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3-MANIFOLDS EFFICIENTLY BOUND 4-MANIFOLDS

FRANCESCO COSTANTINO AND DYLAN THURSTON

Abstract. It is known since 1954 that every 3-manifold bounds a 4-manifold. Thus, for
instance, every 3-manifold has a surgery diagram. There are several proofs of this fact,
but there has been little attention to the complexity of the 4-manifold produced. Given a
3-manifold M3 of complexity n, we construct a 4-manifold bounded by M of complexity
O(n2), where the “complexity” of a piecewise-linear manifold is the minimum number of
n-simplices in a triangulation.

The proof goes through the notion of “shadow complexity” of a 3-manifold M . A shadow
of M is a well-behaved 2-dimensional spine of a 4-manifold bounded by M . We further prove
that, for a manifold M satisfying the Geometrization Conjecture with Gromov norm G and
shadow complexity S,

c1G ≤ S ≤ c2G
2

for suitable constants c1, c2. In particular, the manifolds with shadow complexity 0 are the
graph manifolds.

In addition, we give an O(n4) bound for the complexity of a spin 4-manifold bounding
a given spin 3-manifold. We also show that every stable map from a 3-manifold M with
Gromov norm G to R2 has at least G/10 crossing singularities, and if M is hyperbolic there
is a map with at most c3G

2 crossing singularities.
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1. Introduction

Among the different ways to combinatorially represent 3-manifolds, two of the most popular
are triangulations and surgery on a link. A triangulation is very natural way to represent 3-
manifolds, and any other representation of a 3-manifold is easy to turn into a triangulation.
On the other hand, although some 3-manifold invariants may be computed directly from a
triangulation (e.g., the Turaev-Viro invariants), not all can be, and it is difficult to visualise
the combinatorial structure of a triangulation.

A more typical way to present a 3-manifold is via Dehn surgery on a link. In practice, there
are simple descriptions of small manifolds via surgery, and this is generally the preferred way
of representing manifolds. There are many more invariants that may be computed directly
from a surgery diagram, like the Witten-Reshetikhin-Turaev invariants. It is easy to turn a
surgery diagram into a triangulation of the manifold [40]. But for the other direction, passing
from triangulations to surgery diagrams, there seems to be little known. In particular, it
is an open question whether a surgery diagram must (asymptotically) be more complicated
than a triangulation. For a more general setting of this problem, consider that if all the
surgery coefficients are integers, a surgery diagram naturally gives a 4-manifold bounded by
the 3-manifold. This leads us to ask the central question of the paper:

Question 1.1. How efficiently do 3-manifolds bound 4-manifolds?

To make this question more precise, let us make some definitions.

Definition 1.2. A ∆-complex is the quotient of a disjoint union of simplices by identifications
of their faces. (See [14, Section 2.1] for a complete definition.) A ∆-triangulation is a ∆-
complex whose underlying topological space is a manifold.

Definition 1.3. The complexity of a piecewise-linear oriented n-manifold Mn is the minimal
number of n-simplices in a ∆-triangulation of M .

(1) C(Mn) = min
Triang. ∆ of M

# of n-simplices in ∆

Remark 1.4. Since the second barycentric subdivision of a ∆-triangulation is an ordinary
simplicial triangulation, C(M) would only change by at most a constant factor if we insisted
that the triangulation be simplicial.

Definition 1.5. The 3-dimensional boundary complexity function G3(k) is the minimal com-
plexity such that every 3-manifold of complexity at most k is bounded by a 4-manifold of
complexity at most G3(k).
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We can think of G3(k) as a kind of topological isoperimetric inequality. We can now give
a concrete version of our original Question 1.1:

Question 1.6. What is the asymptotic growth rate of G3?

The first main result of this paper is that G3(k) = O(k2). More precisely, we have

Theorem 5.2. If a 3-manifold M has a ∆-triangulation with t tetrahedra, then there exists
a 4-manifold W such that ∂W = M and W has a ∆-triangulation with O(t2) simplices.
Moreover, W has “bounded geometry”. That is, there exists an integer c (not depending on
M and W ) such that each vertex of the triangulation of W is contained in less than c simplices.

The fact that W has bounded geometry makes the resulting representation nicer; in partic-
ular, to check whether the topological space resulting from a triangulation is a manifold, you
need to decide whether the link of each simplex is a sphere. This is easy for dimension n ≤ 3,
in NP for n = 4 [34], unknown for n = 5, and undecidable for dimension n > 5 [24, 25, 20].
In all cases, such complexity issues do not arise if the triangulation has bounded geometry.

Note that there is an evident linear lower bound for G3(k), since a triangulation for a
4-manifold also gives a triangulation of its boundary.

We also prove a number of other related bounds which do not directly refer to 4-manifolds.
For instance, we have the following bound in terms of surgery:

Theorem 5.6. A finite-volume hyperbolic 3-manifold with volume V has a rational surgery
diagram with O(V 2) crossings.

Note that there may be an infinite number of 3-manifolds with volume less than the
bound V , and likewise an infinite number of surgeries on a given link diagram; but in both
cases the manifolds come in families with some structure. In this case as well there is a
linear lower bound: there are at least V/voct crossings in any surgery diagram for M , where
voct ≈ 3.66 is the volume of a regular ideal hyperbolic octahedron. A somewhat weaker lower
bound was proved by Lackenby [19]; the bound using voct comes from a decomposition into
ideal octahedra, one per crossing [35, 29].

For a clean statement about general 3-manifolds, we use the crucial notion of shadows,
which we recall in Section 3. For now, we just need to know that shadows are certain kinds
of decorated 2-complexes which can be used to represent both a 4-manifold and a 3-manifold
(on the boundary of the 4-manifold), and that a coarse notion of the complexity of a shadow
is the number of its vertices. There are an infinite number of 3-manifolds with shadows with
a given number of vertices, but as with hyperbolic volume and surgeries on a given link, they
come in families that can be understood. The shadow complexity sc(M) of a 3-manifold M
is the minimal number of vertices in any shadow for M .

The following theorem says that the shadow complexity gives a coarse estimate of the
hyperbolic volume.

Theorems 3.37 and 5.5. There is a constant C > 0 so that every geometric 3-manifold M ,
with boundary empty or a union of tori, satisfies

vtet
2voct

‖M‖ ≤ sc(M) ≤ C‖M‖2.

The lower bound on sc(M) holds for all 3-manifolds.

Here vtet ≈ 1.01 is the volume of a regular ideal hyperbolic tetrahedron and voct is as above.
A geometric manifold is one that satisfies the Geometrization Conjecture [36]: it can be cut
along spheres and tori into pieces admitting a geometric structure. ‖M‖ is the Gromov norm
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of M , which is defined for any 3-manifold, and for a geometric 3-manifold is 1/vtet times the
sum of the volumes of the hyperbolic pieces.

Note that there is no constant term in these theorems. The manifolds with shadows with
no vertices are the graph manifolds, the geometric manifolds with no hyperbolic pieces (see
Proposition 3.31).

Our techniques are based on maps from 3-manifolds to surfaces, so we can also phrase the
bounds in terms of the singularities of such maps. A crossing singularity is a singularity of
the type we will consider in Section 4.4: a point in R2 with two indefinite fold points in its
inverse image. For more background on the classification of the stable singularities of a map
from a 3-manifold to a 2-manifold, see Levine [22, 23].

Theorems 3.38 and 5.7. A 3-manifold M has at least ‖M‖/10 crossing singularities in any
smooth, stable map π : M → R2. There is a universal constant C so that if M is hyperbolic
then M has a map to R2 with C‖M‖2 crossing singularities.

One related theorem was previously known: Saeki [33] showed that the manifolds with
maps to a surface with no crossing singularities are the graph manifolds.

We also prove bounds for the complexity for 3-manifolds to bound special types of 4-
manifolds.

Theorem 5.3. A 3-manifold with a triangulation with k tetrahedra is the boundary of a
simply-connected 4-manifold with O(k2) 4-simplices.

Theorem 6.1. A 3-manifold with a triangulation with k tetrahedra is the boundary of a spin
4-manifold with O(k4) 4-simplices.

All the constants in these theorems can be made explicit, but since in general they are quite
bad, we have not given them explicitly. The exception is Theorems 3.37 and 3.38, which are
the best possible.

As one application of the results above, let us mention computing invariants of 3-manifolds.
There are a number of 3-manifold invariants that are most easily computed from a 4-manifold
with boundary. (Often this is done via surgery diagrams, so the 4-manifold is simply-
connected, but there are usually more general constructions as well.) For instance, the Witten-
Reshitikhin-Turaev (WRT) quantum invariants are of this form [30, 39, 31] as is the Casson
invariant [21].1

As one concrete example, Kirby and Melvin explained [17, 18] how to compute the WRT
invariant at a 4th root of unity as a sum over spin structures, which can be done concretely
given a surgery diagram. Although they show that the exact evaluation is NP-hard, our results
imply that the sum can be approximated (up to some error) in polynomial time using random
sampling over spin structures: for any given spin structure, we can, in polynomial time, find
a 4-manifold which spin-bounds the given 3-manifold and therefore compute the summand
at this spin structure. This contrasts with a result of Kitaev and Bravyi, who showed that
computing (up to the same error) the partition function of the corresponding 2-dimensional
TQFT is BQP-complete, as soon as we allow evaluation of observables on closed curves [1].

Acknowledgments We would like to warmly thank Riccardo Benedetti, Simon King, Robion
Kirby, William Thurston, Vladimir Turaev, and an anonymous referee for their encouraging
comments and suggestions.

1The original definition of the Casson invariant is 3-dimensional, but to compute it in practice the surgery
formula is much easier.
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1.1. Plan of the paper. In the remainder of the Introduction, we survey some related
work, first on different kinds of topological isoperimetric functions, and second on other work
considering our main tool, stable maps from a 3-manifold to R2. In Section 2, we sketch our
construction in the smooth setting and introduce the crucial tool of the Stein factorization,
which shows how 2-complexes naturally arise. This section is not logically necessary for
the rest of the paper, although it does provide helpful motivation and a guide to the proof.
This 2-complexes that arise are studied more abstractly in Section 3, where we review the
definition of shadow surface and prove a number of properties of them; here we also use the
Gromov norm to prove all the lower bounds in the theorems above. In Section 4 we give
our main tool, a construction of a shadow from a triangulated 3-manifold with a map to
the plane, together with a bound on the complexity of the resulting shadow. Section 4 is
independent from Section 3 except for the definition of shadows, and only uses Section 2 as
motivation, so the impatient reader can skip there. In Section 5 we use this construction to
prove the upper bounds of our main theorems (except for the spin bound case, Theorem 6.1)
and see precisely how shadow complexity relates to geometric notions on the complexity of
the manifold. Finally, in Section 6 we show how to modify an arbitrary shadow to get a
4-manifold that spin-bounds a specified spin structure on a 3-manifold, while controlling the
complexity.

1.2. Related questions. Although the question we consider does not seem to have been
previously addressed, there has been related work. Perhaps the closest is the work on distance
in the pants complex and hyperbolic volumes. The pants complex is closely related to shadows;
in particular, a sequence of moves of length n in the pants complex can be turned into a
shadow with n vertices for a 3-manifold which has two boundary components, so that the
natural pants decomposition of the boundary components corresponds to the start and end
of the sequence of moves.

Theorem 1.7 (Brock [2, 3]). Given a surface S of genus g ≥ 2, there are constants C1, C2

so that for every pseudo-Anosov map ψ : S → S, we have

C1‖ψ‖Pants ≤ vol(Tψ) ≤ C2‖ψ‖Pants

where Tψ is the mapping torus of ψ and ‖ψ‖Pants is the translation distance in the pants
complex.

By the relation between moves in the pants complex and shadows mentioned above, this
shows that for 3-manifolds that fiber over the circle with fiber a surface of fixed genus, shadow
complexity is bounded above and below by a linear function of the hyperbolic volume. How-
ever, the constant depends on the genus in an uncontrolled way. Our result gives a quadratic
bound, but with an explicit constant not depending on the genus. Brock’s construction also
produces shadows (and 4-manifolds) of a particular type.

More recently, Brock and Souto have announced [4] that there is a similar bound for
manifolds with a Heegaard splitting with a fixed genus. In our language, their result says
that a hyperbolic manifold with a strongly irreducible Heegaard splitting of genus g has a
shadow diagram where the number of vertices is bounded by a linear function of the volume,
with a constant of proportionality depending only on the genus. (The result is probably true
without the assumption that the Heegaard splitting is strongly irreducible, but the statement
becomes more delicate in the language of the pants complex and we have not checked the
details.) Their method of proof does not produce any explicit constants.

There has also been work on the question of polygonal curves in R3 bounding surfaces.
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Definition 1.8. The surface isoperimetric function Gsurf(k) is the minimal number such that
every closed polygonal curve γ in R3 with at most k segments bounds an oriented polygonal
surface Σ with at most Gsurf(k) triangles.

Theorem 1.9 (Hass-Lagarias [9]). 1
2k

2 ≤ Gsurf(k) ≤ 7k2.

This result contrasts sharply with the situation when we ask for the spanning surface Σ to
be a disk.

Definition 1.10. The disk isoperimetric function Gdisk(k) is the minimal number such that
every closed polygonal curve γ in R3 with at most k segments bounds an oriented polygonal
disk D with at most Gsurf(k) triangles.

Theorem 1.11 (Hass-Snoeyink-Thurston [11]). Gdisk(k) = eΩ(k). That is, there is a con-
stant C so that, for sufficiently large k, Gdisk(k) ≥ eCk.

Theorem 1.12 (Hass-Lagarias-Thurston [10]). Gdisk(k) = eO(k2). That is, there is a con-

stant C so that, for sufficiently large k, Gdisk(k) ≤ eCk
2

.

Although there is a large gap between these upper and lower bounds, both bounds are
substantially larger than the bounds in Theorem 1.9, which was about arbitrary oriented
surfaces.

