
Proc. Natl. Acad. Sci. USA
Vol. 91, pp. 962-963, February 1994
Physics

Convergence of quantum electrodynamics in a curved modification
of Minkowski space

(ultravolet divergen es/nn r qumtum fidd theo/ antal lt/Ensein unlerne/dronmer rdait fthry)

I. E. SEGAL* AND Z. ZHOUt
*Massachusetts Institute of Technology, Cambridge, MA 02139; and tMichigan State University, East Lansing, MI 48824

Contributed by I. E. Segal, October 20, 1993

ABSTRACT The interaction and total hamilton for
quantum electrodynamics, In the Interaction repreentation,
are entirely regular self-adjoint operators in Hilbert space, in
the universal covering n i M of the conformal compac-
tificatfio ofMinkowski space M.. (M Is conformaily equivalent
to th Eistein universe E, in which M, may be canonically
imbedded.) In a fixed Lorentz frame this may be expressd as
convergence in a spherical space with suitable periodic bound-
ary conditions in time. The tronal relativistic theory is the
forma limit of the present variant as the space curvature
vanishes.

The ultraviolet (UV) divergences of quantum electrodynam-
ics (QED) have remained the fundamental challenge to the
foundations of physical quantum field theory since its devel-
opment in the late 1920s by Dirac (1-3), Heisenberg and Pauli
(4, 5), and others. In work that is detailed elsewhere (6), we
show that these divergences are absent when Minkowski
space M. is modified by the suitable introduction of a
fundamental length. This is reminiscent of the classic sug-
gestion by Heisenberg (7) that a model incorporating a small
fundamental length might relieve the UV divergences. How-
ever, in contrast to this suggestion, the length R is large, and
it is in the limit R -X oo that the present formalism converges
to that of relativistic theory.

Indeed, R is naturally interpretable as the radius of the
universe, as originally modeled by Einstein (8). The form of
QED that we treat is based on the Maxwell-Dirac equations
in the Einstein universe* E. The hamiltonian correspondingly
represents the generator of temporal evolution in E, which
differs from temporal evolution in the locally tangential
Minkowski space. The relation between the Einstein and
Minkowski hamiltonians is closely analogous to that between
the Lorentz boosts in the Poincard group and the correspond-_
ing generators of transformations to moving frames in the
Galilean group; the limit R -X 00 in the present context plays
the role of the limit c -X oo in special relativity.§

Einstein temporal evolution is not equivalent (e.g., non-
conjugate in the conformal group) to Minkowski temporal
evolution, and the Einstein hamiltonians for free fields have
discrete spectra that are strictly positive. In units in which h
= c = 1, the lowest Einstein photon energy takes the form
2/R. The present fundamental length thus has a simple
microscopic physical interpretation, as well as a cosmic one.
It implies also a finite upper bound on the energy of a spinor
particle of given mass.
The Einstein energy always exceeds the Minkowski (rel-

ativistic) energy, although microscopically it closely approx-
imates it. Chronometric cosmology (11) proposes that the
difference, as applied to a photon propagated freely during a
long time period, represents the observed cosmic redshift.

This cosmology appears to be valid (e.g., refs. 12 and 13), and
if so R may be estimated from direct observations on appar-
ently superluminal radio sources, as of the order of 5 x 10O
light years (14). This implies a minimal photon Einstein
energy of order 10-35 MeV. Applied to spinor particles as
modeled by the Dirac equation, it implies that a particle of
mass me has a cutoff on its energy of order 103 GeV.

In formal terms we may state the
THEOREM. Let K ,, denote thefree photon Hilbert space of

normalizable multiparticle photon states (in M. or equiva-
lently, by virtue of conformal invariance, in M). Let K.
denote the same for electrons of given mass satisfying the
Dirac equation in E. Then the quantized interaction hamil-
tonian Hi = fS3: f(x)y*,*(x)A,A(x): d3x exists as an essentially
self-adjoint operator in the tensor product K = K ,, X K., on
the domain of all linear combinations of tensor products of
modes having exact Einstein quantum numbers. If H. de-
notes the total free hamiltonian in K, then H. + Hi is
essentially sel-adjoint on the same domain, and for all
sufficiently small constants g, the closure ofH. + gH, has a
unique (within a constant factor) lowest eigenstate.
The Einstein quantum numbers are defined and treated in

refs. 15-17.

*E represents the space R1 x S3. AU relevant free particle wave
functions in E are suitably periodic in time and the underlying
space-time may correspondingly be regarded as SI x 53, which is
conformally equivalent to the fourfold cover of the conformal
compactification of Mo. In consequence, the interaction represen-
tation analysis of the coupled electron-photon fields in M may be
confined to this fourfold cover. The interacting (Heisenberg) fields
themselves, however, are not at all periodic in time.
§A conformal group generator distinct from the relativistic temporal
evolution generator was proposed in place of the latter for flnda-
mental microphysical purposes in ref. 9, on symmetry grounds
similar to those of Minkowski's explication of special relativity
(1908 address, Space and Time, see ref. 10). This genator is
mathematically equivalent to that for temporal evolution in E.

This paper is dedicated to the memory of the late Stephen M.
Paneitz, in recognition of his essential contributions.
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