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Abstract

We present a new method for displaying time varying volumetric data. The core of the algorithm is an integration
through time producing a single view volume that captures the essence of multiple time steps in a sequence. The
resulting view volume then can be viewed with traditional raycasting techniques. With different time integration
functions, we can generate several kinds of resulting chronovolumes, which illustrate differing types of time vary-
ing features to the user. By utilizing graphics hardware and texture memory, the integration through time can be
sped up, allowing the user interactive control over the temporal transfer function and exploration of the data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction

Time varying scientific data traditionally has two methods
of visualization. The first method, being normal volume ren-
dering or isosurface extracting time steps of interest and
rendering those individually. In this manner, the continuity
and connection between time steps is minimized. The in-
formation of a single time step is present, but the context
of the surrounding earlier and later time steps is not imme-
diately available, except by comparing rendered time steps.
The second method is to create an animation from the data
set. While context of the surrounding time steps is provided,
it relies on the viewer’s memory of what happened to tie to-
gether spatial relations. Also, it may be too time consuming
for a transfer function update and re-render to interactively
explore the animation in real time.

We propose an alternative method for viewing time vary-
ing data, related to late 1800 photographic methods. Dur-
ing this period, Etienne-Jules Marey was studying the hu-
man body, and was aiming to discern the laws that drove
human physiology. He manufactured graphing machines that
were able to measure forces and movement over time, but the
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machines were not adequate to studying locomotion com-
pletely. “He wanted to depict in a single image all the re-
lationships occurring both between one body part and each
of the others and between one body part and the body as a
whole at each of several instants of a specific movement exe-
cuting during a discrete unit of time and in a specifically de-
fined and constant space. 1” In 1878, Eadweard Muybridge
captured images of a horse moving over time with multiple
cameras, where the horse was captured separately on indi-
vidual frames. Inspired by Muybridge’s photography and the
advancement of camera technology, he was able to manu-
facture a camera system that was able to take multiple series
of images within a single plate. Dubbed chronophotography,
seen in Figure 1, Marey was able to capture the progression
of a body over time and space at regular intervals within a
single image frame from a single point of view.

If we were to apply Marey’s chronophotography method
to computer visualization, it would be stated: given a se-
quence of time varying images, the resulting image is a com-
bination of all time steps of interest. Our method is an ad-
vancement of this, where: given a sequence of time vary-
ing volumes, the resulting volume is a combination of all
time steps of interest. We have several benefits of being
able to study the data with this method. First of all, we can
see every time step of interest at once, with weighted in-
terest. This provides context of meaning from earlier and

c© The Eurographics Association 2003.

27



Woodring and Shen / Chronovolumes

Figure 1: Marey’s chronophotography.

later time steps, and we can reason about spatial relation-
ships between structures as they progress over time. Also,
since this is a single volume, unlike an animation, we don’t
have to rewind and forward the animation to see the progres-
sion. Secondly, by combining volumes we have an advantage
over chronophotography such that depth information is pre-
served. We are able to rotate the volume and structures are
properly depth occluded. Lastly, we are able to make rapid
updates to the transfer function and interactively explore the
time series.

The basic functioning of rendering a time varying vol-
ume follows. The user designs a transfer function for time
and data and then the volume is integrated through time. For
every voxel in the final viewable volume, a single voxel is
the result of integrating through every time step at that po-
sition in space. The resulting volume is then rendered with
traditional volume raycasting techniques. The added step we
have introduced is integration through time in the raycast-
ing pipeline. In the time integration step, we will introduce
several different time accumulation methods for rendering,
in addition to feature enhancement. Finally, hardware accel-
eration will allow us to quickly and interactively update the
transfer function.