There is an analogous question on the growth of Gdisk for 3-manifolds rather than curves:
asking for 4-balls bounding a 3-sphere with a given triangulation on the boundary. As stated,
this is not an interesting question, since we can construct such a triangulation by taking the
triangulated 3-ball and coning it to a point. This is related to the somewhat unsatisfactory
nature of the 4-manifold complexity (mentioned earlier). A more interesting question might
involve 4-manifold triangulations where the vertices have bounded geometry. For a somewhat
different question, there are known upper bounds:

Definition 1.13. The Pachner isoperimetric function GPachner(k) is the maximum over all
triangulations T of the 3-sphere with ≤ k simplices of the minimum number of Pachner moves
required to relate T to the standard triangulation, the boundary of a 4-simplex.

Theorem 1.14 (King [16], Mijatović [28]). GPachner(k) = eO(k2).

Note that a sequence of Pachner moves as in the definition gives you, in particular, a
triangulation of the 4-ball, although you only get very special triangulations of the 4-ball in
this way.

As in the case of polygonal surfaces and disks, this upper bound is much larger than the
polynomial bound we obtain. King [16] also constructs triangulations of S3 which seem likely
to require a large number of Pachner moves to simplify.

1.3. Previous work. The central construction in our proof, a generic smooth map from a 3-
manifold to R2, has been considered by several previous authors, sometimes with little contact
with each other. These maps were probably first considered by Burlet and de Rham [5], who
showed that the 3-manifolds admitting a map with only definite fold singularities are connected
sums of S1 × S2 (including S3). They also introduced the Stein factorization. Levine [23]
clarified the structure of the singularities and studied, for instance, related immersions of the
3-manifold into R4. Burlet and de Rham’s result was extended by Saeki [33], who showed
that the 3-manifolds admitting a map without codimension 2 singularities (i.e., only definite
or indefinite folds) are the graph manifolds.
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Rubinstein and Scharlemann [32] constructed a map from the complement of a graph in a
3-manifold to R2 from a pair of Heegaard splittings and used this to bound the number of
stabilizations required to turn one splitting into the other. Much of the analysis is similar to
ours.

Also independently, Hatcher and Thurston [12] considered Morse functions on a orientable
surface to show that its mapping class group is finitely presented. To get a set of generators,
they considered one parameter deformations of the Morse function. Note that a one parameter
family of maps from Σ to R is a map from the 3-manifold Σ × [0, 1] to R2.

In a slightly different context, Hatcher’s proof of the Smale conjecture [13], that the space
of smooth 2-spheres in R3 is contractible, uses the Stein factorization of a map from S2 to R2.
Hong, McCullough, and Rubinstein recently combined this approach with the Rubinstein-
Scharlemann techniques in their proof of the Smale conjecture for lens spaces [15].

On the other side of the story, Turaev [37, 38, 39] introduced shadow surfaces as the most
natural objects on which the Reshetikhin-Turaev quantum invariants are defined. He observed
that you could construct both a 3-manifold and a 4-manifold with boundary the 3-manifold
from a shadow surface.

Thus several authors have been considering nearly the same objects (shadow surfaces on
the one hand and the Stein factorization of a map from M3 to R2 on the other hand) for
several years. The gleams are key topological data from the shadow surface point of view,
since they let you reconstruct the 3-manifold, but they were not explicitly described by the
authors writing on Stein factorizations, although it is implicitly present.

2. 4-manifolds from stable maps

In order to prove that 3-manifolds efficiently bound 4-manifolds, we start by sketching a
proof that 3-manifolds do bound 4-manifolds. In Section 4 we will analyze a version of the
proof in the PL setting and give a bound on the complexity of the resulting 4-manifold.

Consider an oriented, smooth, closed 3-manifold M3 and a generic smooth map f from M
to R2. At a regular value x ∈ R2, the inverse image f−1(x) consists of an oriented union of
circles. To construct a 4-manifold, we glue a disk to each of these circles away from critical
values and then extend across the singularities in codimension 1 and codimension 2.

2.1. Pants decompositions from Morse functions. To get some idea of what the sin-
gularities look like, we first do the analysis of extending across singularities one dimension
down: let’s prove that every oriented 2-manifold Σ2 bounds a 3-manifold. Consider a generic
smooth map f from Σ to R, that is, a Morse function. The inverse image of a regular value is
again a union of circles. Glue in disks to each of these circles as in Figure 1. More properly,
take Σ × [0, 1], pick a regular value in each component of R minus the singular set, and at-
tach 2-handles along the circles appearing in the inverse image of the chosen regular values.
The result is a 3-manifold with one boundary component which is Σ and other boundary
components corresponding to the singular values of f .

The singular values of a Morse function, locally in the domain Σ, are well-known: they are
critical points with a quadratic form which is definite (index 0 or 2, minima or maxima) or
indefinite (index 1, saddle points). Since our construction works with the entire inverse image
of a regular value, we need to understand the singularities locally in the range R; that is, we
need to know the connected components of inverse images of a critical value. This is easy for
the definite singularities.

Let p0 ∈ Σ be a saddle point, and let x0 ∈ R be its image. Near p0, f
−1(x0) is a cross. For

x above and below x0, f
−1(x) is locally the cross is smoothed out in the two possible ways.
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−→

Figure 1. Proving that every surface bounds a 3-manifold: A generic map
of a surface to R, with regular values marked and disks glued into the inverse
image of the regular values.

Note that the orientations of Σ and R induce an orientation of f−1(x) for all x ∈ R except at
critical points in Σ, so both of these smoothings must be oriented, so the arms of the cross
must be oriented alternating in and out. The connected component of f−1(x0) containing p0

must join the arms of the cross in an orientation-preserving way and is therefore a figure 8
graph . This implies that for a small interval I containing x0, f

−1(I) is a pair of pants.

Figure 2. Analysing the saddle singularity

To finish constructing the 3-manifold, recall that in the previous step we glued in disks at
all the regular values. Near this pair of pants, this means that we have closed off each hole in
the pair of pants and the boundary component we are trying to fill in is just a sphere, which
we can fill in with a ball.

An easier analysis shows that the surface we need to fill in the other cases of a maximum
or minimum is again a sphere.

Notice where the proof breaks down if we do not assume that Σ is oriented: there is then
another possibility for the inverse image of the critical value, with opposite arms of the cross

attached to each other: . In this case the surface we are left to fill in turns out to be

RP2, which does not bound a 3-manifold.
In a similar way we can analyse the possible stable singularities of a smooth map from

a 3-manifold M to R2. We glue in a disk (a 2-handle) to each circle in the inverse image
of a regular point, extend across codimension 1 singularities by attaching 3-handles (the
singularities look just like the singularities we analysed for the case of a surface, crossed with
R), and then consider the codimension 2 singularities. In Section 4.4, we will analyze the
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codimension 2 singularities (in the PL category) and see that the remaining boundary from
each codimension 2 singularity is S3, which can be filled in by attaching a 4-handle.

2.2. Stein factorization and shadow surfaces. For a more global view, we can consider
the Stein factorization f = g ◦ h of these maps. The Stein factorization of a map f with
compact fibers decomposes it as the composition of a map h with connected fibers and a map g
which is finite-to-one. That is, h is the quotient onto the space of connected components of
the fibers of f . See Figure 3 for an example.

h
−→

g
−→

Figure 3. The Stein factorization f = g ◦ h of the map in Figure 1.

For a stable map from an oriented surface Σ to R, the Stein factorization is generically a
1-manifold, with singularities from the critical points. Concretely, it is a graph with vertices
which have valence 1 (at definite singularities) or valence 3 (at indefinite singularities). The
surface is a circle bundle over this Stein graph Γ at generic points. Likewise, the 3-manifold we
constructed (with boundary Σ) is a disk bundle over Γ at generic points. In fact, the 3-manifold
collapses onto Γ. If we collapse all the valence 1 ends, we may think of Γ as representing a
pair-of-pants decomposition of Σ; each circle in the pair-of-pants decomposition bounds a disk
in the 3-manifold.

For a stable map from a 3-manifold to R2, on the other hand, the Stein factorization is
generically a surface. The codimension 1 singularities of the Stein surface are products of the
lower-dimensional singularities with an interval, and have one or three sheets meeting at an
edge at what we will call definite or indefinite folds, respectively. In codimension two there
are a few different configurations of how the surface can meet, the most interesting of which
is shown in Figure 4.

Figure 4. Some local models for the Stein factorization of a map from a 3-
manifold to R2 in codimension 0, 1, and 2. In each picture, the map to the
plane is the vertical projection.

The 3-manifold is a circle bundle over the Stein surface at generic points and the 4-manifold
is generically a disk bundle. As in the previous case, it turns out that the 4-manifold collapses
onto the Stein surface. The resulting surface is very close to a shadow surface.



10 COSTANTINO AND THURSTON

Unlike in the lower dimensional case, the surface does not determine the 4-manifold (or
the 3-manifold), even after you fix a standard local model of how the surface sits inside
the 4-manifold. The additional data you need are the gleams, numbers associated to the
2-dimensional regions of the surface; see Definition 3.7.

3. Shadow surfaces

We will now define shadow surfaces and shadows of 3-manifolds and give a few examples. In
the Section 3.2 we will extend the definitions to 3-manifolds with boundary and an embedded,
framed graph. For a more detailed though introductory account of shadows of 3- and 4-
manifolds, see [7]. Note that these are slightly different from the Stein surfaces mentioned in
Section 2.2. We prefer shadow surfaces as the fundamental object since they are a little more
symmetric and regular than Stein surfaces. From now on every manifold will be PL compact
and oriented unless explicitly stated and every polyhedron will be finite; we also recall that,
in dimension 3 and 4, each PL manifold has a unique smooth structure and vice versa.

3.1. Shadows of 3-manifolds. For simplicity, we will first define shadows in the case when
there is no boundary, appropriate for 3-manifolds without boundary or other decorations; in
the next section we will extend this.

Definition 3.1. A simple polyhedron P is a compact topological space where every point has
a neighborhood homeomorphic to an open set in one of the local models depicted in Figure 5.
The set of points without a local model of the leftmost type form a 4-valent graph, called
the singular set of the polyhedron and denoted Sing(P ). The vertices of Sing(P ) are called
vertices of P . The connected components of P \ Sing(P ) are called the regions of P . The
set of points of P whose local models correspond to the boundaries of the blocks shown in
the figure is called the boundary of P and is denoted ∂P ; P is said to be closed if it has
empty boundary. A region is internal if its closure does not touch ∂P . A simple polyhedron
is standard if every region of P is a disk, and hence Sing(P ) has no circle components.

Definition 3.2. Let W be a PL, compact and oriented 4-manifold. P ⊂ W is a shadow for
W if P is a closed simple sub-polyhedron onto which W collapses and P is locally flat in W ,
that is for each point p ∈ P there exists a local chart (U, φ) of W around p such that φ(P ∩U)
is contained in R3 ⊂ R4.

It follows from this definition that in the 3-dimensional slice, the pair (R3 ∩ φ(U),R3 ∩
φ(U ∩ P )) is PL-homeomorphic to one of the models depicted in Figure 5.

For the sake of simplicity, from now on we will skip the PL prefix and all the homeomor-
phisms will be PL unless explicitly stated. Not every 4-manifold admits a shadow: a necessary
and sufficient condition for W to admit one is that it has an handle decomposition containing
no handles of index greater than 2 [37, 6]. This imposes restrictions on the topology of W .
For instance, its boundary has to be a non-empty connected 3-manifold.

Definition 3.3. A shadow of an oriented, closed 3-manifold M is a shadow P of a closed
4-manifold W with M = ∂W .

Theorem 3.4 (Turaev [37]). Any closed, oriented, connected 3-manifold has a shadow.

Example 3.5. The simple polyhedron P = S2 is a shadow of S2 × D2 and hence of the
3-manifold S2 ×S1. In this case, P is a surface whose self-intersection number in the ambient
4-manifold is zero. Consider now the disk bundle over S2 with Euler number equal to 1,
homeomorphic to a punctured CP2. The 0-section of the bundle is a shadow of the 4-manifold
homeomorphic to P and so P is a shadow of CP2 −B4 and of its boundary: S3.
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Region Edge Vertex

Figure 5. For each point of a simple polyhedron embedded in a 4-manifold
there is a local chart (U, φ) in which the polyhedron is flat in the sense that is
embedded in a three dimensional plane and in this plane it appears as in one
of the three models shown in this figure.

The above example shows that the naked polyhedron by itself is not sufficient to encode the
topology of the 4-manifold collapsing on it. Turaev described [37] how to equip a polyhedron
embedded in a 4-manifold with combinatorial data called gleams which are sufficient to encode
the topology of the regular neighborhood of the polyhedron in the manifold. A gleam is a
coloring of the regions of the polyhedron with values in 1

2Z, with value modulo 1 given by a
Z2-gleam which depends only on the polyhedron.

In the simplest case, if P is a shadow of M and P is homeomorphic to an orientable surface,
then W is homeomorphic to an oriented disk bundle over the surface and the gleam of P is
the Euler number of the normal bundle of P in W .

We summarize in the following proposition the basic construction of the Z2-gleam and of
the gleam of a simple polyhedron. A framing for a graph G in a 3-manifold M is a surface
with boundary embedded in M and collapsing onto G.

Proposition 3.6. Let P be a simple polyhedron. There exists a canonical Z2-coloring of the
internal regions of P called the Z2-gleam of P . If P is embedded in a 4-manifold W in a
flat way, there is a canonical coloring of the internal regions of P by integers or half-integers
called gleams, such that the gleam of a region of P is an integer if and only if its Z2-gleam is
zero. Moreover, if ∂P ⊂ ∂W is framed, then the gleam can also be defined on the non-internal
regions of P .

Proof. Let D be an internal region of P and let D be the abstract compactification of the
(open) surface represented by D. The embedding of D in P extends to a map i : D → P which
is injective on int(D), locally injective on ∂D and sends ∂D into Sing(P ). Using i we can
“pull back” a small open regular neighborhood of D in P and construct a simple polyhedron
U(D) collapsing on D. Extend i as a local homeomorphism i′ : U(D) → P whose image is
contained in a small regular neighborhood of the closure of D in P . In the particular case
when i is an embedding of D in P , U(D) is the regular neighborhood of D in P and i′ is its
embedding in P . In general, U(D) has the following structure: each boundary component of
D is glued to the core of a band (annulus or Möbius strip) and some small disks are glued
along half of their boundary on segments which are properly embedded in these bands and cut
transversally once their cores. We define the Z2-gleam of D in P to be equal to the reduction
modulo 2 of the number of Möbius strips used to construct U(D). This coloring only depends
on the combinatorial structure of P .

