolds with the same constant curvaturec̃, it follows from
the Gauss equation thatk(x) ≤ 1 everywhere. In[9], Graves classified such immersions in
the situation wherẽc = 0 andMn is complete. Conversely, we have the following result
which is still true for general pseudo-Riemannian hypersurfaces of indefinite space forms.

Proposition 5.3. Let f : Mn → M̃n+1(c̃) be an isometric immersion from a Lorentz
manifoldMn into M̃n+1(c̃). If k(x) ≤ 1 for all x, thenMn is also of constant curvaturẽc.

Proof. Letx ∈ Mn such thatk(x) ≤ 1. Clearly, the casek(x) = 0 is trivial. So, assume that
k(x) = 1. If T0(x) is nondegenerate, let{e1, . . . , en−1} be an orthonormal basis forT0(x),
and leten /∈ T0(x) be a unit vector such thatAen = λen, with λ 
= 0 of course. In this case,
for anyX = ∑n

i=1 xiei ∈ TxMn we haveAX = λxnen. Thus, for allX, Y ∈ TxMn we get

R(X, Y) = AX∧ AY+ c̃(X ∧ Y) = c̃(X ∧ Y).
If T0(x) is degenerate. In this caseAx has the nondiagonalizable form inProposition 3.1,
with λ = 0. This means that there is a pseudo-orthonormal basis{e1, . . . , en} for TxMn

such thatAxe1 = e2 andAxei = 0 for 2 ≤ i ≤ n, wheree1 ande2 are null vectors. Thus,
for all X, Y ∈ TxMn we easily see that

R(X, Y) = c̃(X ∧ Y).
Hence,Mn is a space of constant curvaturec̃. �

We are now ready to state our main results. The first one deals with good hypersurfaces.

Theorem 5.4. Let n ≥ 4, and letMn be a connected, good, conformally flat Lorentz
hypersurface inM̃n+1(c̃).Thenc̃ ≤ r(x)/n(n − 1) for all x ∈ Mn, wherer is the scalar
curvature ofMn. Furthermore, we have
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(i) If c̃ = r/n(n − 1) identically, thenk(x) ≤ 1 for all x ∈ Mn, and soMn is a space of
constant curvaturẽc.

(ii) If c̃ < r/n(n − 1) everywhere, then eitherk(x) = n − 1 for all x ∈ Mn, or k(x) = n

for all x ∈ Mn.

Proof. The inequalitỹc ≤ r/n(n− 1) follows easily from(3.3) and (3.4)in Remark 1, and
the fact thatµ andλ in (3.3) cannot be simultaneously nonzero and distinct, as all points
are good. If̃c = r/n(n− 1) identically, then each of(3.3) and (3.4)givesλ ≡ 0 because all
the points are good, and sok(x) ≤ 1 everywhere, i.e.,Mn is a space of constant curvature
by Proposition 5.3.

If now c̃ < r/n(n − 1) everywhere, and since all points are good it follows from(3.3)
and (3.4)thatλ 
= 0 everywhere, and sok(x) ≥ n− 1 at anyx ∈ Mn. LetW = {x ∈ Mn :
k(x) = n} andW ′ = {x ∈ Mn : k(x) = n− 1}. SinceMn is connected andMn = W ∪W ′,
it follows that if we show thatW is open and closed then we are done. ClearlyW is open, as
it is the set of points for whichAx is invertible. So, we need only to show thatW is closed.
Indeed, let{xi} be a sequence inW converging to somex ∈ Mn. Since all points are good,
the eigenvalues ofAxi must verifyλ2(xi) + c̃ = r(xi)/n(n − 1) independently of the fact
thatAxi is diagonalizable or not. By continuity, we get

λ2(x)+ c̃ = r(x)

n(n− 1)
. (5.1)

Since by hypothesis̃c 
= r(x)/n(n − 1), we conclude from(5.1) that λ(x) 
= 0. If Ax
is nondiagonalizable, then according to the only possible nondiagonalizable form thatAx
could take it follows thatk(x) = n, and thusx ∈ W . If now Ax is diagonalizable, then
comparing(3.3) with (5.1) we see thatµ(x) = λ(x) 
= 0. Thusk(x) = n, and sox ∈ W .
This shows thatW is closed, and the proof ofTheorem 5.4is complete. �

Our second main result follows as a corollary ofTheorem 5.4.

Theorem 5.5. Letn ≥ 4, and letMn be a connected, good, and complete conformally flat
Lorentz hypersurface inRn+1

1 . Then the scalar curvaturer is≥ 0 everywhere, and we have

(i) If r ≡ 0, thenMn is locally flat and congruent to eitherRn1, R
n−2
1 × g(E2), or En−2 ×

g(R2
1), whereg(E2) is a Euclidean cylinder in a subspaceE3 of R

n+1
1 orthogonal to

R
n−2
1 ,andg(R2

1) is a Lorentz cylinder or a B-scroll in a subspaceR
3
1 ofRn+1

1 orthogonal
toEn−2.