2. Related Work

Previous work on time-varying visualization primarily fo-
cuses on data compression, acceleration of visualization
techniques, and time-varying feature tracking. For data com-
pression, Guthe and Straßer 2 used 3D wavelet transfor-
mation, coefficient encoding, and motion compensation to
achieve efficient volume compression and decompression.
Lum et al.3 used Discrete Cosine Transform and vector
quantization techniques to compress multiple time steps of
each voxel into an 8 bit index. The quantized volume is
loaded into the texture memory, and a dynamic color palette
is used at run time to decode the compressed data and an-
imate the volumes. More recently, Sohn et al.4 combined
wavelet transform and MPEG compression scheme to en-
code blocks that contain significant features. Isosurface seed

sets are also encoded to achieve interactive data browsing.
Neophytou and Mueller 5 proposed a space-time point ren-
dering technique. Four dimensional Body-Centered Carte-
sian (BCC) grid is used to provide a more efficient sampling.

To accelerate the visualization computations, various al-
gorithms were proposed. For volume rendering, Shen and
Johnson 6 proposed a differential volume rendering algo-
rithm which performs difference encoding and can selec-
tively cast rays only into those voxels that change values
dramatically in time. Shen et al.7, 8 proposed a Time-Space
Partitioning Tree data structure to store the temporal varia-
tion based on the coefficient of variation in the data. Partial
images rendered from data blocks are reused if little tempo-
ral variation is observed. Anagnostou et al.9 used a statisti-
cal hypothesis testing technique to measure voxel variances
and incorporated the technique into the shear-warp volume
rendering algorithm. For isosurface extraction, Sutton and
Hansen 10 extended the Branch-on-Need Octree (BONO) al-
gorithm to manage time-varying data for isosurface extrac-
tion. Shen 11 proposed a temporal hierarchical index tree to
arrange the extreme values of each data cell based on their
temporal variation to speed up isosurface extraction.

To track time-varying features, researchers have proposed
various methods to establish correspondence between data
in different time steps. Silver and Wang used spatial over-
lap criteria 12 to track time-varying isosurfaces evolving in
time for structured and unstructured data. Important tempo-
ral events such as bifurcation can also be detected 13. Banks
and Singer 14 used a predictor-corrector method to recon-
struct and track vortex tubes from turbulent time-dependent
flows. van Walsum et al.15 designed a feature viewer using
iconic visualization techniques to assist visualization of im-
portant temporal events.

Little attention has been paid to direct visualization of
4D data. Hansen et al.proposed a method 16, 17 for four di-
mensional illuminations. In their method, three dimensional
Phong lighting model was extended to four dimension, with
tetrahedra as the basic rendering primitives. Special care was
taken to enhance objects with renderable properties so that
they are renderable in the embedded dimension. Bajaj et al.18

generalized the object space splatting technique into a hyper-
volume splatting method that can be implemented by tex-
ture mapping hardware. In essence, visualization of high di-
mensional objects were the primary interest for those meth-
ods, therefore no explicit temporal feature tracking was at-
tempted.

Research on transfer function design has been primarily
focused on static volumes data. A common practice is to use
a single transfer function for the entire time sequence. Kindl-
mann et al.19 proposed a semi-automatic algorithm to detect
the material boundaries based on first and second derivatives
of the scalar data. A function that maps from data values
to the distances to the boundaries is used to assist opacity
assignments. Kniss et al.20 later followed up the work in 19
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Figure 2: Alpha composition of 10 consecutive time steps of
the Vortex data set. The isosurface progresses from blue to
green to red over time.

with an intuitive user interface and introduced the concept
of dual domain interaction. For time-varying data, Jankun-
Kelly and Ma 21 proposed a method to reduce the number of
transfer functions across the time sequence by merging the
coherent segments. Multiple transfer functions for a time-
varying data are not frequently used, but can be effective for
certain scenarios.

3. Integration Through Time

In normal raycasting, a ray is cast from the eye through
a pixel on the image plane. The ray then travels through
the prospective volume, using an integration function as it
passes through voxels along the ray to accumulate colors.
The final color of the pixel is the result of all the color along
the ray as defined by the integration function and transfer
function.