Let us now suppose that P is embedded in a 4-manifold W , and let D, D, i : D → P , U(D)
and i′ be defined as above. Using i′, we can “pull back” a neighborhood of D in W to an
oriented 4-ball B4 collapsing on U(D). The regular neighborhood of a point p0 ∈ ∂D ⊂ U(D)
sits in a 3-dimensional slice B3

0 of B4 where it appears as in Figure 6. The direction along
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Figure 6. The picture sketches the position of the polyhedron in a 3-
dimensional slice of the ambient 4-manifold. The horizontal plane is our region
of interest D. The direction indicated by the vertical double arrow is the one
along which the two regions touching the horizontal one get separated.

which the other regions touching ∂D get separated gives a section of the bundle of orthogonal
directions to D in B4. (If p0 ∈ ∂P , use the framing of ∂P in place of the other regions.
By an orthogonal direction we mean a line in the normal bundle, not a ray.) This section
can be defined on all ∂D and the obstruction to extend it to all of D is an element of
H2(D,∂D;π1(S

1)). Since B4 is oriented, we can canonically identify this element with an
integer and define the gleam of D to be half this number. 3.6

We can also go the other direction, from gleams to 4-manifolds.

Definition 3.7. A gleam on a simple polyhedron P is a coloring on all the regions of P with
values in 1

2Z such that the color of each internal region is integer if and only if its Z2-gleam
is zero.

Theorem 3.8 (Reconstruction of 4-manifold [37]). Let P be a polyhedron with gleams g;
there exists a canonical reconstruction associating to P and g a pair (WP , P ) where WP is a
PL, compact and oriented 4-manifold containing a properly embedded copy of P with framed
boundary, onto which it collapses and such that the gleam of P in WP coincides with g. The
pair (WP , P ) can be explicitly reconstructed from the combinatorics of P and from its gleam.
Moreover, if P is a polyhedron embedded in a PL and oriented manifold W , ∂P is framed, and
g is the gleam induced on P as explained in the Proposition 3.6, then WP is homeomorphic
to the regular neighborhood of P in W .

Hence, to study 4-manifolds with shadows (and their boundaries), one can either use ab-
stract polyhedra equipped with gleams or embedded polyhedra.

From now on, each time we speak of a shadow of a 3-manifold as a polyhedron we will be
implicitly taking a 4-dimensional thickening of this polyhedron whose boundary is the given
3-manifold or, equivalently, a choice of gleams on the regions of the polyhedron.

Example 3.9. Let M be a 3-manifold which collapses onto a simple polyhedron P whose
regions are orientable surfaces; it is straightforward to check that the Z2-gleam of P is every-
where zero. Let us then equip P with the gleam which is zero on all the regions; Turaev’s
thickening construction produces the 4-manifold W = M × [−1, 1] and P is a shadow of ∂W ,
homeomorphic to the double of M .

3.2. Shadows of framed graphs in manifolds with boundary. In this subsection we
extend the definition of shadows to pairs (M,G) where M is a 3-manifold, possibly with
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boundary and G ⊂M is a (possibly empty) framed graph with trivalent vertices and univalent
ends. To do this, we allow the simple polyhedron to have boundary.

Definition 3.10. A boundary-decorated simple polyhedron P is a simple polyhedron where
∂P is equipped with a cellularization whose 1-cells are colored with one of the following colors:
i (internal), e (external) and f (false). We can correspondingly distinguish three subgraphs
of ∂P intersecting only in 0-cells and whose union is ∂P : let us call them ∂iP , ∂eP , and ∂fP .
A boundary-decorated simple polyhedron is said to be proper if ∂f (P ) = ∅.

We can turn decorated polyhedra into shadows. The intuition is that ∂f (P ) is ignored,
∂e(P ) is drilled out to create the boundary of the 3-manifold, and ∂i(P ) gives a trivalent
graph.

Definition 3.11. Let P be a boundary-decorated simple polyhedron, properly embedded in
a 4-manifold W which collapses onto P with a framing on ∂i(P ). Let M be the complement
of an open regular neighborhood of ∂eP in ∂W , and let G be a framed graph whose core is
∂i(P ). Then we say that P is a shadow of (M,G) and, if ∂fP = ∅, we call it a proper shadow.
As before, we can define a gleam on each region of P that does not meet ∂f (P ) ∪ ∂e(P ).

Remark 3.12. Turaev’s Reconstruction Theorem extends to the case of decorated polyhedra
equipped with gleams on the regions not touching ∂eP ∪ ∂fP .

Remark 3.13. The genus of a boundary component of M equals the rank of H1 of the
corresponding component of ∂e(P ), since the Euler characteristic of the handlebody filling the
boundary component equals the Euler characteristic of the graph. In particular, components
of ∂e(P ) corresponding to sphere boundary components of M are contractible and so if ∂f (P )
is empty, M does not have any sphere boundary components that do not meet G.

Theorem 3.14 (Turaev [37]). Let M be a oriented, connected 3-manifold and let G be a
properly-embedded framed graph in M with vertices of valence 1 or 3. If M has no spherical
boundary components that do not meet G, the pair (M,G) has a proper, simply-connected
shadow.

Let us now show how to construct a shadow of a pair (M,G) given a shadow P of (M, ∅).
Recall that M is the boundary of a 4-manifold collapsing through a projection π onto P . Up
to small isotopies, we can suppose that the restriction to G of π is transverse to Sing(P ) and
to itself; that is, it does not contain triple points or self tangencies and is injective on the
vertices of T . Let us also suppose that it misses ∂f (P ). Then the mapping cylinder of the
projection of G in P is contained in the thickening WP of P and WP collapses on it. (Recall
that the mapping cylinder is P ∪ G × [0, 1], with G × {0} identified with π(G) ⊂ P .) By
Proposition 3.6 we can equip this polyhedron with gleams. Coloring G×{1} with the color i
we get a shadow of the pair (M,G), coloring it with e we get a shadow of M − U(G) where
U(G) is a small open regular neighborhood of G in M , and coloring it with f we get another
shadow of M (necessarily not proper).

As a warm up, note that a flat disk D whose boundary has color f is a shadow of the pair
(S3, ∅). The open solid torus Th = π−1(int(D)) can be imagined as the regular neighborhood
of the closure of the z-axis in R3, embedded inside S3 in the standard way. The fibers of
π : S3 → D run parallel to the z-axis away from ∞ and are unknotted. The projection of the
solid torus Tv = S3 \ Th is ∂D.

With the setup above, we now apply the projection construction to the case of a link L
in S3. Up to isotopy we can suppose that L ⊂ Th and that its projection to D is generic;
so it is sufficient to consider a standard diagram of L in the unit disk in R2. The mapping
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Figure 7. In the left part of the picture we sketch the construction described
in Example 3.15; the resulting shadow is drawn in the right part where, for
the two internal regions we write their gleams. Note that, after the collapse
of the polyhedron DL along its free boundary component (as indicated by the
arrows), the only vertex surviving is the central one.

+1

Figure 8. The shadow obtained for the Hopf link.

cylinder DL of π : L→ D is obtained from D by gluing an annulus for each component of L
and marking the free boundary components of these annuli with the color i. We can further
collapse the region of DL containing ∂fD; this produces a simple sub-polyhedron of DL, which
we call PL. By construction ∂PL = ∂iPL = L.

In general, PL has some vertices, each corresponding to a crossing in the diagram of L.
However, some of the crossings in that diagram of L do not generate vertices in PL because
they disappear when we pass from DL to PL.

Example 3.15. Applying the construction to a figure eight knot in a standard position, one
gets a shadow of its complement containing only one vertex: Three of the four crossings of
the diagram are contained in the boundary of the region to be collapsed in PL. See Figure 7.

Example 3.16. Consider a standard Hopf link in Th. The polyhedronH one gets by applying
the above procedure contains no vertices: the two crossings of the standard projection of the
Hopf link in R2 touch the region of D which is collapsed. The resulting polyhedron can be
obtained by gluing a disk to the core of an annulus; its embedding in B4 is such that ∂H is
the Hopf link in ∂B4. See Figure 8.
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Example 3.17. Applying this construction to the graph ∂P in Figure 19 (with the projection
shown there) gives the shadow in Figure 20.

3.3. Shadow complexity and its basic properties. We will now define a notion of shadow
complexity and study how it behaves under combining manifolds, either via connect sum
(gluing along spheres) or torus connect sum (gluing along torus boundaries).

Definition 3.18. For M be an oriented 3-manifold (possibly with boundary) and T ⊂ M a
trivalent graph, the shadow complexity sc(M,T ) of the pair (M,T ) is the minimal number of
vertices of a boundary-decorated shadow of (M,T ).

Remark 3.19. If M has no spherical boundary components, it doesn’t matter whether or not
we allow the shadow to have false edges in this definition: If we have a decorated shadow P1

for (M,T ), it can be shown that the polyhedron P2 obtained by iteratively collapsing all the
regions of P1 containing a false boundary edge is a complex obtained by gluing some graphs
to a (possibly disconnected) simple polyhedron. This complex P2 can be modified, without
adding vertices, to give a shadow P3 for (M,T ) without false edges and no more vertices
than P1; the modifications are generally similar to those in Lemma 3.22, with a few special
constructions for cases where the complex is contractible (so M is S3) or the graph has non-
trivial loops, producing S1 × S2 summands in the prime decomposition. All of these special
cases are graph manifolds. By Proposition 3.31 they can be treated without creating any
vertices.

Such a notion of complexity is similar to the usual notion of complexity of 3-manifolds
introduced by S. Matveev [27]:

Definition 3.20. The complexity c(M) of a 3-manifold M is the minimal number of vertices
in a simple polyhedron P contained in M which is a spine for M or M minus a ball.

Both notions are based on the least number of vertices of a simple polyhedron describing
(in a suitable sense) the given manifold. Despite this similarity, shadow complexity is not
finite. That is, the set of manifolds having complexity less than or equal to any given integer
is infinite. For instance, the lens spaces L(p, 1) have a shadow surface which is S2 with gleam p
and so they all have shadow complexity 0.

To reduce the set of attainable manifolds to a finite number and bound the complexity of
the 4-manifold, we also need to bound the gleams.

Definition 3.21. The gleam weight |g| of a shadow polyhedron (P, g) is the sum of the
absolute values of the gleams on the regions of P .

Lemma 3.22. Shadow complexity is sub-additive under connected sum: for M1, M2 two
oriented 3-manifolds containing graphs T1, T2,

sc(M1 #M2, T1 ∪ T2) ≤ sc(M1, T1) + sc(M2, T2).

Proof. Let P1 and P2 be two shadows for (M1, T1) and (M2, T2) having the least number of
vertices, and let W1 and W2 the corresponding 4-thickenings. To construct a shadow of the
connect sum, let x1 and x2 by two points in regions of P1 and P2, respectively, and join them
by an arc. The polyhedron we get can be embedded as a shadow of the boundary connected
sum of W1 and W2. This polyhedron is not simple so we modify the construction slightly:
roughly speaking, we put our fingers at the two ends of the arc and the push P1 towards P2

along the arc until they meet in the middle along a disk. More precisely, identify a closed
regular neighborhood of x1 and x2, and put gleam 0 on the resulting disk region. 3.22
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Question 3.23. Is shadow complexity additive under connected sum?

If the answer to the above question were “yes”, a consequence would be the following:

Lemma 3.24. If shadow complexity is additive under connected sum, then for any closed
3-manifold M ,

sc(M) ≤ 2c(M),

where c(M) is Matveev’s complexity.

Proof. Let P be a minimal spine of M , i.e., a simple polyhedron whose 3-thickening is home-
omorphic to the complement M ′ of a ball in M and containing the least possible number of
vertices. Then P , equipped with gleam 0 on every region, is a shadow of M ′ × [−1, 1], with
boundary M #M . Therefore sc(M #M) ≤ c(M) and the thesis follows. 3.24

It is worth noting that the consequence of the above lemma is true for all the 3-manifolds
with Matveev’s complexity up to 9: we were able to check the inequality for all of them using
Proposition 3.27 and the basic blocks exhibited by Martelli and Petronio [26].

We next show that shadow complexity does not increase under Dehn surgery.

Lemma 3.25. Let L be a framed link contained in an oriented 3-manifold M and P be a
shadow of (M,L). A manifold M ′ obtained by Dehn surgery on L has a shadow obtained by
capping each component of ∂P by a disk.

Proof. Let W be a 4-thickening of P . Surgery of M along a component of L with integer
coefficients corresponds to gluing a 2-handle to W . Gluing the core of this 2-handle to P gives
a shadow of W , and the definition of Dehn surgery on a framed link ensures that the gleam
on the capped region does not change. 3.25

Remark 3.26. Lemma 3.25 together with the projection construction described in Section 3.2
give an easy proof that any closed 3-manifold has a shadow, since any 3-manifold can be
presented by an integer surgery on a link in S3.

Proposition 3.27. Let M1 and M2 be two oriented manifolds such that both ∂M1 and ∂M2

contain torus components T1 and T2. Let P1 and P2 be shadows of M1 and M2, and let M
be any 3-manifold obtained by identifying T1 and T2 with an orientation-presevering homeo-
morphism. Then M has a shadow which can be obtained from P1 and P2 without adding any
new vertices. In particular, any Dehn filling of a 3-manifold can be described without adding
new vertices.

Proof. Let W1 and W2 be the 4-thickenings of P1 and P2. The tori T1 and T2 are equipped
with the meridians µ1 and µ2 of the external boundary components l1 and l2 of P1 and P2.
Also fix longitudes λi on them. The orientation-reversing homeomorphism identifying T2

and T1 sends µ2 into a simple curve aλ1 + bµ1 and λ2 into a curve cλ1 + dµ1.
We now describe how to modify P1 and construct a shadow P ′

1 of M1 embedded in a new
4-manifold W ′

1 such that the meridian induced by P ′
1 on T1 is the curve aλ1+bµ1. To construct

P ′
1 let us construct a shadow of the Dehn filling of M1 along T1 whose meridian is aλ1 + bµ1.