(ii) If r > 0 everywhere, thenMn is congruent to eitherSn1, E1 × Sn−1
1 , R

1
1 × Sn−1, or

elseMn is locally congruent to a generalized umbilical hypersurface inR
n+1
1 , where

hereSn−1 is a Euclidean hypersphere in a subspaceEn of Rn+1
1 orthogonal toR1

1, and

Sn−1
1 is a Lorentz hypersphere in a subspaceR

n
1 of R

n+1
1 orthogonal toE1.

Proof. The fact thatr≥0 follows fromTheorem 5.4. If r=0 identically, againTheorem 5.4,
assertion (i), tells us thatk(x) ≤ 1 andMn is locally flat. In caseMn is not simply connected,
we letM̃n be its universal covering with projectionπ : M̃n → Mn. Now, Theorems 8.7
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and 9.8 of[9] applied toM̃n and its immersioñf = f ◦ π imply that f̃ (M̃n) = f(Mn) is
congruent to one of the hypersurfaces mentioned in (i) of the current theorem.

If now r > 0 everywhere,Theorem 5.4, assertion (ii), tells us thatk(x) = n−1 everywhere
or k(x) = n everywhere. Ifk(x) = n− 1 everywhere,Ax is diagonalizable for allx ∈ Mn.
Thus, by[10], Proposition D.4, or[17], Proposition 2.3, it follows that the distributionsT0
andTλ are differentiable and integrable, whereTλ(x) = {X ∈ TxMn : Ax(X) = λX}, and
thatλ is constant on each leaf ofTλ. In fact, we will see byLemma 5.7thatλ is constant
on the whole ofMn. Now, for eachx ∈ Mn we have

TxM
n = T0(x)⊕ Tλ(x).

LetM0(x) andMλ(x) denote the maximal integral submanifolds throughx of T0(x) and
Tλ(x), respectively.

Lemma 5.6. M0(x) can be affinely parameterized as a complete non-null geodesicγ(s) of
Mn, andf(γ(s)) is a geodesic inRn+1

1 .

Proof. Assume there is a neighborhood ofx on whichT0 is generated by a nonsingular
vector fieldX such that〈X,X〉 
= 0. For any (other) tangent vector fieldY , the Codazzi
equation implies that

∇XAY= A([X, Y ]),

and differentiating〈X,AY〉 = 〈AX, Y〉 = 0 yields

0 = 〈∇XX,AY〉 + 〈X,∇XAY〉 = 〈∇XX,AY〉 + 〈X,A([X, Y ])〉
= 〈A(∇XX), Y〉 + 〈AX, [X, Y ]〉 = 〈A(∇XX), Y〉.

Hence∇XX ∈ T0(x), which means thatM0(x) is a pregeodesic. Therefore, multiplication
by an appropriate function makes it a geodesic. Letγ(s) denote this affine parameterized
geodesic, which is complete, asMn is. Next, let us considerf locally. Sinceγ̇(s) lies in
T0(x) and sinceγ(s) is a geodesic ofMn, we have

∇̃sγ̇(s) = f∗(∇sγ̇(s))+ h(γ̇(s), γ̇(s))ξ = 0,

so thatf(γ(s)) is a geodesic inRn+1
1 . �

Remark 3. According to[16, p. 202], the geodesicf(γ(s)) of Lemma 5.6is complete, so
thatM0(x) is isometrically mapped viaf onto a one-dimensional subspaceE1(x) or R

1
1(x)

according to whetherγ(s) is a spacelike or a timelike geodesic, respectively.

The following lemma summarizes Lemmas 5 and 6 of[14] and Lemma 2 of[19].

Lemma 5.7. If k(x) = n − 1 everywhere, then the functionλ is constant on the whole of
Mn, and both distributionsT0 andTλ are parallel, i.e., ∇XT0 ⊂ T0 and∇XTλ ⊂ Tλ for
everyX ∈ TxMn.
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Using this lemma,Remark 3, and the generalized de Rham’s theorem[21] we can easily
prove, just as in[14,19], the following lemma.

Lemma 5.8. If k(x) = n− 1 everywhere, then

1. Mλ(x) is a complete totally geodesic hypersurface ofMn.
2. If M0 = M0(x) andMλ = Mλ(x), thenMn is isometric to the direct productM0 ×Mλ.
3. The one-dimensional spacesf(M0(x)) are parallel to each other.
4. In casef(M0(x)) = E1(x), the restrictionfλ of f toMλ is an isometry ofMλ onto a

Lorentz hypersphereSn−1
1 in a subspaceRn1 of R

n+1
1 orthogonal toE1.