To visualize data from multiple time steps in a single im-
age, a projection of the four-dimensional data to a render-
able lower dimensional space is obviously necessary. Since
our primary interest is to understand the temporal evolution
of time-varying data, it is desirable that this projection pre-
serves the spatial relationship of data features such as lo-
cations and visibility in the embedding three-dimensional
space. This is to ensure that the user can reason about feature
shapes and positions easily. To achieve this, we first use an
orthographic projection to transform the four-dimensional
data to a three-dimensional volume. The transformation is
to project the four dimensional voxel data (x,y,z, t) along
the t (time) axis to a three-dimensional “image plane”. Each
“pixel” in the resulting “image” is in fact a voxel, which has
a value from integrating v(x,y,z, t) along time.

Hereafter we call the projection volume a chronovolume.
To visualize the chronovolume, we can use regular volume

rendering methods to project it to a two-dimensional image
plane from arbitrary viewing directions. Is is only necessary
to reintegrate along time when changing the transfer func-
tion, to recreate the chronovolume.

while(true) {
if(transfer function was updated) {
integrate through time
build chronovolume

}
if(view position has changed) {
raycast chronovolume

}
}

Unlike volume integration in the three-dimensional spa-
tial domain, there is no “correct” way of performing the time
integration when constructing the chronovolume. This is be-
cause there is no analogous concept of time-integration in
the physical world. The design of time integration operation
should depend on the goal of visualization. Different integra-
tion schemes will pick out different time-varying features.
We have implemented several integration functions. In the
following, we describe the functions in detail.

3.1. Integration and Transfer Functions

When using raycasting to render a volume, there is an array
of integration functions that can be used. We can utilize these
integration functions when applied to integration through
time. In the following, we describe the use of alpha composi-
tion, first temporal hit, and maximum/minimum integration
functions for creating a chronovolume. Each of these func-
tions provides a particular insight to the time-varying data.
What follows is the description of the different algorithms
and the example images of the techinques referred to in Fig-
ure 3 are on the color plate. Color is an important feature to
the chronovolume images, and viewing them in gray scale
lacks much of the information that is presented in the im-
ages.

3.1.1. Alpha Compositing

One method to integrate data when casting a ray through
time is to adopt the idea of alpha blending commonly used
in volume rendering. To achieve this, we define an opacity
function over time and an opacity function over data. The
opacity of a single time step value before being integrated
into the result value is a modulation of time opacity and
data opacity. The time opacity allows us to emphasize cer-
tain time steps, while the data opacity allows us to empha-
size certain data values. The blending order of integration
through time follows the time sequence with two alterna-
tives - we can integrate the voxels from the oldest time steps
to the newest time steps (forward integration), or from the
newest time step to the oldest time step (backward integra-
tion). When forward integration is used, earlier time steps
can occlude older time steps, hereafter called temporal oc-
clusion. On the other hand, when the backward integration
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is used, the opposite effect is seen. The user can determine
what weight or importance to give to a single time step by
changing the alpha factor for a time step. When the user does
so, more important time steps can be visible, with fading to
transitory time steps within the context of past and present of
the important time step. By using a hat alpha function over
time, for example, the user can isolate a single time step, and
smoothly fade to earlier and later time steps. An inverted hat
alpha function allows the user to distinguish two time steps
and smoothly fade toward a median time step.

Our transfer functions minimally have two inputs, data
value and time ordinal, so the color of a single time step
voxel will depend on its time step and data value. We have
separated the transfer function into two portions, time and
data, where the output color of a value at a particular posi-
tion in time and space is a modulation of time color and data
color. In the case of a color transfer function for time, we
have used a linear red to green to blue transition from newest
to oldest time steps. This allows for three distinct periods,
roughly corresponding to "past", "present", and "future". A
warm-cool color space may be appropriate when operating
with two distinct time periods and transitory in-betweens.
Using a luminance transfer function for time, would allow
to user to focus on a single time step, while lesser impor-
tant time steps would fade to black. While it is possible to
modulate the data color transfer function with the time color
transfer function, the modulation of colors muddles infor-
mation, as it is near impossible to discern the combination
of colors from data and time. It is more recommended to use
either the data color transfer function or the time color trans-
fer function, but not both simultaneously, by setting the one
modulation color to a constant color. Given the proper inter-
face, the user could interactively toggle between data trans-
fer function and time transfer function to see both spaces. In
all of our examples, we have only used temporal coloring.