It is a standard fact that any surgery on a framed knot can be translated into an integer
surgery over a link as shown in Figure 9.

With the notation of the figure, we glue n copies of the polyhedron H of Example 3.16
to P1 so that one component of ∂H1 is identified with l1, Hj is glued to Hj+1 and Hj−1 and
the free component of ∂Hn is a knot l′1. On the level of the boundary of the thickening we
are gluing n copies of the complement of the Hopf link in S3 to M . Since the complement
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Figure 9. In this picture we show how to transform a rational surgery with
coefficient r over a knot into an integer surgery over a link. The coefficient ai
are those of the continued fraction expansion of r, namely those of the equality:

r = a0 −
1

a1 −
1

a2···−
1

an

+1

+1

+1

+1

a0 − 1
a1 − 2

a2 − 2

an−1 − 2

an − 1

.
.
.

Figure 10. The shadow with no vertices corresponding to the surgeries on
the chain in Figure 9. Intrinsically in the 4-manifold, this is equivalent to a
chain of spheres, each intersecting the next in just one point.

of the Hopf link is T 2 × [0, 1] the final 3-manifold is unchanged. But now the polyhedron
P ′

1 = P1∪H1∪ . . .∪Hn can be equipped with gleams so to describe the operation of Figure 9.
The meridian µ′1 of l′1 is now by construction the curve which, expressed in the initial base of
T1, is aλ1 + bµ1. Hence we can now glue P ′

1 and P2 along l′1 and l2 and choose suitably the
gleam of the region of P ′

1 ∪ P2 to obtain the desired homeomorphism. 3.27

Corollary 3.28. Shadow complexity is sub-additive under torus sums, i.e., under the gluing
along toric boundary components through orientation reversing homeomorphisms.
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One special case of torus sums is surgery, gluing in a solid torus. Surgery can decrease any
reasonable notion of complexity, so shadow complexity cannot be additive under torus sums
in general, hence we ask the following:

Question 3.29. Let M1 and M2 be two oriented 3-manifolds with incompressible torus
boundary components T1 and T2. Is it true that any torus sum of M1 and M2 along T1

and T2 has shadow complexity equal to sc(M1) + sc(M2)?

3.4. Complexity zero shadows. In this subsection we classify the manifolds having zero
shadow complexity.

Definition 3.30. An oriented 3-manifold is said to be a graph manifold if it can be decom-
posed by cutting along tori into blocks homeomorphic to solid tori and R× S1, where R is a
pair of pants (i.e., a thrice-punctured sphere).

Graph manifolds can also be characterized as those manifolds which have only Seifert-
fibered or torus bundle pieces in their JSJ decomposition.

Proposition 3.31 (Complexity zero manifolds). The set of oriented 3-manifolds admitting
a shadow containing no vertices coincides with the set of oriented graph manifolds.

Proof. To see that any graph manifold has a shadow without vertices, notice that a disk with
boundary colored by e is a shadow of a solid torus and, similarly, a pair of pants R is a
shadow of R × S1. Proposition 3.27 shows that any gluing of these blocks can be described
by a shadow without vertices.

For the other direction, we must show that if a 3-manifold M has a shadow P without
vertices, then it is a graph manifold. The polyhedron P can be decomposed into basic blocks
as follows. Since P contains no vertices, a regular neighborhood of Sing(P ) in P is a disjoint
union of blocks of the following three types:

(1) the product of a Y -shaped graph and S1;
(2) the polyhedron obtained by gluing one boundary component of an annulus to the core

of a Möbius strip; and
(3) the polyhedron obtained by considering the product of a Y -shaped graph and [−1, 1]

and identifying the graphs Y × {1} and Y ×{−1} by a map which rotates the legs of
the graph of 2π

3 .

Let π : M → P be the projection of M on P . The complement of the above blocks in P is a
disjoint union of (possibly non-orientable) compact surfaces. The preimage under π of each
of these surfaces is a (possibly twisted) product of the surface with S1 and hence is a graph
manifold. Moreover, the preimage under π of the above three blocks is a 3-dimensional sub-
manifold of M which admits a Seifert fibration (induced by the direction parallel to Sing(P ))
and hence is graph manifold. 3.31

3.5. Decomposing shadows. In Proposition 3.31, we saw how to decompose a shadow with
no vertices into elementary pieces. For more general shadows, we will need a new type of block.
For simplicity, we will suppose that the boundary of P is all marked “external” and that the
singular set Sing(P ) of the shadow P is connected and contains at least one vertex. (This last
can always be achieved by modifying P with suitable local moves.) Let P be a shadow for
a 3-manifold M , possibly with non empty boundary, and let π : M → P be the projection.
Then we have the following:

Proposition 3.32. The combinatorial structure of P induces through π−1 a decomposition
of M into blocks of the following three types:
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(1) products F × S1 where F is an orientable surface, or F ×̃ S1 with F non-orientable;
(2) products of the form R× [−1, 1], where R is a pair of pants; and
(3) genus 3 handlebodies.

Proof. Decompose the polyhedron P by taking regular neighborhoods of the vertices and then
regular neighborhoods of the edges in the complement of the vertices. This decomposes P
into blocks of the following three types:

(1) surfaces (corresponding to the regions);
(2) pieces homeomorphic to the product of a Y -shaped graph and [−1, 1]; and
(3) regular neighborhoods of the vertices.

The preimage of the first of these blocks is a block of the first type in the statement. Let
us consider the preimages of the products Y × [−1, 1]. The 4-dimensional thickening of one
of these blocks is the product of the 3-dimensional thickening Y of the Y -graph and [−1, 1],
where Y is a 3-ball containing a properly embedded copy of Y and collapsing on it. The
preimage in M of this block is the product of [−1, 1] with ∂Y− ∂Y , which is a pair of pants.

Let us denote by V the simple polyhedron formed by a regular neighborhood of a vertex
in P . We are left to show that π−1(V ) is a genus 3-handlebody. The 4-thickening of V
is V × [−1, 1], where V is the 3-dimensional thickening of V , i.e., a 3-ball into which V is
properly embedded. In particular, ∂V ⊂ ∂V is a tetrahedral graph and so ∂V is split into
four disks by ∂V . One can decompose ∂(V × [−1, 1]) as ∂V × [−1, 1] ∪ ∂V × {−1, 1}. The
part of this boundary corresponding to M is the complement of ∂V and is homeomorphic to
V×{−1}∪(∂V−∂V )× [−1, 1]∪V×{1}; this is composed of two 3-balls connected through 4
handles of index one (each of which corresponds to one of the four disks into which ∂V splits
∂V). 3.32

Note that boundary the blocks of the second two types in Proposition 3.32 are themselves
naturally decomposed into annuli and pairs of pants.

3.6. A family of universal links. Now suppose further that P (and therefore M) has no
boundary, and consider the union of the blocks of the second two types in Proposition 3.32.
These two types of blocks meet in pairs of pants, and the remaining boundary is obtained
from the annuli; therefore, we are left with a manifold SP with boundary a union of tori,
which depends only on the polyhedron P and not on the gleams. (The original manifold M
can be obtained by surgery on SP .)

In this subsection we show that SP is a hyperbolic cusped 3-manifold whose geometrical
structure can be easily deduced from the combinatorics of P . We furthermore show how to
present SP as the complement of a link in a connected sum of copies of S2 × S1.

As before, let P be a simple polyhedron (now with no boundary) such that Sing(P ) is
connected and contains at least one vertex; let c(P ) be the number of vertices. Let S(P ) be
the regular neighborhood of Sing(P ) in P , which we think of as a simple polyhedron with
boundary colored “internal”. Let l1, . . . , lk be the components of ∂S(P ) in P . To each li
we assign a positive integer number ci called its valence by counting the number of vertices
touched by the region Ri of S(P ) containing li and an element of Z2 given by the Z2-gleam
gi of the region of S(P ) containing li.

Let XP be the 4-thickening of S(P ) provided by Turaev’s Reconstruction Theorem; XP

collapses onto a graph with Euler characteristic χ(S(P )) = −c(P ) and so ∂XP is a connected
sum of c(P ) + 1 copies of S2 × S1. Moreover, ∂S(P ) is a link LP in ∂XP . The manifold SP
introduced earlier is the complement of LP in ∂XP .
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SP has a natural hyperbolic structure which we can understand in detail, as we will now
see.

Proposition 3.33. For any standard shadow surface P , SP can be equipped with a complete,
hyperbolic metric with volume equal to 2voctc.

Proof. The main point of the proof is to construct an hyperbolic structure on a block corre-
sponding to a vertex in S(P ) and then to show that these blocks can be glued by isometries
along the edges of S(P ).

Let us realize a block of type 3 as follows. In S3, pick two disjoint 3-balls B0 and B∞ forming
neighborhoods respectively of 0 and ∞. Connect them using four 1-handles Li, i = 1, . . . , 4,
positioned symmetrically, as shown in Figure 11.

In the boundary of the so obtained genus 3-handlebody consider the 4 thrice-punctured
spheres formed by regular neighborhoods of the theta-curves connecting B0 and B∞ each of
which is formed by 3-segments parallel to the cores of three of the 1-handles. These four
pants are the surfaces onto which the blocks of type 2 in Proposition 3.32 are to be glued.
Indeed, these blocks are of the form R × [−1, 1] where R is a thrice punctured sphere, and
they are glued to the blocks of type 3 along R× {−1, 1}. We will now exhibit an hyperbolic
structure on this block so that these 4 thrice-punctured spheres become totally geodesic and
their complement is formed by 6 annuli which are cusps of the structure.

Consider a regular tetrahedron in B0 whose barycenter is the center of B0 and whose
vertices are directed in the four directions of the 1-handles Li. Truncate this tetrahedron at
its midpoints as shown in Figure 11. The result is a regular octahedron O0 contained in B0,
with 4 faces (called “internal”) corresponding to the vertices of the initial tetrahedron and
4 faces (called “external”) corresponding to the faces of the initial tetrahedron. Do the same
construction around ∞ and call the result O∞. The handlebody B0 ∪ B∞ ∪ Li, i = 1, . . . , 4
can be obtained by gluing the internal faces of O0 to the corresponding internal faces of
O∞. The remaining parts of the boundaries of the two octahedra are four spheres each with
three ideal points and triangulated by two triangles. If we put the hyperbolic structure of the
regular ideal octahedron on both O0 and O∞, then, after truncating with horospheres near the
vertices, we get the hyperbolic structure we were searching for: the geodesic thrice-punctured
spheres come from the boundary spheres without their cone points and the annuli are the
cusps of the structure. Each (annular) cusp has an aspect ratio of 1

2 since it is the union of
two squares, the sections of the cusps of an ideal octahedron near a vertex. To show that
these blocks can be glued and form a hyperbolic manifold SP it suffices to notice that the
thrice-punctured spheres in a block of type 3 are all isometric. 3.33

Proposition 3.34. The Euclidean structure on the cusp corresponding to a boundary com-
ponent li of S(P ) is the quotient of R2 under the two transformations (x, y) ∼= (x+ 2, y) and,
(x, y) ∼= (x+ gi, y + ci).

Proof. The cusp corresponding to li is obtained by gluing some of the annular cusps in the
blocks of the vertices: each time li passes near a vertex v of S(P ), we glue the annular cusp
corresponding to li in the block of v (note indeed that in this block there are exactly 6 cusps,
one for each of the six regions passing near the vertex). Since each annular cusp has a section
which is an annulus whose core has length 2 and height is 1, following li and gluing the
cusps corresponding to the vertices we meet, we construct an enlarging annular cusp; when
we conclude a loop around li, we glued ci cusps and we got an annulus whose core has length
2 and whose height is ci. Then, we are left to glue the two boundary components of this
annulus to each other, and the combinatorics of S(P ) forces us to do that by applying gi half
twists to one of the two components. 3.34
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B0

B∞

L1

L2

L3

L4

Figure 11. In this picture we show how to connect the two balls B0 and B∞

in S3 using the four legs Li, i = 1, . . . , 4. In the center of B0, we visualize how
the regular octahedron O0 is embedded. In the figure, the four internal faces
are directed towards the four legs of the handlebody since they are identified
with the four internal faces of the octahedron O∞.

Finally, we give a more explicit description of the link LP in terms of surgery on S3.

Proposition 3.35. SP can be presented as the complement of a link LP in the manifold
obtained by surgering S3 over a set of c(P ) + 1 unknotted 0-framed meridians (where c(P )
is the number of vertices of P ). Moreover this link can be decomposed into blocks like those
shown in Figure 12.

Proof. Let T be a maximal tree in S(P ) and consider its regular neighborhood, a contractible
sub-polyhedron P ′ of S(P ); S(P ) can be recovered from P ′ by gluing to P ′ the blocks corre-
sponding to the edges of S(P ) \ T . Let B be the 3-dimensional thickening of P ′, and let X ′

be B × [−1, 1], the 4-dimensional thickening of P ′. The trivalent graph ∂P ′ is contained in
∂B×{0} ⊂ ∂X ′ = S3. Moreover we can push P ′ into ∂X ′ by an isotopy keeping its boundary
fixed. Then ∂P ′ is the boundary of a contractible polyhedron in B3 and hence is composed
by joining some copies of the blocks shown in the upper-left part of Figure 12 by means of
triples of parallel strands. Each time we glue back to P ′ ⊂ X ′ a block corresponding to an
edge of S(P ) \ T , we are gluing to X ′ a 1-handle connecting neighborhoods of two vertices,
say v1 and v2, of ∂P ′. The boundary of the polyhedron we get that way is obtained from ∂P ′

by connecting the strands around v1 and those around v2 according to the combinatorics of
S(P ) and letting it pass over the 1-handle once: this can be represented by a passage through
a 0-framed meridian. Performing this construction on all the edges of S(P ) − T one gets the
link LP of the form described in the statement. 3.35

As already noticed, any closed oriented 3-manifold has a shadow; moreover, up to applying
some basic transformations to such a shadow, we can always suppose it to be standard. This
has the following consequence:
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0

0

0

0

Figure 12. In the upper part of the picture we draw the basic blocks com-
posing the links LP . In the lower part we work out an example: at the left
part we show an example of S(P ) (the curves represent ∂S(P )). In the right
part we encircle the complement of a maximal tree of Sing(P ) with 0-framed
meridians.

