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Part 1: Context
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Representing 3-manifolds

Triangulations:

• Natural representation.

• Easy to construct from other representations.

• Compute some invariants (Turaev-Viro).

• Difficult to visualise.

Surgery diagrams:

• Compute invariants (Casson, Witten-Reshetikhin-Turaev).

• In practice, gives simple representations of small manifolds.

• How much do you lose in principle?

• Nearly the same as giving a 4-manifold bounded by the 3-manifold.
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Problem statement

Definition. The complexity of an (oriented) d-manifold is the minimal num-
ber of simplices in a triangulation.

C(Md) = min
Triang. ∆ of M

# of d-simplices in ∆

The 3-dimensional isoperimetric function gives the minimal complexity of
4-manifolds bounding 3-manifolds of a given complexity.

G3(n) = max
M3|C(M)≤n

min
N4|∂N∼=M

C(N)

Question. What is the asymptotic growth rate of G3(n)?

Theorem (Costantino-T.). There is a constant k > 0 so that

G3(n) ≤ kn2

Remark. A related question would require that the triangulation of the 4-
manifold on the boundary agree with a given triangulated 3-manifold. We
also get a quadratic bound in this case.
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Previous work

Constructive proofs that 3-manifolds bound 4-manifolds give estimates for
G3(n).

Proofs we’re aware of:

• Rohlin (1951): Based on a generic map f : M 3 → R
5. Probably gives

G3(n) ≤ kn4.

• Thom (1954): Homotopy-theoretic. Hard to get explicit bounds on
G3(n).

• Lickorish (1962), Rourke (1985), Matveev-Polyak (1994): Inductive
proofs, based on mapping class group. Use the inductive hypothesis
twice, so get exponential bounds for G3(n) at best.

• Costantino-T.: Based on a generic map f : M 3 → R
2. Gives G3(n) ≤

kn2.
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Analogous problems

We could also consider:

Question. What is the isoperimetric function Gsurf for polygonal curves
bounding triangulated surfaces in R

3?

Theorem (Hass-Lagarias). 1
2n2 ≤ Gsurf(n) ≤ 7n2.

Question. What is the isoperimetric function Gdisk for unknotted polygonal
curves bounding triangulated disks in R

3?

Theorem (Hass-Lagarias-Snoeyink-W. Thurston). c1A
n ≤ Gdisk(n) ≤ c2B

n
2

.

Question. What is the bound GPachner of the number of Pachner moves
required to turn a triangulation with n tetrahedra into a standard one?

Theorem (King, Mijatović). GPachner(n) ≤ c1A
n

2

.

Note that a sequence of Pachner moves gives a triangulation of the 4-ball.
On the other hand, coning to a point gives a triangulation with many fewer
4-simplices. Perhaps bounding the geometry of the triangulation of the 4-ball
in some way gives an appropriate analogous question to the growth of Gdisk.
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Part 2: The proof

7



Proof idea

Throw your 3-manifold at the screen.

That is, take a generic smooth map from M 3 to R
2.

The result is a blotch with some singularities. The singularities were first
analysed by H. Levine (1988); we will look at them later.

The inverse image of a regular value is a 1-manifold, a disjoint union of circles.
Idea: Glue in disks to these circles, and extend across the singularities.
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Warmup: 2-manifolds bound 3-manifolds

(idea suggested by Hatcher-W. Thurston)

One dimension down, let’s consider a generic map from a surface Σ2 to R
1,

i.e., a Morse function. The inverse image of a regular value is again a union
of circles. Glue in disks to each of these circles.

−→
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Singularites of maps from surfaces to R

A critical point is either a saddle point or a maximum/minimum locally in
the domain.

The inverse image of each regular point is an oriented 1-manifold, so the
orientations into a saddle point must alternate:

−→ and

Therefore the inverse image of a saddle value is a figure 8, and the inverse
image of its neighborhood is a pair of pants.

10



Filling in the 3-manifold

We can now finish constructing the 3-manifold. Take the surface cross an
interval and glue in a 2-handle to the each circle in the inverse image of a
regular point.

By the analysis above, the boundary remaining near each critical value is a
sphere, in one of two ways. Glue in a ball to each one.

−→
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The Stein factorization

Let’s view this construction from a more global point of view. For any map
f from a compact manifold, we can consider the Stein factorization f = g ◦h

where the fibers of g are connected and h is finite-to-one.

−→ −→

At generic points, the surface Σ is a circle bundle over the Stein graph and
the 3-manifold is a disk bundle. Alternatively, the 3-manifold collapses onto
the Stein graph.
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3-manifolds

In the case of 3-manifolds mapping to R
2, in codimension 1 the singularities

look like the previous singularities (surface to R), crossed with an interval.

In codimension 2 locally in the domain, the only new singularity is a kind of
cusp. It can be viewed as two critical points of index 0 and 1 meeting and
cancelling.

However, this singularity turns out to play little role. More interesting is the
crossing of two codimension 1 saddle-type singularities.
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Crossing singularities

There are two singular points in the inverse image of a crossing of two saddle
type singularities. Following the orientations as before, there are two ways
to connect up these two singularities to get a connected fiber.

(a) (b)

We will assume that our generic map has no singularities of type (b), since:

• Type (b) is similar to type (a), only slightly more complicated;

• A singularity of type (b) can be perturbed a little to get two singu-
larities of type (a).
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In a neighborhood of a singularity of type (a), the inverse image of a generic
point is one of the 4 ways of resolving the singular graph into a 1-manifold.

−→

We want to find the inverse image N of a neighborhood of this point, which
is a 3-manifold with boundary.