In Figures 2 and 3(a), we show examples of using alpha
blending through time. Here, we can see several isosurfaces
as they progress. In Figure 2, 10 consecutive time steps are
time alpha composited; there is a great deal of overlap in
space between the time steps. In Figure 3(a), three spaced
time steps over a period of 20 are time composited together;
there isn’t quite as much overlap in this image, as the time
steps are spaced apart. Blue indicates the oldest time step,
while red indicates the most recent time step. Green is a time
step that is the median between the newest and the oldest
time step. In both images, we can see how the isosurfaces
progress over time and space.

A position in space may have several time periods that
have an opacity that is non-zero. By providing an importance
value, via the alpha channel, to a time step, we can see what
time step or steps occupied a voxel over time. More impor-
tant time steps will dominate, thus these time steps will have
their color appear in the chronovolume. For example in Fig-
ure 2, the red time step dominates all others, while blue is the

least dominant. We get an overlay effect where the isosurface
moves from blue to red. In Figure 3(a), we have spaced out
the time steps so we can distinctly see each time step. Visu-
alizing chronovolumes generated with different integration
order and opacity functions in a comparative manner can as-
sist us to understand the spatial relationships of certain data
features in different time steps, and thus reason about how
the features evolve.

3.1.2. First Temporal Hit

When, first temporal hit is used, as we integrate through
time, the final color for a chronovolume at a voxel is de-
termined by the first voxel that we encounter with non-zero
opacity, depending on the integration order. When we choose
the first time step that meets this criteria, we stop integration
through time. This is different from a first hit technique used
in the spatial domain, where the first hit along a view vec-
tor is completely opaque. Here, a voxel does not need to be
opaque, because we are doing first hit in the temporal do-
main. Spatially, there may be interesting features we would
like to see, thus a voxel might not be fully opaque will allow
the user to see through first temporal hit voxels. The ren-
dering order also determines what is first hit, whether it be
newest to oldest, oldest to newest, or some importance order-
ing. By importance ordering, the user can specify which time
step would be encountered first when integrating through
time, thus more important time steps would be checked first.

When doing a first hit in the temporal domain, rather
than the spatial domain, there are features in one time step
that may be behind another time step, depth-wise from the
viewer. First hit allows the user to apply a low opacity to a
single time step so that the user can see through a time step in
space. If we were using alpha blending through time, and ap-
plied a low opacity to a time step, it may be dominated by an-
other time step, and thusly temporally occluded or blended.
In addition, when using alpha blending, opacity builds up
very quickly if many time steps overlap the same region in
space. By using first temporal hit, we can definitively say
whether or not a certain time step occupied a region in space
over time sequence, without getting the blending effect with
other time steps. First hit allows the user to distinctly isolate
a time step while allowing the user to see spatially through a
time step.

The first hit method to integrate through time can be seen
by Figure 3(b). Time steps are distinct from each other, and
we can see farther objects through objects that are nearer to
the viewer because we have used a low opacity. If we had
used alpha composition through time, regions where time
steps overlap would have had a blending of time steps, and a
higher opacity, potentially occluding objects spatially.

3.1.3. Additive Colors

Sometimes it is necessary to know whether features at dif-
ferent time steps overlap, or by how much they overlap. Im-
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ages generated using the first hit or alpha blending integra-
tion method mentioned previously, however, do not provide
such cues. This is because at any given point in the image
we can only see features from one time step due to tempo-
ral occlusion, or it is very difficult to deduce how features in
different time steps are overlapped from the alpha blended
colors. To solve this problem, instead of using alpha com-
positing, we can use an additive color integration method.