Proposition 3.36. The family of links LP , with P ranging over all standard polyhedra, is
“universal”: any closed orientable 3-manifold can be obtained by a suitable integral surgery
over an element of this family.

Since the number of standard polyhedra with at most c vertices is finite, the family of
universal links LP has a natural finite stratification given by the complexity of the polyhedron
from which each element of the family is constructed. Using Jeff Weeks’ program SnapPea, we
were able to check that all but 4 manifolds of the cusped census can be obtained by surgering
over links corresponding to polyhedra with at most 2 vertices.

The following inequality from the introduction is a corollary of Gromov’s results [8]:

Theorem 3.37. A 3-manifold M , with boundary empty or a union of tori, has shadow
complexity of at least (vtet/2voct)‖M‖.

Proof. In any shadow for M with n vertices, the preimage of a neighborhood of the singular
set is the disjoint union of pieces which either have the hyperbolic structure described above
(if there is at least one vertex in the connected component) or are graph manifolds (as in
Proposition 3.31). The total Gromov norm of these pieces is therefore (2voct/vtet)n. M can
be obtained from these pieces by gluing some additional pieces from the regions: each region
contributes a surface cross S1. Since the Gromov norm is non-increasing under gluing along
torus boundaries [8], n must be at least vtet/2voct · ‖M‖. 3.37

Theorem 3.38. A 3-manifold M with Gromov norm G has at least G/10 crossing singular-
ities in any smooth, stable map π : M → R2.

Proof. Applying the construction underlying the proof of Theorem 4.2, one can construct M
as a Dehn filling of a link LP for a suitable simple polyhedron P ; moreover, each singularity
of the second type (as in Figure 18) produces a pattern which can be triangulated with 10
regular ideal hyperbolic tetrahedra, and each singularity of the first type (as in Figure 16)
can be obtained as the union of two regular ideal octahedra. Hence M is the Dehn filling
of an hyperbolic cusped 3-manifold whose volume is no more than 10svtet, where s is the
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number of crossing singularities of π and vtet is the volume of the regular ideal tetrahedron.
The statement follows. 3.38

4. Shadows from triangulations

In this section, we exhibit a construction which, given a 3-manifold M triangulated with
t tetrahedra (possibly with some ideal vertices), produces a shadow of the manifold containing
a number of vertices bounded from above by kt2 where k is a constant which does not depend
on M . This produces a 4-manifold whose shadow complexity (the least number of vertices of a
shadow of the manifold) can be bounded by kt2 and whose boundary is the given 3-manifold.
Furthermore, we bound the gleam weight and the number of 4-simplices needed to construct
the 4-manifold.

Because this is the central point of the paper, we go into some details and give an explicit
estimate for k and the bounds on the gleam weights.

From now on, by a triangulation we mean a ∆-triangulation, an assembly of simplices glued
along their faces, possibly with self-gluings.

Definition 4.1. Let M be an oriented 3-manifold whose boundary does not contain spherical
components. A partially ideal triangulation of M is a triangulation of the singular manifold
M/∂M (obtained by identifying each boundary component to a point) whose vertices con-
tain the singular points corresponding to the boundary components of M . An edge-distinct
triangulation is a triangulation where the two vertices of each edge (simplex of dimension 1)
are different.

This section is devoted to proving the following theorem which is the main tool in proving
the results announced in the introduction:

Theorem 4.2. Let M is an oriented 3-manifold, possibly with boundary, and let T be a
partially ideal, edge-distinct triangulation of M containing t tetrahedra. There exists a shadow
P of M which is a boundary-decorated standard polyhedron, contains at most 18t2 vertices,
and has gleam weight at most 108t2.

Corollary 4.3. With the assumptions an in Theorem 4.2, except that T is not necessarily
edge-distinct, then M has a shadow which is a standard polyhedron, contains at most 242 ·18t2

vertices, and has gleam weight at most 242 · 108t2.

Proof. Apply Theorem 4.2 to the barycentric subdivision of T , which has 24t tetrahedra and
is edge-distinct. 4.3

Proof of Theorem 4.2. The main idea of the proof is to pick a map from M/∂M to R2,
stabilize its singularities and associate to this map its Stein factorization, which turns out to
be a decorated shadow of M . We split the proof of the theorem into 6 main steps.

(1) Define an initial projection map. We map all the vertices to the boundary of the unit
disk, so that they don’t interfere with the bulk of the construction.

(2) Modify the projection map to get a map which is stable in the smooth sense. This
involves modifying the projection in a neighborhood of the edges, in a uniform way
along the edge.

(3) Construct the shadow surface over the complement of a neighborhood of the codimen-
sion 2 singularities of the map. Here the shadow surface is just the Stein factorization
as described in the introduction.
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p1

p2

p3

p4

Figure 13. In this figure we summarize the notation we fixed in the first
step. The tetrahedron spanned from the vertices vi is a tetrahedron of the
triangulation T of M/∂M .

(4) Extend the construction to the neighborhoods of the codimension 2 singularities. This
involves analyzing the two interesting types of singularities. For one of the singularities
we modify the Stein factorization slightly to get a shadow surface.

(5) Estimate the complexity of the resulting shadow. Essentially, the vertices may come
from interactions between a pair of edges, and there are quadratically many such
interactions.

(6) Estimate the gleams on the regions of the shadow.

4.1. The initial projection. Pick a generic map π from the vertices v1, . . . , vn of T to the
unit circle in R2 and call p1, . . . , pn their images. Extend π to all of T in a piecewise-linear
fashion to a map from M/∂M to the unit disk (see Figure 13). Pick a small disk around
each pi, and let M ′ be the complement in M/∂M of the preimage of these disks; M ′ is
homeomorphic to M minus a ball around each non-ideal vertex.

Let G be the image (via π) in R2 of the union of the edges of T . If p is any point in R2 \G
then π−1(p) is a set (possibly empty) of circles in M ′ since it is a union of segments properly
embedded in the tetrahedra of T never meeting the edges of T . We may think that the set of
“critical values” of π is contained in G.

4.2. A stable projection. The boundary of M ′ in M/∂M is a union of “vertical” surfaces,
surfaces which project to segments of small circles around the points pi. In the next sections
we will restrict ourselves to M ′ and construct a Stein factorization of π : M ′ → R2, which
turns out to be a shadow of M ′; we will then modify it to get a shadow for M .

The image of the edges ei, i = 1, . . . , r of T form a set of segments fi in the unit circle.
Since two edges ei and ej could have the same endpoints in T , some fi could coincide. To
avoid this, we modify π slightly around small regular neighborhoods of the edges in M ′ so
that the projections of different edges with the same endpoints in T are distinct segments
in the unit circle running parallel to each other. This can be done by operating in disjoint
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Preimage of zero

Preimage of −1/2

Preimage of 1/2

1

1

1

−1

−1

−1

−→

Figure 14. Stabilizing the map sending the vertices of an hexagon over [−1, 1]
alternatively in ±1. In the right part we show the preimages of the two singular
values (±1

2) of the stabilized map. The lower diagram is another representa-
tion, where the projection to R is the projection onto the vertical axis.

small cylindrical neighborhoods of the edges, since no vertices of T are contained in M ′. The
resulting map is no longer PL.

Let us keep calling G the graph which is the (modified) image of the fi. The edges of G are
now straight segments away from neighborhoods of the pi, with bends near the pi. We now
study the behavior of the projection map on a cylindrical regular neighborhood Ci of each
edge ei of T . Transverse to ei in Ci is a triangulated disk with one interior vertex from ei
and triangles coming from the tetrahedra of T incident to ei; the projection of this disk in R2

is a segment transverse to fi. Let πt be the map from this transverse disk to the transverse
segment. The map from Ci to the neighborhood of fi is the product of πt with an interval,
hence it suffices to study πt.

For instance, consider the following possibility for πt: let Q be a square triangulated into
four triangles by coning from the center, let A, B, C, D be its vertices in cyclic order, and
consider the PL map from Q to [−1, 1] sending A and C to 1, B and D to −1 and the center
to 0. The preimage of a point near 1 (resp. −1) is a pair of segments near A and C (resp. B
and D). The preimage of 0 is the cone from the center of Q to the midpoints of its edges.
This map is the typical example of a saddle on the base of Ci.

If we repeat the above construction with an hexagon, sending the vertices alternately to 1
and −1, we obtain instead a “monkey saddle”, which is not stable (from the smooth point
of view). The inverse image of 0 is a cone over the midpoints of the edges from the center:
a six-valent star. As shown in Figure 14, in this case πt can be perturbed to a map having
two stable critical points as shown in the figure. In general, if the inverse image of a critical
value is a star with 2k legs, then πt can be perturbed to a map containing k− 1 stable saddle
points all having distinct images in the segment.

There is one case left: when the whole disk is projected on one side of 0 in [−1, 1]. In
this case the singular point in the center of the disk is an extremum and we keep the map
unchanged.
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We now modify π : Ci → R2 as above around each edge ei to get the cylinder of a stable map
from a disk to a segment. This increases the set of critical values of π near fi so that it no longer
coincides with fi, but is formed by a set of strands running parallel to it, all corresponding to
stable singularities of the map. Let us keep calling G the graph in R2 made of these critical
values; as before, it consists of straight segments away from the vertices pi, with bent segments
near the pi. These straight segments are cut by their intersections xk, k = 1, . . . , l (which,
together with the points pi, form the vertices of G) into sub-segments hj , j = 1, . . . ,m (which
form the edges of G).

4.3. The Stein factorization away from codimension 2 singularities. Pick a regular
neighborhood of each vertex of G, and let M ′′ be the preimage through π of the complement of
these neighborhoods. We will now construct a shadow P ′′ for M ′′ from the Stein factorization
for the map π, as shown in Figure 15.

Let R1, . . . , Rm, R∞ be the connected components of R2 \G, where R∞ is the unbounded
region and Ri, i 6= ∞, are disks. By construction, π−1(R∞) is empty and π−1(Ri), i 6= ∞
is a disjoint union of ni open solid tori in M ′. For an edge hj of G, let αj be a small arc
intersecting it transversally and connecting two regions, say R0 and R1. Let q0 and q1 be the
endpoints of αj; the (possibly disconnected) surface Sj = π−1(αj) ⊂ M ′′ is the cobordism
between π−1(q0) and π−1(q1) whose possible shapes are depicted in Figure 15.

To construct the Stein factorization of π, for each Ri, take ni copies of Ri. We need to
connect these regions to each other near the centers of the segments hj . To do this, we apply
the procedure of Figure 15, where all the possible behaviors of Sj are examined. Saddle
singularities produce a singular set in the polyhedra used to connect the regions. Shrinking
singularities (when the transverse map πt in the previous step maps entirely on one side of
the singularity) produce a boundary segment of P ′′, which we mark as “false”; temporarily
mark the rest of the boundary of P ′′ as “internal”. Call the regions which are involved in the
singularity or boundary over hj the interacting regions.

If we repeat the above construction for all pairs of regions in contact through a segment of
the family hj , we get a decorated simple polyhedron which represents the Stein factorization
of π : M ′′ → R2. We can naturally find maps π1 : M ′′ → P ′′ and π2 : P ′′ → R2 so that
π = π2 ◦ π1.

Let us analyze ∂eP
′′. Currently, π2(P

′′) covers the complement in R2 of small circular
neighborhoods of the vertices of G, which are either the points pi (the images of the vertices
of T ) or intersections xk of the edges fi. The inverse image in P ′′ of the boundaries of these
circular neighborhoods is ∂eP

′′, which is a trivalent graph possibly with some free ends.

4.4. Codimension-2 singularities. We now describe how to extend P ′′ to get a shadow P ′

of M ′. We fill in the gaps of the polyhedron near the intersections xk of critical values by
using a simple polyhedron with at most 2 vertices per intersection.

Near each xk two segments of critical values intersect, say s1 and s2. For every region
which is not interacting over either s1 or s2, we fill in the hole over xk with a disk. Also, if
the region(s) interacting over s1 do not meet those interacting over s2, we can fill in the hole
with the same simple blocks as in Figure 15 without adding any new vertices. In particular
this always occurs if the singularity over s1 or s2 is a shrinking singularity.

We are left with the case when both s1 and s2 correspond to saddle singularities. In this
case the component of the preimage π−1(xk) containing the singularities is a connected 4-
valent graph F in M ′ with two vertices, one from each singular segment. The edges of F are
oriented: At a generic point on an edge of F , a small disk in M ′ transverse to the edge maps
homeomorphically to its image in R2 and so we can pull back the orientation of R2 to it.
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f1 f2

Singular values

P Sing(P )

π1

π2

Figure 15. The construction we perform in Step 3. To each fiber over a
region of R2 we associate a region of P ′′. We glue these regions along their
boundaries to the type of singularity which intervenes. In the highest part of
the picture we see the simplest case: when the singularity does not affect the
fibers corresponding to two regions of P ′′. The second case is the one of a
shrinking singularity, which creates a false boundary component in P ′′. The
last case is the case of a simple saddle singularity, which creates an arc in
Sing(P ′′).

Then, since M ′ is oriented, we can orient the edges of F . Each vertex of F corresponds to a
codimension 1 singularity whose singular values are contained either in s1 or in s2. Moreover,
near each vertex of F , two edges are incoming and the other two outgoing. Therefore the
only possibilities for F are these graphs:

or .

While passing through the codimension 1 singularity corresponding to a vertex, the edges
of F recouple so that incoming edges are glued to outgoing edges.