5. In casef(M0(x)) = R
1
1(x), the restrictionfλ of f toMλ is an isometry ofMλ onto a

Euclidean hypersphereSn−1 in a subspaceEn of R
n+1
1 orthogonal toR

1
1.

6. If f0 denotes the restriction off toM0, thenf = f0 ×fλ, i.e., f(u, v) = (f0(u), fλ(v))

for every(u, v) ∈ M0 ×Mλ = Mn.

This lemma completes the proof of assertion (ii) ofTheorem 5.5in the casek(x) = n−1.
It remains to prove it in casek(x) = n everywhere. In this case,λ is constant according
to [10], Proposition D.4. Hence, one can easily see that eitherA = λId or A takes the
nondiagonalizable form inProposition 3.1, with λ 
= 0 in both cases. In the former case
Mn is totally umbilical, and the same arguments used in casek(x) = n− 1 show thatMn

is a Lorentz hypersphere. In the latter case,Mn is isoparametric, and so we apply Theorem
4.5 of [12] to deduce thatMn is locally congruent to a generalized umbilical hypersurface
in R

n+1
1 as inSection 4.3. This completes the proof of assertion (ii) ofTheorem 5.5in the

casek(x) = n. The proof ofTheorem 5.5is then complete. �

Remark 4. In the case whereMn is not complete, the situation is more complicated. For
instance, letx(s) be a unit speed curve inE3, and consider the parametrizationh(s, u) =
x(s) + ux′(s), u > 0. We can easily check thath defines a flat surface called the tangent
surface ofx, with metric g = (1 + u2k2)ds2 + 2 ds du + du2, wherek = k(s) is the
curvature ofx. However, this surface is not geodesically complete since each point ofc

presents a singularity. Now, by considering the producth(R2) × R
n−2
1 , we obtain a good,

but noncomplete, flat Lorentz hypersurface inR
n+1
1 , which is not locally isometric to any

one of those hypersurfaces appearing in the list ofTheorem 5.5. (We can similarly start with
a timelike curve inR3

1 to obtain the same things).

Another important corollary ofTheorem 5.4is the following theorem.

Theorem 5.9. Let n ≥ 4, and letMn be a connected, good, and complete conformally
flat Lorentz hypersurface inSn+1

1 (c̃) such thatc̃ = r/n(n − 1) identically. ThenMn is
congruent to a great Lorentz hypersphereSn1(c̃).

Proof. By Theorem 5.4, k(x) ≤ 1 everywhere andMn is a space of constant curvaturec̃.
Let f be the isometric immersion representingMn in Sn+1

1 (c̃), and letπ : M̃n → Mn be
the universal covering ofMn. Then(M̃n, f ◦ π) is a complete simply connected Lorentz
space of constant curvaturec̃, and hence is congruent toSn1(c̃). ThusM̃n is orientable, and
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the local unit vector fieldξ can be defined on the whole of̃Mn. By [5], (M̃n, f ◦π) is totally
geodesic, i.e., a great hypersphere. In particular,f ◦π is one to one and thusπ is one to one.
It follows thatMn is simply connected and(Mn, f) is congruent to a great hypersphere, as
desired. �

In the case where all points are bad, we have the following theorem.

Theorem 5.10. Let n ≥ 4, and letMn be a conformally flat Lorentz hypersurface in
M̃n+1(c̃) with c̃ > r/n(n− 1) everywhere. Then all points are bad, andMn is foliated by
(n− 1)-dimensional spaces of constant curvature> c̃.

Proof. By Proposition 5.2, all points are bad. Letµ andλ be the two distinct eigenvalues of
Awith multiplicities 1 andn−1, respectively. As previously, by Proposition D.4 of[10] (see
also Proposition 2.3 of[17]), the distributionsTµ andTλ are differentiable and integrable,
andλ is constant on each leafMλ (however, we know nothing aboutµ). Furthermore, each
Mλ is a nondegenerate totally geodesic hypersurface ofMn, and so the curvature tensor
Rλ of Mλ coincides with the restriction ofR to Mλ. This means that ifX, Y ∈ Tλ, then
Rλ(X, Y) = R(X, Y) = (λ2 + c̃)X ∧ Y . Since dimMλ = n − 1, it follows thatMλ is a
space of constant curvatureλ2 + c̃. �

Corollary 5.11. Letn ≥ 4,and letMn be a conformally flat Lorentz hypersurface inR
n+1
1

with scalar curvaturer < 0 everywhere. ThenMn is foliated by either(n− 1)-dimensional
Riemannian hyperspheres or(n− 1)-dimensional Lorentz hyperspheres.

Proof. This follows from the proof ofTheorem 5.10with λ 
= 0, and a close reading of the
proof of Lemma 2.2 of[6]. �
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