To achieve this, as we integrate through time, we take a
color summation of all time steps at the same position, and
do a normalization step at the end to account for the max-
imum value ranges of graphics hardware. Now instead of
time steps occluding each other, when several time steps oc-
cupy the same space and we use a meaningful color trans-
fer function, it can lead to combination colors which clearly
show how features in multiple time steps overlap. We use
time transfer function which linearly transits from red to
green to blue. For the regions where features in all time step
overlap, a white color is produced. This can be useful when
trying to study several time steps simultaneously, as they do
not occlude each other, but show up as a color which signi-
fies their overlap. Alpha blending or first hit is more useful
when trying to study a single time step in relation to other
time steps, since a time step can temporally occlude other
steps when integrating through time.

In Figure 3(c) and 3(d), they were rendered with an ad-
ditive composition technique. In our previous two examples
first hit and alpha compositing, when several time steps oc-
cupied the same region it was usually dominated by one sin-
gle time step. When we use this technique, when several time
steps overlap the same region of space it appears as white.
For example in Figure 3(c), we have used the same vortex
data set. Previously, when two or more time steps occupied
the same position in space, only one time step was really
discernable. Now, when all time steps overlap in space, they
appear as white, or possibly appear as cyan, magenta, or yel-
low, if only a few time steps occupy the same space. We
can see near the left hand side on Figure 3(d) that there is
a great deal of overlap in time, so this means isosurface is
relatively unchanged in this region over the time sequence.
However, near the right hand side of the image, we can see
distinct time steps, meaning there is significant progression
of the isosurface. This is very useful in seeing overlap be-
tween time steps, and whether the isosurface has remained
in the same relative region over time.

3.1.4. Minimum/Maximum Intensity

Visualizing the min/max values throughout the entire time
sequence for every voxel in the volume in a single picture
allows us to pick out the extreme value over the complete
time series easily. When coloring each voxel in the chrono-
volume by the time step that has the min-max value, it allows
the user to see changes over time. The user can see, in a par-
ticular region, which time step had the extreme value over

a certain time sequence. As we integrate through time at a
position, we select the time step that had the extreme value
over the entire sequence. That time step and value is used to
look up the value in the transfer function and becomes the
value for the voxel at that position in the chronovolume.

Figure 3(e) shows the maximum intensity technique. With
the same color transfer function over time that we have been
using, where blue is the oldest and red is newest, a blue
area indicates that the value has decreased over this time
sequence. Likewise, a red area indicates that the value in-
creased over this entire time sequence, and a green area in-
dicates that the value increased then fell over time. With
minimum/maximum intensity, at a glance we can see over
the time sequence the general change in value, and which
particular time step it was that had the maximum or mini-
mum value. Granted, we do not detect and display multiple
changes over time for the user; at this point we make an as-
sumption of a single rise and fall in value.

3.1.5. Edge Enhancement and Other Feature
Enhancements

We can also apply feature enhancement to our time inte-
gration techniques. Edge enhancement has proven to be a
valuable tool to scientific visualization. To apply a feature
enhancement, in our rendering pipeline, we do the detec-
tion and enhancement during the time integration step. To
accomplish this, there are additional parameters to the trans-
fer function. In previous examples, the transfer function had
only been dependent on the data value and time ordinal.
Edge enhancement adds gradient to the transfer function
and silhouette edge enhancement also takes into account the
view vector. For example, we have used silhouette enhance-
ment in conjunction with alpha blending through time. As
we integrate through time, we do a silhouette edge detection
at every time step and apply the enhancement to the voxel for
that particular time step and position. Note that this means
when there is a change in viewer position, when we are do-
ing silhouette enhancement, time integration must be recom-
puted, because the transfer function depends on the view
vector in relation to the gradient for every time step. If we
used basic edge enhancement, it would not be necessary to
recompute the time integration when view position changes,
because the gradient for a position in time and space is does
not change with the view.