We now analyze these two cases and show that if F = π−1(xk) has the first shape, then
its neighborhood in M ′ can be reconstructed by using a shadow polyhedron with one vertex,
while in the second case, two vertices are sufficient. In both cases, the regular neighborhood
of F in M ′ is a 3-handlebody H(F ). By construction, the boundary Σ3 of this handlebody
projects, through π1, to a component G of ∂iP

′′ and, through π, to a circle in R2 which is
the boundary of a small regular neighborhood of xk. The thickening of G, contained in the
thickening of P ′′ constructed so far, is another 3-handlebody H(G) lying vertically (through
π2) over this circle, and whose boundary is identified in M ′ with Σ3. We will show that in
both cases the union of these two handlebodies is S3 and then construct a shadow of (S3, G),
where G is considered as a subset of H(G) ⊂ S3.

Case 1. F is .
In Figure 16, we show the preimages in M ′ of various points in a small circular neighbor-

hood U of xk in R2. In each component of U \ (s1 ∪ s2) the preimage of a point is a union of
circles in M ′. While crossing s1 or s2 two arcs of these circles approach each other and after
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m1 m2 m3

n1 n2 n3

s1

s2
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xk

Figure 16. The behavior over a neighborhood U of the intersection of two
segments s1, s2 of singular values of the projection map when the singular
graph F = π−1(xk) is . We see the different topological types of preim-
ages of points, with the induced orientation. The different types of points are
the four regular areas (the components of U \ (s1 ∪ s2)), the segments s1 and
s2 themselves, and the intersection s1 ∩ s2. We have marked two different
systems of curves in the fibers. One (the ni) are copies of the fibers over the
upper right region; these are meridians for H(G). The other (the mi) map
surjectively to ∂U , and are meridians for H(F ). In the picture they appear as
a choice of one point in each fiber.

passing through a singular position, they recouple. In the figure, we show the preimage of a
point in each of the regular areas and on each of the singularities.

In the figure we have picked three of the edges of F . Transverse to these edges are three
meridian disks of H(F ) bounded by curves m1, m2 and m3. Each disk can be chosen to be
a section of π as shown by the dots in Figure 16, so that each of the mi projects homeomor-
phically to ∂U .

We now identify meridians of H(G). By construction, each circle in M ′ which is in the
preimage of a regular point in R2 bounds a disk in H(G): the preimage of the corresponding
point in the thickening of P ′′. Hence the meridian curves of H(G) include the circles drawn
in Figure 16 over the 4 areas near xk. In the upper-right region the preimage of a point is
composed of three circles n1, n2 and n3, which we can choose as our Heegaard system.

The handlebodiesH(F ) and H(G) are glued along their boundaries. Since each meridian ni
of H(G) intersects exactly one time one of the meridians mj of H(F ), we have H(G)∪H(F ) =
S3. Inside this 3-sphere, G is a 3-valent graph. The vertex of Figure 5, with boundary
colored i, forms a shadow of the pair (S3, G): Its thickening is B4 and its boundary sits in
S3 = ∂B4. To see that this is a correct shadow, in Figure 17, we exhibit two oriented graphs
embedded in S3 which are homeomorphic respectively to G and F . Moreover, the graphs
are equipped with systems of meridians ni and mi, respectively; when the meridians are
homotoped into a common surface, the intersections mi ∩ nj coincide with the corresponding
intersections in M ′ between the meridians of H(F ) and H(G).
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Figure 17. The two graphs G (in black) and F (in red) embedded in S3.
Their thickenings form two genus 3 handlebodies in S3 equipped with meridian
curves whose intersections agree with the intersections of the curves mi and ni
described in the text.

This shows that, when the codimension two singularity is , it is sufficient to form P ′

by gluing one vertex to P ′′ in order to extend the description of M ′ over xk.

Case 2. F is .

For this case, Figure 18 shows the preimages in M ′ of various points in a small neighborhood
of xk. As shown in the figure, two opposite areas are covered by 2 circles and the other two
by 1 circle.

Let us choose a set of meridian curves m1, m2, m3 for H(F ), as shown in Figure 18. For
H(G) we pick three curves n1, n2, n3 out of those lying over the two areas covered by two
circles: they form an Heegaard system for H(G) since they bound disks in it and do not
disconnect ∂H(G). Then the number of intersections between the mi and the ni is as follows:

mi ∩ nj n1 n2 n3

m1 1 0 1
m2 1 0 0
m3 0 1 0

Hence we can reduce the Heegard diagram to the trivial diagram by eliminating in turn the
pairs (m3, n2), (m2, n1), and (m1, n3). This shows that in this case as well H(G)∪H(F ) = S3,
with embedded graphs G (from ∂iP

′′) and F (from π−1(xk)). In Figure 19 we show how these
graphs and the corresponding meridians are embedded in S3.

Now that we know the position of G in S3, we are left to construct a simple polyhedron with
boundary describing the pair (S3, G). We saw in Example 3.17 that this graph is represented
by the shadow in Figure 20. Therefore in this case to extend the construction of the shadow of
M ′ to the singularities of codimension 2 it is sufficient to use a polyhedron with two vertices.

4.5. Shadow complexity estimate. In the preceding steps, we constructed a shadow sur-
face P ′ for M ′, together with maps π1 : M ′ → P ′ and π2 : P ′ → R2 providing the Stein
factorization of π : M ′ → R2. Let us now show that the total number of vertices in this
shadow is bounded by a constant times t2, where t is the number of tetrahedra in the initial
triangulation T .

Given an edge ei of T , let v(ei) be the valence of ei, i.e., the number of tetrahedra in T con-
taining ei. If ei is contained twice in a tetrahedron we count it twice. Since each tetrahedron
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Figure 18. The same analysis as in Figure 16, in the case when the singular

fiber is . The mi are the meridian curves of H(F ) and the ni are the

meridian curves of H(G).

has 6 edges, we have
∑

i

v(ei) = 6t.

Let us now count the total number of segments of singular values in R2 (i.e., the number of fi).
In Step 2, while perturbing π near an edge ei in order to get a stable map, we obtain at most
v(ei)

2 − 1 segments of critical values. Thus the total number of fi is less than
∑

i
v(ei)

2 = 3t.

Then, the number of vertices in P ′ is bounded by 2(#{fi})
2 ≤ 18t2 since each vertex or pair

of vertices comes from a crossing.
So the above construction produces a polyhedron P ′ with boundary having a well-controlled

number of vertices and admitting a 4-thickening WP ′ whose boundary contains M ′. We claim
that the regions of P ′ are disks. To see this, note that the regions project by π2 locally
homeomorphically onto R2 (since the points in P ′ where π2 is not locally a homeomorphism
are, by construction, Sing(P ′)). Furthermore, by examining Figures 16 and 18, we see that the
boundary of the projection of each region turns only to the left (with the induced orientation
from R2). Then for each region of P ′ apply the following lemma.
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Figure 19. Two graphs in S3 forming two genus 3 handlebodies whose union
is the whole space and whose indicated meridians intersect as the curves ni
and mi do. The legs of the red graph F meet in an additional point at ∞.
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Figure 20. The polyhedron (containing only two vertices) we use to complete
the construction of P ′ near the codimension 2 singularities of the second type.
The boundary of the polyhedron (thicker in the picture) coincides with the
boundary of the polyhedron P ′′ already constructed away from the singularity.

Lemma 4.4. Let R be a connected oriented surface with boundary and π : R→ R2 be a local
orientation-preserving homeomorphism so that π|∂R turns to the left. Then R is a disc and
π is an embedding.

Proof. Define the straight arcs in R to be the curves which are locally projected into straight
arcs in R2; observe that π is injective on a straight arc. Let p be an interior point of R. We
claim that the set of points which can be connected to p by a straight arc is all of R: this
clearly implies the statement. If this set were not open then one could find a straight arc
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connecting p to another point q whose projection is tangent internally to π(∂R) but this is
ruled out by local convexity of the image. On the other hand, because the limit of a sequence
of rays is itself a ray, this set is also closed and so is all of R. 4.4

Let us now color each edge of ∂P ′ with one of the colors e (“external”) and f (“false”),
the “false” edges being those produced during Step 3 of the construction (corresponding
to shrinking circles in M ′) and the “external” edges being the remaining ones (around the
vertices pi). Then P ′ is a shadow forM ′, andM ′ sits inside the boundary of the thickeningWP ′

of P ′ as the union of the horizontal boundary (i.e., π−1
1 (intP ′)) and the vertical boundary over

∂fP
′ (i.e., π−1

1 (∂fP
′)). The components of ∂M ′ are surfaces Si that map through π to the

boundaries of small circles around the pi. By Remark 3.13, each spherical component of ∂M ′

corresponds to a contractible component of ∂eP
′ whose preimage through π1 in ∂WP ′ is a

3-ball.
Recall that M ′ is homeomorphic to M minus a neighborhood of each non-ideal vertex

of T . Hence, to get a shadow P for M , it is sufficient take P ′ with the boundary components
corresponding to these non-ideal vertices marked as false.

This concludes the construction of a decorated shadow P for M and an estimate of its
shadow complexity.

4.6. Gleam estimate. We now provide an upper bound for the absolute value of the gleam
of a region D of P . We remark first of all that if the closure D of D intersects ∂fP , then no
gleam has to be defined on D, as the gleam is defined only on the interior regions of P . Note
that, by Lemma 4.4, D is a closed disc in P with ∂D ⊂ Sing(P ). Let v1, . . . , vn and e1, . . . , en
be respectively the vertices and the edges of Sing(P ) contained in ∂D so that ∂ei = vi+1 ∪ vi.
Let B be a “shrunk copy of D”, that is, the complement in D of a small open neighborhood
of ∂D. Equip ∂B with the decomposition into vertices wi and edges fi induced by that of
∂D.

Now we lift ei to the strand e′i ⊂ M of singular points of π such that π1(e
′
i) = ei. This

allows us to also choose lifts f ′i of fi by considering the points in π−1
1 (fi) which are nearest

to e′i. Notice that over some fi, we could have two choices for f ′i according to how D is
positioned with respect to the saddle singularity corresponding to ei. To get a section of π1

over ∂B we need to choose how to connect the endpoints of the f ′i with curves in π−1
1 (wi).

But wi /∈ Sing(P ) and so π−1
1 (wi) is an oriented curve, so we connect the endpoints of f ′i and

f ′i−1 through an oriented arc over wi. With an appropriate choice of these arcs over wi, a
section sB of π1 over ∂B corresponds to that used in Proposition 3.6 to compute the gleam.

We now construct a section B′ of π1 over B. To do this, let T (1) be the 1-skeleton of T
and for each component Bi of B \ π1(T

(1)) choose a face Fi of T so that Bi ⊂ π1(Fi) and let
B′
i = π−1

1 (Di) ∩ Fi. One can choose the faces so that they fit coherently on the edges of T
projecting inside B, because, by construction, these edges correspond to non-critical points.
The union of the B′

i is B′.
Now compare the section sB with ∂B′ by counting #{sB ∩ ∂B′}. Note that, over an edge

fi, sB and ∂B′ run parallel to each other (because the singular points of π are by construction
parallel to the edges of T ). We claim that near a vertex wi they intersect at most once. Indeed,
by construction sB is an embedded arc in π−1

1 (vi) whose endpoints are the two endpoints of
the lifts f ′i and fi−1. On the other side, near wi, B

′ is formed by a face F of T and at most
one of f ′i and f ′i−1 can be near to an edge of F so ∂B′ can stay near to at most one of e′i and
e′i−1. So, the two sections can intersect over wi but they can do it at most once.
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Therefore the total gleam of D is bounded above by the number of vertices in ∂D and, since
each vertex of P touches exactly 6 regions, then the gleam weight of P is at most 6 · 18 · t2.
This concludes the proof of Theorem 4.2. 4.3

5. Upper bounds

We can now apply our main tool on constructing shadows, Theorem 4.2, to give upper
bounds on the complexity of various representations of 3-manifolds in terms of geometric
properties.

5.1. Triangulating the 4-manifold. We now turn to the proof of Theorem 5.2, that 3-
manifolds efficiently bound 4-manifolds. To actually construct the triangulated 4-manifold,
we use the following:

Lemma 5.1. Let (P, g) be a boundary-decorated shadow with n vertices whose regions are
disks. There exists a triangulation of the manifold WP obtained by thickening (P, g) (as
described by Turaev’s Reconstruction theorem) containing O(n+ |g|) simplices. Moreover, the
triangulation can be chosen so that the number of simplices touching each vertex is bounded
above by a constant not depending on P or g.

Proof. Choose a triangulation of P such that Sing(P ) is composed of simplices, the number
of simplices depends linearly (through a constant independent of P ) on n, and the number of
simplices touching each vertex of the triangulation is bounded above by a constant indepen-
dent of P . Let P ′ be the triangulated polyhedron obtained by deleting a triangle from each
region of P and let L be a 3-dimensional thickening of P ′ (which may be non-orientable).
By gluing prisms on each triangle of P ′ one can construct a triangulation of L containing at
most k simplices, where k = O(n). Similarly, the number of simplices touching a vertex can
be linearly bounded from above by a fixed constant not depending on (P, g).

The 4-dimensional thickening WP ′ (note that P ′ has no internal region and hence no gleam
is needed to thicken it) is a fiber bundle over L with fiber [−1, 1]. This bundle is the unique
bundle whose total space is orientable, so WP ′ can be triangulated with a number of simplices
bounded above by 6k, since 6 is the minimal number of simplices needed to triangulate the
product of [−1, 1] and a 3-dimensional tetrahedron. Note that the part of the boundary of
WP ′ which collapses onto the boundary components of ∂P ′ that correspond to the triangular
punctures is a set of solid tori Ti, all equipped with the same triangulation. In particular, let
s be the number of 3-simplices in the triangulation of each of these tori. Applying a Dehn
twist to a meridian of a solid torus Ti, one obtains a new triangulation of Ti which can be
connected by means of, say, m standard moves of triangulations (called “Pachner moves”) to
the initial one. Each Pachner move corresponds to gluing a 4-dimensional simplex to Ti along
a face and looking at the new triangulation induced on Ti by the new faces of the simplex.
Hence, in order to perform gi Dehn twists on Ti it is sufficient to glue mgi 4-simplices to
WP ′ . Then, gluing a 2-handle on Ti (which can be triangulated with a number of simplices
depending only on s) produces a triangulated version of WP .