The boundary has a map to S1. The Stein graph is

Therefore the boundary is a genus 3 surface.

Each regular point in the singular fiber gives us a disk in the boundary that
bounds in N . Considering enough of these, we see that N is S3 minus an
unknotted tetrahedron graph.
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Constructing the 4-manifold

Now assemble the pieces to construct a 4-manifold W 4 bounded by our 3-
manifold M3.

• Start with M × [0, 1]. We want to kill one boundary component.

• Attach a 2-handle along each circle in the inverse image of a regular
point.

• Attach a 3-handle transverse to each codimension 1 singularity.

• The remaining boundary components are all 3-spheres, by the anal-
ysis of the singularities. Attach 4-balls to them.
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A more global view

As in the case of surfaces mapping to R, we can consider the Stein factoriza-
tion of our map from M 3 to R

2.

The resulting Stein surface is a 2-complex. It has a number of local models,
including

• the plane R
2 at regular points;

• a 3-page book from codimension 1 singularities; and

• the cone over the graph we found around the crossing of singularities.

among a few others.

The 4-manifold collapses onto the Stein surface. As before, the 4-manifold is
generically a disk bundle over the surface and the 3-manifold is generically a
circle bundle.

We will say more on these surfaces later.
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Starting from a triangulation

So far, we have been working with generic smooth maps. This has two prob-
lems:

• It involves analysis to find the generic singularities;

• To bound the complexity, we want to start from a triangulation.

So let’s start with a (proper) triangulation and pick a generic piecewise linear
map to the plane: Pick an arbitrary map from the vertices of the triangulation
and extend linearly over the simplices.

Problem: A generic piecewise linear map is not generic smooth. For exam-
ple:

−→

In codimension 1, we can see how to perturb these monkey saddles a little
bit to get generic smooth map. But codimension 2 is harder. . .

18



Starting from a triangulation, continued

To avoid codimension 2 singularities, map the vertices of the triangulation to
generic, distinct points on the circle S1 ⊂ R2.

Codimension 1 singularities occur along the image of an edge. Make them
simple by perturbing along the length of the edge, effectively splitting the
edge into parallel copies.

Codimension 2 singularities happen at the crossings of codimension 1 singu-
larities (no problem), or at the image of a vertex (problem!).

But the inverse image of a neighborhood of the vertex in the plane is a ball:
a neighborhood of the corresponding vertex in M . So we can cut out a
neighborhood of the vertex, forget about it, and glue a ball in at the end.

Main point: Interesting singularities come from crossings of edges of the
triangulation; this is quadratic in the number of tetrahedra. �
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Part 3: Going further
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4-manifolds bounding 5-manifolds?

Why doesn’t this proof work to show that 4-manifolds bound 5-manifolds?
Start the same way: pick a generic map from your 4-manifold to R

3. . .

There are some new codimension 3 singularities. For some of them, the
inverse image of a neighborhood, filled in around the boundary, is not S4,

but rather CP
2 or CP

2
.

This does give a proof that every smooth 4-manifold is cobordant to a union

of CP
2 and CP

2
’s.

If you want to get bounds on the complexity, you also need to worry about
generic PL maps which are not generic smooth maps in codimension 2.
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The shadow world

A soap bubble locally looks like:

• A plane;

• A 3-page book; or

• A cone over the 1-skeleton of a tetrahedron.

A 2-complex Σ whose only singularities are in the list above is called a simple
polyhedron.

If such a Σ is embedded in a 4-manifold W in a locally flat way, and W col-
lapses onto Σ, then we call Σ a shadow representation of W and its bound-
ary ∂W .

Contrast this with the standard spines for 3-manifolds, where the 3-manifold
is generically an interval bundle over Σ, rather than a disk bundle.

To determine W from Σ, also need to specify some integers or half-integers
(the gleams) on the 2-dimensional faces. If Σ is a closed surface, the gleam
is the Euler class of the disk bundle. In general, it is a relative Euler class.
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Shadow number and Gromov norm

Definition. The shadow number of a 3-manifold is the minimum number of
vertices in a shadow representation of the manifold.

There is an improved version of the main theorem that deals with ideal tri-
angulation or spun ideal triangulations:

Theorem. A manifold with a (spun) ideal triangulation with n tetrahedra
has a shadow diagram with O(n2) vertices.

Theorem. The 3-manifolds with shadow diagrams with no vertices are ex-
actly the graph manifolds (manifolds which can be cut up into Seifert-fibered
pieces).

Theorem (W. Thurston). A hyperbolic manifold with volume V has a spun
ideal triangulation with O(V ) tetrahedra.

Corollary. A manifold M with Gromov norm ‖M‖ satisfying the Geometriza-
tion Conjecture has a shadow diagram has shadow number S satisfying

C1‖M‖ ≤ S ≤ C2‖M‖2

for suitable constants C1, C2.
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Open questions

• Lower bounds or better upper bounds for G3, 3-manifolds bounding
4-manifolds.

• Lower bounds for GPachner, Pachner moves to make a triangulation
of S3 standard.

• Bounds for 3-manifolds to bound special 4-manifolds, like simply-
connected or spin.

• Lower bounds with a coarser notion of the complexity of the 4-
manifold (e.g., the order of the second homology).

One approach to a lower bound for G3:

• Pick an invariant I of 3-manifolds that is defined from a 4-manifold
bounded by the 3-manifold;

• Show that I is linearly bounded by the complexity of the 4-manifold;

• Find a family of 3-manifolds for which I grows quadratically in the
complexity of the 3-manifold.
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