Figure 3(f) shows an application of silhouette enhance-
ment over 3 time steps. Without the silhouette enhancement,
not a great deal of detail can be seen on the surface. When
silhouette enhancement is turned on in Figure 3(f), now we
can see some additional information. In this data set we
can see how the surface details change and move as time
progresses. While the user has the ability to rotate the vol-
ume interactively, since we’re combining many time steps
together in one viewable volume, the user may need some
aid to determine spatial depth while looking from a certain

c© The Eurographics Association 2003.

31



Woodring and Shen / Chronovolumes

view. Silhouette enhancement can aid the user to determine
depth in these instances.

3.2. Data Organization

In preparing the time varying volume for time integration
and display, the data needs to be reorganized in an optimal
manner for time integration. Traditionally, when a time se-
ries data is being stored, it is usually stored in a xyzt fashion,
where x runs the fastest and t runs the slowest. In building
a chronovolume, there are sequential accesses to consecu-
tive data values in the same position but with varying t. This
does not utilize spatial cache coherence, because if we inte-
grate through time, there will be large address jumps in the
array to access temporally sequential values.

For maximum efficiency in a software time integration,
we order the data in a txyz fashion, where t runs the fastest.
To minimize memory usage, instead of storing the entire
time varying data set, we can store linear arrays of a single
fixed positions with varying t. Thus, we only need to keep
time steps of interest in core. Also in this manner, we only
need to incrementally add or subtract relevant time steps to
the array as needed, when the user wishes to move through
time. The drawback to this is there are many linear arrays,
which may need to be managed by the dynamic memory
manager if the maximum length of time sequences is not
fixed.

When using hardware rendering, it is more efficient to
store the data in a xytz fashion, where x runs the fastest. The
reason for this is because of efficient 2D texture operations
in graphics hardware. Thus, when doing time integration, we
use 2D texture slices that contain all x and y for a fixed t and
z. Again, we only need to keep relevant time step textures in
memory that are needed. In the following, we describe the
hardware implementation of time integration.

3.3. Hardware Acceleration

If the integration through time is done is software, an up-
date in the transfer function can be slow to display. We feel
that interactive control is an important aspect of visualiza-
tion software. To be able to give the user interactive control
over the transfer function and immediate feedback, we can
speed up the time integration by using graphics hardware.

To create a chronovolume using graphics hardware, we
compute a 3D texture in z slices. To compute a z slice, in
the case of alpha blending, for all time steps with the same
z position, we alpha blend 2D textures into a pbuffer. When
a texture is blended with the pbuffer, we are computing a
portion of the time integration for some t, for all positions
(x,y) with the same z. When all time steps are blended, the
pbuffer is copied into the appropriate z slice in the final 3D
texture, which is the chronovolume.

We utilize multitexturing units and dependent texture
lookups. For our set up, we used a nVidia GeForce4 Ti4200,

OpenGL 1.4, and nVidia’s NV_TEXTURE_SHADER
OpenGL extension. As mentioned in the previous section,
we order the data in an xytz manner, that way we can use
2D one-component data textures. One texture unit is used
for the data, and a second texture unit is used as a dependent
texture in which the data transfer function is stored. When
texture coordinates are generated, the data texture output is
used as texture coordinates to the data transfer function tex-
ture to lookup the transfer function value for that data value.
Only two texture units are used; in the GeForce4, that leaves
two more texture units free to use for additional information
like gradient textures. The time transfer function value for
a texture is applied by setting the modulation color for the
entire texture quad, because when the texture is rasterized, t
is constant across the texture.