By construction, the number of simplices of dimension 4 in this triangulation is bounded
above by a constant times the number of simplices in the triangulation of P ′ plus the sum
over all the regions of P of s+ |gi| where gi are the gleams and s is the number of simplices on
the solid tori Ti. Moreover, the number of simplices touching any vertex of the so obtained
triangulation can be controlled from above by a suitable constant which does not depend on
(P, g). 5.1

Theorem 4.2 and Lemma 5.1 together prove one main result:
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Theorem 5.2. If a 3-manifold M has a triangulation with t tetrahedra, then there exists a
4-manifold W such that ∂W = M and W is triangulated with O(t2) simplices. Moreover, W
has “bounded geometry”, that is, there exists an integer c (not depending on M and W ) such
that each vertex of the triangulation of W is contained in less than c simplices.

An alternate construction gives a simply-connected 4-manifold.

Theorem 5.3. A 3-manifold with a triangulation with k tetrahedra is the boundary of a
simply-connected 4-manifold with O(k2) 4-simplices.

Proof. Applying the construction underlying the proof of Theorem 4.2 to the 3-manifoldM , we
produce a decorated shadow P of M whose singular set projects to R2, which contains O(k2)
vertices and whose regions are discs. Note that furthermore that the projection of the singular
set has O(k2) self-intersections. Collapse the false boundary of P and appropriately modify
the result to get a genuine simple shadow of M with no more vertices as in Remark 3.19; the
result may not be a standard polyhedron, but we can modify it to get a standard polyhedron
with local moves. The result is a standard polyhedron, which we continue to call P , which
still has a map to R2 with at most O(V 2) vertices.

Now apply Proposition 3.35 to P . The resulting hyperbolic link LP is obtained by gluing
the pieces as in Figure 12 and performing surgery on some 0-framed meridians. Using the
projection to R2, we get a link diagram with 1 crossing per vertex of P , at most 3 crossings
per edge of P , 9 crossings per crossing of the projection of edges of P , and 6 crossings per 0-
framed meridian: O(k2) crossings in all. M can be obtained by integer surgery on this link with
coefficients related to the gleams, and so bounded by O(k2). This surgery diagram therefore
gives a simply-connected 4-manifold whose boundary is M with complexity O(k2). 5.3

Note that the proof of Theorem 5.3 depended on a reasonably nice projection from the
shadow to the plane; in general, there is no reason to believe that a shadow can be turned
into a simply-connected shadow without an increase in complexity.

5.2. Upper bounds from geometry. We now turn to hyperbolic geometry, and prove
various upper bounds based on geometry, including an estimate for the shadow complexity of
a hyperbolic 3-manifold by the square of its Gromov norm.

We first recall an estimate for the number of tetrahedra in a triangulation from the hyper-
bolic volume.

Theorem 5.4 (W. Thurston). There is a positive constant C so that, for every hyperbolic
3-manifold M , there is a link L contained in M and a partially ideal triangulation of M \ L
with less than C · Vol(M) tetrahedra.

This theorem was first used in the proof of the Thurston-Jørgensen Theorem [36, Theorem
5.11.2]. We recall the proof here.

Proof. Let V (r) be the volume of a ball of radius r in H3.
Let c be the Margulis constant, and consider the thick-thin decomposition ofM : let ε = c/2,

and let M ′ be the ε-thick part of M ; we will take L to be the core of M \M ′. Consider a
generic maximal ε-net in M ′, i.e., a maximal set of points pi such that the distance between
any two of them is at least ε. Then the balls of radius ε around the pi cover M ′ and the
balls of radius ε/2 around the pi are embedded in M . Therefore the number of pi is bounded
above by Vol(M)/V (ε/2). Starting from this ε-net we can construct a triangulation T of a
manifold homeomorphic to M ′ by taking the Delaunay triangulation of the pi; that is, a set
of pi are in a simplex of T exactly when there is a point x in M ′ which is equidistant from
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the chosen pi (and no farther than ε from them) and no closer to any other pi. Since the pi
were chosen to be generic, this is actually a triangulation.

To estimate the number of tetrahedra in T , let us consider the lift T̃ of T to H3. Note that
two vertices that are connected by an edge have distance at most 2ε, and so balls of radius
ε/2 around these vertices fit disjointly in a ball of radius 5ε/2. Thus the number of vertices

connected by an edge to a given vertex in T̃ is therefore at most
⌊V (5ε/2)
V (ε/2)

⌋

−1; let this number

be k. Then the number of tetrahedra that touch this vertex is therefore at most
(k
3

)

(since

in T̃ a tetrahedron is determined by its set of vertices) and the total number of tetrahedra
in T is at most

Vol(M)

4V (ε/2)

(

k

3

)

,

which is linear in Vol(M), as desired.
To make a partially ideal triangulation of M \ L, we need to add one more vertex per

component of L and cone from the boundary of the triangulation of T to this new vertex.
This does not affect the asymptotic growth of the estimate. 5.4

Theorem 5.5. There is a universal constant C > 0 so that a geometric 3-manifold M , with
boundary empty or a union of tori, has shadow complexity at most C‖M‖2.

Proof. Since Gromov norm is additive under gluing of two 3-manifolds along incompressible
boundary tori [8], by Corollary 3.28 it is sufficient to prove the theorem for each piece of the
JSJ decomposition of M , and by Proposition 3.31 it is sufficient to study the case when M is
hyperbolic.

By applying Theorem 4.2 to the triangulation from Theorem 5.4, we get a boundary-
decorated shadow P0 for M \ L for some appropriate link L in M with at most O(Vol(M)2)
vertices. Collapse the false boundary of P0 as in Remark 3.19 to get a proper shadow P for
M \L; each component of L gives a torus boundary component of M \L, which corresponds to
a circle component of ∂eP . But now M can be obtained from M \L by Dehn filling, which by
Proposition 3.27 can be performed at the level of shadows without adding any vertices. 5.5

Theorem 5.6. A finite-volume hyperbolic 3-manifold M with volume V has a rational surgery
diagram with O(V 2) crossings.

Proof. The shadow P constructed in the proof of Theorem 5.5 (before the final Dehn filling)
has O(V 2) vertices, and comes with a projection to R2 with at most O(V 2) crossings of the
singular set in the image; as in the proof of Theorem 5.3 in the previous subsection, we will
modify the shadow to give a link diagram. The only difference is that P has some circular
external boundary components (corresponding to the link we drilled out) and so cannot be
made standard; instead, we make all regions either disks or annuli (with one external boundary
component). Then we can construct a link LP as before with at most O(V 2) crossings, and M
is surgery on LP , with rational coefficients on the components coming from the external
boundary. 5.6

Theorem 5.7. There exists a constant C such that each hyperbolic 3-manifold M has a
smooth projection in R2 with less than C‖M‖2 crossing singularities.

Proof. As in the proof of Theorem 5.5, drill out of M some geodesics in order to find a
triangulation of a sub-manifold M ′ ⊂ M with a number of tetrahedra bounded above by a
constant times Vol(M). Applying the construction of the proof of Theorem 5.6 to M ′, one
gets a simple polyhedron P , containing O(Vol(M)2) vertices, whose singular set embeds in
R2 and such that M ′ (and hence M) is a the Dehn filling of SP (recall Proposition 3.33). The
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immersion of Sing(P ) in R2 produces a smooth projection of π : SP → R2 with O(Vol(M)2)
crossing singularities; moreover, by Lemma 4.4 the projection through π of each component
of (∂SP ) is a simple curve. Hence it is sufficient to show how to extend π to a projection
of an arbitrary Dehn filling of SP without adding any crossing singularities. The idea is to
extend π through a map whose Stein factorization on the Dehn-filled solid torus is given by a
“tower” as that of Figure 10: in order not to add any crossing singularities, it is the sufficient
to project the singular set of the added tower to disjoint, nested circles in R2. It is not difficult
to check that, even if the projection of one of these circles intersects the projection of other
components of Sing(P ), no crossing singularity is created since the fibers in M of the two
strands of singular values stay disconnected around the intersection point. 5.7

6. Spin boundaries

In this section we will modify the shadow surfaces constructed in Section 4 to construct a
spin-boundary of a given spin structure on a 3-manifold. Our goal is the following theorem.

Theorem 6.1. A 3-manifold with a triangulation with k tetrahedra is the boundary of a spin
4-manifold with O(k4) 4-simplices.

Before we give the proof, we need some preliminaries about spin structures on 3- and
4-manifolds given by a shadow.

6.1. Spin structures from shadows. We first identify the Stiefel-Whitney class w2(W ) ∈
H2(W ; Z/2) for a 4-manifold W with shadow P . In a 4-manifold, the evaluation of w2

on a closed surface S is the reduction modulo 2 of the self-intersection number of S. Self-
intersection numbers for a general integral homology class may be computed with the following
proposition.

Proposition 6.2 (Turaev, [37]). Given a shadow P for a 4-manifold W with oriented regions
fi and gleams g(fi), and S ∈ H2(W ; Z) given by the chain S =

∑

i aifi. The self-intersection
number of S is

S · S =
∑

i

a2
i g(fi).

For an element of H2(W ; Z/2), this simplifies: a Z/2 homology class is a formal sum of
regions of the shadow surface, with an even number of regions (0 or 2) around each edge;
that is, it is a union of regions of the shadow surface which form a closed surface without
singularities. Since a2

i = ai in Z/2, we have:

Proposition 6.3. The self-intersection number of S ∈ H2(W ; Z/2) is the sum of gleams on
the regions that appear in S.

Note that in both cases it is not immediately obvious that the sum is an integer. If the
gleams were all integers, this proposition would say that the Stiefel-Whitney class is the
reduction modulo 2 of the cocycle given by the gleams. In general, the following holds:

Lemma 6.4. The Z/2-cochain represented by the Z/2-gleam is a coboundary. Therefore the
gleam cocycle g is cobordant (over Q) to an integer-valued cocycle g′, for each cycle z =
∑

i aifi ∈ H2(P ; Z) the sum
∑

i g(fi)ai is an integer, and the Stiefel-Whitney class is the
reduction modulo 2 of g′.

Proof. We will explicitly construct a 0-cochain with coefficients in Z/2 whose coboundary is
the Z/2-gleam cochain. First define an orientation on a vertex v of a simple polyhedron to be a
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numbering (from 0 to 3) of the 4 edges of the singular set touching the vertex. An orientation
on a vertex allows one to name the six regions touching the vertex as R{i,j} where i 6= j are in
{0, 1, 2, 3} so that the edge k is touched by the regions R{k,j} with k 6= j. Construct a cyclic
ordering of the three regions touching each edge by considering the order induced by the j’s
if k is odd and the reverse if k is even.

Now fix arbitrarily an orientation around each vertex of P and consider the 1-cochain c
whose value on an edge e ∈ Sing(P ) is 1 if the two cyclic orderings induced on the three
regions touching e by the two vertices touched by e are the same and 0 otherwise. For an
edge e which is a circle, c(e) is 0 if there is a consistent cyclic orientation on the regions
touching e and 1 otherwise. We claim that δc is the Z/2-gleam cochain. For simplicity, we
prove it on a region R whose boundary passes at most once on each edge of Sing(P ). In that
case, the Z/2-gleam is 1 iff the regular neighborhood of ∂R in P \ R collapses on an odd
number of Möbius strips. For each component α of ∂R, let us fix an orientation of α and a
base point pα contained in an edge eα of Sing(P ) and lying in a neighborhood of a vertex
vα. To control the topology of the neighborhood of α it is sufficient to count (mod 2) how
many times, while running along α, two consecutive vertices are connected by an orientation
preserving gluing. This number is 〈δc, α〉. This proves the first statement.

For the second part, define g′ by

g′(fi) = g(fi) +
1

2
δc(fi),

where c is the Z-valued 1-cochain defined as above, considering 0 and 1 as elements of Z

rather than Z/2. By the above results, g′(fi) are integers. Since g and g′ are cobordant, for
a closed surface S =

∑

aifi, we have
∑

i g(fi)ai =
∑

i g
′(fi)ai. This second sum is obviously

an integer and so, by Proposition 6.3, g′ represents the Stiefel-Whitney class. 6.4

For a given 3-manifold M , we are interested not just in finding a spin 4-manifold W with
∂W = M , but in finding one where a given spin structure s on M extends to a spin structure
on W . The obstruction to extending a given spin structure is a relative Stiefel-Whitney class
w2(W, s) ∈ H2(W,∂W ; Z/2). Since H2(W,∂W ; Z/2) ∼= H2(W ; Z/2) by Poincaré duality,
w2(W, s) is given by a subsurface F of P , possibly disconnected or not orientable. The image
of w2(W, s) under the natural map from H2(W,∂W ) to H2(W ) must be the original Stiefel-
Whitney class of W . The corresponding map from H2(W ) to H2(W ) is given on a homology
cycle by the cup product, so for any other subsurface S of P , we must have S · F = S · S.
A surface F satisfying this property is called a characteristic surface. Every characteristic
surface appears as the obstruction to extending a spin structure on the boundary.

6.2. Constructing efficient spin fillings. With these preliminaries in hand, we prove the
following result which allows us to convert an arbitrary shadow to one that spin-bounds a
given spin structure. Together with Theorem 4.2 and Lemma 5.1 this implies Theorem 6.1.

Theorem 6.5. Let M be a 3-manifold equipped with a spin-structure s, let W be a 4-manifold
with ∂W = M and let (P, g) be a shadow of W with k vertices and gleam weight |g|. Then
there exists a shadow P ′ of M containing O(k2) vertices, with gleam weight |g| + O(k), and
whose thickening is a 4-manifold W ′ admitting a spin-structure whose restriction to ∂W = M
is s.