Activate a pbuffer as the render area
Turn blending on
Set the blend function
Bind the data transfer function

dependent texture to texture unit 1
Pipe the output of texture unit 0

to the input of unit 1
Pipe the output of texture unit 1

to pbuffer
Set texture unit 0 as the

active texture unit
for(all z) {

Clear the pbuffer
for(all t) {
Bind data texture (t, z)

to texture unit 0
Set the quadrilateral color

to time transfer function (t)
Render an orthographic

quad to pbuffer
}
Copy the pbuffer to slice z
of the 3D texture chronovolume

}

With this, we can quickly integrate over time and create
our chronovolume. We have implemented time alpha com-
positing and additive color in graphics hardware. For addi-
tive color, the time transfer function value also needs to be
premultiplied by a normalizing factor to account for color
clamping in the graphics hardware and the normalization
step for additive color. Additionally, the blending function
needs to be set appropriately to do addition rather than alpha
blending. We have not implemented minimum/maximum in-
tensity and first hit in hardware, but an outline follows for an
implementation for graphics hardware. First of all, the data
would need to be stored as a two-component texture, where
the second component carried what time step the data value
was from. To achieve min-max intensity or first hit, we ras-
terize data textures to the pbuffer, without using the transfer
function, utilizing the stencil buffer to cull away data frag-
ments. The stencil buffer would serve as a mask that stored
either a boolean value for first hit, or the most extreme value
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Data Size Software Hardware

vortex 10x128x128x128 3.826 s .1986 s
20 7.536 s .2649 s
30 11.426 s .3440 s

jet 10x128x128x128 3.810 s .1832 s
20 7.563 s .2322 s
30 11.412 s .2990 s

dens 10x512x64x64 3.789 s .1638 s
20 7.457 s .2156 s
30 11.318 s .2795 s

delta 10x128x128x64 1.895 s .0905 s
20 3.735 s .1148 s
30 5.659 s .1430 s

Table 1: The computation time for time integration in soft-
ware compared to hardware. Computation time is expressed
in seconds.

for min-max intensity. If an incoming data fragment does
not pass the stencil test, then it is not written to pbuffer. The
pbuffer would be then to used as the data texture. This data
texture would be used to do two dependent texture lookups,
the data transfer function texture and time transfer func-
tion, also stored as a texture. The two texture fragments then
would be modulated together using register combiner hard-
ware, via NV_REGISTER_COMBINERS extension to pro-
duce a fragment in the z slice of the chronovolume.

For hardware acceleration, we get quite a significant speed
up for time integration. In our hardware setup, we used an
Athlon XP 1700, 512 MB, and a nVidia GeForce4 Ti4200
64 MB. For 10 time steps, we get about 19 times speed up
of calculating the time integration with hardware compared
with software time integration. When 30 time steps are inte-
grated, a constant overhead involved in the graphics raster-
ization is less of a factor in the time taken, and we get ap-
proximately 39 times speed up of the time integration. The
timing results can be seen in Table 1.

4. Parallel Views and User Interaction

When exploring a data space, we have found it to be useful
to visually present and switch between parallel views of the
rendering, with different time integration methods, to get a
more complete understanding of what is taking place over
the time series. In our use, it was not uncommon to switch
between the additive method and the alpha compositing to
find overlapping areas in time. We frequently reversed the
time integration order so we could see both images of newest
to oldest and oldest to newest to investigate the differences
between the two. The sum of the parts is greater than the
parts individually when the user is presented with the various
time integration methods.

For example, in Figure 3(g), the isosurface moves from
blue to green to red over 3 time steps. We get a good sense of
motion and the actual distance in space between isosurfaces
over time at a glance. When we switch to an additive view,
as seen in Figure 3(h), we can see exactly how much the
time steps overlap in space. Figure 3(g) gives us a sense of
the amount of movement, and 3(h) gives us a sense of the
amount of overlapping occupation. If we switch to our third
view, Figure 3(i), we can see how the values are actually
changing over time and what regions are contributing to the
movement of the isosurface.

We have also found that when the user is altering the trans-
fer function, fine tune control is very necessary when ma-
nipulating the alpha transfer values in chronovolume render-
ing, even more so than traditional raycasting. Since multiple
time steps contribute to a single voxel now, opacity builds
up very quickly on a single voxel when using alpha blend-
ing, which leads to a very opaque chronovolume where in-
terior and depth features are obscured. To remedy the prob-
lem, the user must be given fine tune control, or the ability
to “zoom in” on the transfer function, to edit the function
at a very small scale. In addition to micro control over al-
pha values, since many time steps can still be in the same
space in chronovolume, a necessary tool to give the user is
a slicing plane to examine the interior of features that have
progressed.

5. Conclusion and Future Work

We have developed an algorithm for rendering time varying
data sets. It is an exploration of direct rendering of space-
time data and different from previous methods of using an-
imations and viewing individual time steps. The immediate
benefit that we see in this system is that for data the sur-
rounding context of adjacent time steps is immediately view-
able. In both animation and the individual time steps, the
viewer has to shuffle forward and backward through time to
see the transition that is taking place. With the entire time se-
quence at once, the viewer can see what is taking place over
space and time in a single frame and view the space-time
boundary of features. We can also explore other features
such as change in value over time and spatial overlap quite
easily. With hardware acceleration, the user has the ability
to interactively change the transfer function to explore the
domain more readily.

There are possibilities that could even further improve
chronovolume visualization. First of all, improvements can
be made to the data management schemes. There needs to
be work done on managing large time varying data sets in
relation to this rendering scheme and keeping the ability to
interactively change the transfer functions. First and fore-
most, there is the issue about shuttling textures in and out of
the main memory and texture memory. Some methods that
could be used to reduce the traffic would be compression and
incremental update.
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Next, there can be improvements made to the user interac-
tivity of the software. The user interface needs to be modified
toward this new 4D rendering to allow the viewer to move
quickly through the entire time sequence and select the ar-
eas of interest. Some measurement tools and probes that are
adapted to working in this multi time space would also be
beneficial to the user.

Finally, there can be enhancements made to the rendering
capability more than just silhouette and edge enhancement.
Other rendering methods that are useful to visualizing time
varying data could be discovered. When so many time steps
contribute to one image there tends to be quite a bit of clut-
ter in the final image if the user is not careful with manip-
ulating the transfer function. Better integration and transfer
functions and more enhancements to reveal important data
would be useful to the end user.
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(a) Alpha composition over 3 time
steps selected over 20 steps of the Vor-
tex data set. Time steps are picked
spaced apart so that they do not over-
lap, but progression over time can still
be seen.

(b) First hit integration over 10 con-
secutive time steps of the Vortex data
set. A time step has a low opacity and
with first hit, the time steps are distinct
and can be seen through spatially.

(c) Additive integration over 10 con-
secutive time steps of the Vortex data
set. White regions indicate where all
time steps intersect the same spatial
location.

(d) Additive integration over 10 con-
secutive time steps of the Delta wing.
White regions indicate where all time
steps intersect the same spatial loca-
tion.

(e) Maximum intensity integration
over 3 time steps selected over 10
of the Delta wing. Coloration indi-
cates which regions had the maximum
value over the time series, and thus in-
dicates data value change over time.

(f) Alpha blending with silhouette
edge enhancement over 3 time steps
selected over 30 of the Dens data set.
The surface features can be seen on
the planar surface as it progresses over
time.

(g) 3 time steps of the Jet data set with
time alpha compositing. The volume
indicates that the data was in the blue
region, moved to green, and then red.

(h) 3 time steps of the Jet data set
with time additive integration. White
regions indicate that several time steps
occupy the same region in space over
the series.

(i) 3 time steps of the Jet data set with
time maximum intensity integration.
This is an indication of the change in
value over time in the time series.

Figure 3: Chronovolume images.c© The Eurographics Association 2003.
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