Proof. Let us first sketch the strategy of the proof. As outlined above, the Poincaré dual of
w2(W, s) is a 2-cycle represented by a surface F in P . Let N(F ) be a regular neighborhood of
F in W (diffeomorphic to a disk bundle over F ); by construction, there exists a spin-structure
on W \N(F ) extending s. Note that P∩(W \N(F )) is a polyhedron with boundary, embedded
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in W \N(F ), with boundary in ∂N(F ). Our goal is to replace N(F ) with a suitable 4-manifold
WF equipped with a shadow with boundary, so that the spin-structure of W \N(F ) extends
on WF and that the gluing of the shadows matches up the boundaries. We will do this
by dividing N(F ) into a number of pieces, of a finite number of topological types, each of
which can be replaced by a standard model. There are some special regions to incorporate
the gleams. In all this process we will have to control the complexity of the resulting final
shadow.

The proof is divided into four steps:

(1) Estimate the complexity of the shadow P ∩N(F );
(2) Find an efficient set of separating curves in F decomposing it into Möbius strips,

punctured spheres and tori;
(3) Perform surgery along these curves producing W ′ and its shadow P ′, reducing to the

case when F is a union of RP2, S2 and T 2;
(4) Solve the cases for F = S2, RP2, and T 2.

Step 1. The polyhedron with boundary P ∩N(F ) is properly embedded in N(F ) and is the
mapping cylinder of the projection of the trivalent graph G = P ∩ ∂N(F ) into F . The set
Sing(P ) ∩ F coincides with the graph formed by the projection of G in F and its vertices
correspond to distinct vertices of P and have valency either 3 (corresponding to vertices of G)
or 4 (corresponding to transverse self intersections of the projection of G in F ). In particular,
it contains O(k) vertices and edges. F is a union of regions of P and so comes equipped with
the gleams induced by the inclusion; in particular, the gleam weight of P ∩N(F ) is bounded
by |g|.

Step 2. By the preceding step, the graph E = Sing(P ) ∩ F has O(k) vertices with valency
3 or 4 and splits F into regions with gleam whose total weight is no more than |g|. We will
now define a 0 → 2-move on a pair of edges e0 and e1 of E. Let R0 and R1 be the regions of
P \ F such that Ri ∩ F = ei, i = 0, 1. A 0 → 2-move on the pair {e0, e1} is the sliding R0

over a small disk contained in R1 (the construction is symmetrical) as shown in Figure 21. In
the lower part of the figure we exhibit the modification induced on E by the move. A 0 → 2

Figure 21. The 0 → 2-move and its effect on the graph Sing(P ) ∩ F .

move does not modify W nor F but changes P by adding 2 vertices.

Lemma 6.6. Let S be a connected surface and H ⊂ S be a graph containing n vertices each
having valency 3 or 4. After applying O((|χ(S)| + n)2) 0 → 2-moves on H, it is possible to
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find a set C of closed curves, with each component of C a separating curve, cutting the pair
(F,H) into the following blocks:

(1) Pairs (D2,H), where H is a properly embedded graph in D2 with one vertex of valency
3 or 4.

(2) Pairs (A,HA) where A is an annulus and HA is a trivalent graph in A;
(3) Pairs (P,HP ) where P is a thrice punctured sphere and HP is a (possibly empty) set

of disjoint, non-parallel, essential arcs in P ;
(4) Pairs (M,HM ) where M is a Möbius band and HM is either empty or an essential

arc in M ;
(5) Pairs (T,HT ) where T is a punctured torus and HT is a (possibly empty) set of disjoint,

non-parallel essential arcs in T .

Moreover the set C can be chosen to intersect H in O((|χ(S)| + n)2) points.

Proof. If H is empty, the lemma is trivial. If H has no vertices, we can create 2 vertices by a
0 → 2 move.

Encircle each vertex of H by a closed curve: this set of n curves intersects H at most
4n times and decomposes S into n blocks of the first type and a surface S′ whose Euler
characteristic is χ(S) − n. If H ′ = H ∩ S′ contains parallel edges we apply O(n) 0 → 2-
moves in order to replace each set of parallel edges by a single edge branching only in the
neighborhood of ∂S′. Then we add one curve per component of ∂S′ in order to enclose all
these trivalent vertices in annular regions. This creates at most n annular regions of type 2
in the above list; the set of curves considered until now intersects H at most 8n times. Let
S′′ ⊂ S′ be the remaining surface equipped with the graph H ′′ = H ′ ∩ S′′. We will prove
the statement of the lemma for the pair (S′′,H ′′) by arguing by induction on |H1(S

′′; Z2)|. If
χ(S′′) = 0 or if S′′ is orientable and χ(S′′) = −1 we are done. Otherwise the result follows by
induction by applying Lemma 6.7 below to S′′. Note that χ(S′′) = χ(S) − n. 6.6

Lemma 6.7. Let S be a connected surface with boundary, with χ(S) < 0 and not a thrice-
punctured sphere, equipped with a set H of essential, pairwise non-parallel arcs. Then it is
possible to apply O(−χ(S)) 0 → 2-moves to H and find a set of curves in S intersecting H at
most −18χ(S) times and cutting S into annuli of type 2 in the above list and two surfaces S1

and S2 such that |H1(Si; Z2)| < |H1(S; Z2)| for i = 1, 2.

Proof. We first find an essential separating curve c0 cutting S into S1 and S2 and intersect-
ing H at most −4χ(S) times. Then we show how to apply 0 → 2-moves and add boundary
parallel curves in order to prove the rest of the claim.

Complete H to a maximal set of essential, pairwise non-parallel arcs, that is, an ideal
triangulation of S. This can be achieved by adding O(χ(S)) arcs: indeed, the cardinality of
H after this becomes exactly −3χ(S). We now prove that c0 can be chosen to intersect H
at most −12χ(S) times. By cutting S along 1 − χ(S) arcs of H and shrinking the original
boundary components to points, we can reduce to considering a polygon with 2− 2χ(S) sides
whose sides are identified in pairs. The other arcs of H are contained among the diagonals of
the polygon.

If two edges of the polygon are identified in S through an orientation-preserving homeo-
morphism, then the straight curve connecting their midpoints is a simple closed curve in S
whose regular neighborhood is a Möbius strip whose boundary is c0: it intersects each edge
of H at most two times and it cuts a Möbius strip out of S. From now on we will assume all
edges are identified by an orientation-reversing homeomorphism, i.e., S is orientable.

If there is a pair a, a′ identified in S such that the straight arc α connecting their midpoints
is not separating in S, then we can find another pair b, b′ identified in S such that the straight
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arc β connecting their midpoints intersects α once. Then the curve c0 formed by the boundary
of the regular neighborhood in S of α ∪ β intersects each edge of H at most four times and
cuts a punctured torus out of S.

If there is a pair of edges a, a′ so that the straight arc α connecting their midpoints is an
essential, disconnecting curve in S, then we can take c0 to be α. In this case it intersects each
edge of H at most once.

If none of the above cases hold, each edge is paired with a neighboring edge. In this case,
pick four neighboring edges a, a′, b, b′, with a, a′ and b, b′ paired, and take c0 to be the union of
the straight arcs connecting the midpoints of a′ and b and a and b′. In this case it intersects
each edge of H at most twice.

In all cases the curve c0 intersects H at most 4#H ≤ −12χ(S) times and cuts S into
the union of two surfaces S1 ∪ S2 such that |H1(Si; Z2)| < |H1(S

′′; Z2)|, i = 1, 2. We still
need Hi to be composed only of non-parallel, essential edges in Si. To fulfill this condition,
it is sufficient to apply to each pair of parallel edges of Hi a 0 → 2-move in order to produce
trivalent graphs in Si each having its vertices near ∂Si. Then we add to c0 a copy of each of the
components of ∂Si, creating at most −6χ(S) intersections, in order to enclose these trivalent
vertices in annuli. (In order to count the number of new intersections, note that after joining
parallel arcs, in Si there are at most −3χ(Si) essential arcs, each of which touches ∂Si twice,
and χ(S1) +χ(S2) = χ(S).) The remaining blocks are surfaces S′

i, i = 1, 2, homeomorphic to
Si and equipped with sets of disjoint essential arcs H ′

i, i = 1, 2. 6.7

Applying Lemma 6.6 to each connected component of (F,E) and noting that the sum of
|χ(Fi)| over the components Fi of F is O(k), we conclude that, after applying O(k2) 0 → 2-
moves to the edges of E (which adds O(k2) vertices to P ), it is possible to find a set of
disjoint, separating curves cutting F into disks, annuli, once punctured T 2 and RP2 and
thrice punctured spheres, whose total number of intersections with E is O(k2).

Moreover, by adding one simple curve bounding a disk enclosing as much of the gleam as
possible per region, we can suppose that the gleam of other regions is 0 or ±1

2 , depending on
the Z/2 gleam. We do not add these curves to the regions with zero gleam. These circles will
be called gleam circles.

Step 3. We will now perform 4-dimensional surgeries insideN(F ) in order to replace a regular
neighborhood of each curve of the family C found in the preceding step with the regular
neighborhood of a self-intersection 0 sphere. Topologically, this corresponds to replacing
S1 ×D3 with S2 ×D2 (whose boundary is S2 ×S1 in both cases). On the level of polyhedra,
each move replaces the regular neighborhood of a separating curve in F with a polyhedron
collapsing on a sphere whose total gleam is 0 as shown in Figure 22. After modifying N(F )
and P ∩N(F ) in this way, we get a new 4-manifold N ′(F ) equipped with a shadow P ′ with
the same boundary as N(F ) and P ∩N(F ). Since the set of curves over which we performed
the surgeries intersects Sing(P ) ∩ F only O(k2) times, the number of vertices of P ′ is O(k2).
Moreover the gleam weight of P ′ is increased by O(k) because of the addition of the two disks
of gleam ±1 for each curve over which we performed a surgery.

Lemma 6.8. After surgery on a separating curve c of the characteristic surface as above,
w2(N(P ), s) is represented by the sub-polyhedron F ′ of P ′ obtained by cutting F along all the
curves over which we performed the surgeries and capping the resulting boundaries with the
±1-gleam disks added during the surgeries.

Proof. The characteristic surface agrees with F away from the surgery, and so can either be
the original surface F , including the annulus between the two disks, or the surface F ′, not
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c

+1

−1

Figure 22. On the left we draw a typical regular neighborhood of a separating
curve c ⊂ F : in the drawing F is the vertical cylinder and the lateral regions
correspond to the regions of P \ F whose intersection with F form E. On the
right we show the result of a surgery on c: two new disks are glued to F along
curves parallel to c; their gleams are respectively 1 and −1.

including the annulus but including the two disks. Let F1 be one of the two components of
F \ c, and let g1 be its total gleam (which is necessarily an integer). Consider the surface
F ′

1 obtained by attaching to F1 the disk with gleam +1 after surgery. The self-intersection
number of F ′

1 is F ′
1 · F

′
1 = g1 + 1, while F · F ′

1 = g1, so F itself is not characteristic and the
new characteristic surface must be F ′. 6.8

By Lemma 6.8, after surgery on a complete set of separating curves the characteristic
surface is a surface F ′ formed by a disjoint union of surfaces Si, i = 1, . . . m each of which is
a S2, RP2 or T 2 embedded in P ′, which we will call P .

Note that, by the construction in Step 2, almost all of the regions of F ′ are equipped with
gleam at most ±1

2 . The regions possibly having non-zero gleam are those coming from the
disks added while surgering or from the disks bounded by the gleam circles. Let us call the
spheres that result from these last disks gleam spheres. Therefore each Si which is not a gleam
sphere is either a S2 with total gleam in [−3, 3] or a T 2 or RP2 with total gleam in [−2, 2].

Step 4. We have now reduced the problem to the case when F is a disjoint union of gleam
spheres and surfaces of a finite number of types with bounded gleams. Note that, by the
construction of Step 2, on each Si which is not a gleam sphere the graph Ei = Sing(P ) ∩ Si,
in addition to the gleam circles (each of which now bounds a disk of gleam ±1), is one of the
following graphs:

(1) Si a sphere coming from a vertex of the original singular graph: Ei is a circle and the
cone from its center to 3 or 4 points. Si is split into 4 or 5 disks, one of which has
gleam ±1 and the other ones having gleam 0 or ±1

2 .
(2) Si a sphere coming from an annulus: Ei is two circles bounding ±1 gleam disks and a

trivalent graph connecting them whose complement is made of gleam 0 regions without
gleam circles.

(3) Si a sphere coming from a thrice-punctured sphere: Ei is three circles bounding
three ±1-gleam disks in Si, connected by a subset of the three essential arcs in the
complement of the disks, cutting it into gleam 0 regions.

(4) Si is a torus or a RP2: Ei is formed by a circle bounding a ±1-gleam disk and a set of
disjoint, essential arcs in the complement of this disk, cutting it into gleam 0 regions.

Now applying some 3 → 2-moves to P as shown in Figure 23 (which decreases the number
of vertices), we can push all the trivalent vertices of Ei out of the spheres of type 2 above,
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Figure 23. The 3 → 2-move decreases the number of vertices of P without
changing its thickening.

so to reduce them to spheres in which Ei is made of two circles bounding ±1-gleam disks,
connected by some number of parallel arcs. If there is more than one parallel arc, we can
reduce the number of arcs by performing a 0 → 2 move followed by two 3 → 2 moves, not
changing the total number of vertices. So we may assume in this case that Ei is two circles,
possibly connected by one arc.

Thus, each pair (Si, Ei) which is not a gleam sphere is one of a finite number of cases. Since
every spin 3-manifold spin-bounds a 4-handlebody and every 4-handlebody admits a shadow,
for each of these cases we can choose a spin-filling equipped with a shadow. Therefore we
replace the regular neighborhood of each such Si in W with the suitable model. It is clear
that this changes the complexity of P by a fixed finite amount, which can be estimated by
explicitly choosing the above models for the spin fillings.

We are left with the gleam spheres, each of which is a sphere split by a simple closed curve
into a ±1-gleam disk and a g-gleam disk (for suitable g). We can split these last spheres by
a surgery along a curve inside the g-gleam disk bounding a disk of gleam g − sign(g). By
surgering over this curve and iterating we reduce to a union of O(|g|) spheres each being
composed of two ±1-gleam disks and one ±1-gleam annulus, which, again, can be replaced
by a fixed spin-filling chosen once and for all.

This concludes Step 4. 6.5
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